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Abstract—Conservation of power in time-stepping finite-element (FE) simulation of electrical machines is studied. We propose a 
method for accurately obtaining the instantaneous time derivative of the FE solution, from which the instantaneous eddy-current 
losses and the rate-of-change of the magnetic field energy are calculated. The method is shown to be consistent with different time-
integration schemes, unlike the typically-used backward-difference (BWD) approximation, which is only accurate if the BWD method 
is also used for the time integration. We first formulate the FE equations for a locked-rotor induction machine as a differential-
algebraic equation (DAE) system. An approach called the collocation method is then used to derive the BWD, trapezoidal (TR) and 
implicit midpoint (IM) integration rules in order to show how these methods approximate the solution in time. We then differentiate 
the constraint equations of the DAE to form a system from which the time derivative of the solution can be solved. The obtained 
derivative is shown to satisfy the power balance exactly in the collocation points. In case of the TR rule, the losses calculated with the 
proposed method are shown to be less sensitive to the time-step length than ones obtained with the BWD approximation for the time 
derivatives. The collocation approach also allows studying the power balance continuously during the time step. 
 

Index Terms—Collocation method, eddy currents, electrical machines, field energy, finite element methods, power balance.  
 

I. INTRODUCTION 

IME-STEPPING finite-element (FE) analysis is widely 
used for the prediction of torques, currents, power losses 

and vibrations of electrical machines. While the two former 
are needed in the energy conversion process of the machine, 
the two latter are related to dissipation of energy and should 
usually be minimized. During the past 20 years, increasingly 
complex models for more accurate computation of the power 
losses and magnetomechanical interaction have been 
developed. Naturally, in order to obtain accurate results, the 
errors caused in the power balance by the FE model and the 
applied time-stepping scheme should be minimized. 

The instantaneous power balance of an electrical machine 
can be written as 

        mag
in out loss

dW t
P t P t P t

dt
   , (1) 

in which part of the input power Pin is transformed as output 
power Pout, part is consumed as losses Ploss and the rest 
changes the energy Wmag stored in the magnetic field of the 
machine. For the powers predicted by an ideal model, (1) 
should be exactly satisfied at all instants of time. However, 
numerical time-integration schemes typically cause errors in 
the instantaneous and average power balances, especially, 
when the nonlinear material properties of the ferromagnetic 
core are considered [1]. 

Although the possibilities of deriving global quantities from 
FE solutions using energy balance considerations have been 
known for long [2], [3], a review on the literature also shows a 
recent interest in the numerical power and energy balance 

studies in both circuit [4], [5] and FE simulations [6]-[15]. In 
[7]-[10] the power balance was applied to verify the proposed 
iron-loss models for both 2-D and 3-D analysis of electrical 
machines. The energy conservation properties of the most 
commonly used backward-difference (BWD) and trapezoidal 
(TR) time-integration methods were discussed in [11]. The 
authors concluded the TR rule to be power balanced in case of 
a linear RL circuit. Strictly speaking, however, they did not 
focus on the instantaneous power balance (1) but rather on the 
average reactive power over one excitation cycle in a steady 
state. Thus the discussion was more related to the energy 
balanced properties of the TR rule [12], which was finally 
applied to solve a transient FE problem with a simple eddy-
current loss model for core laminations. In [13], the authors 
discussed the calculation of the instantaneous active and 
reactive powers from a coupled field-circuit FE formulation 
for an inductor, while [1], [14] and [15] focused on calculating 
the electromagnetic torque of a rotating machine from the 
power balance. In [1], the TR rule was applied for the time 
integration, but only the average torque over each time step 
was considered. On the other hand, the authors of [15] 
calculated the instantaneous torque at the end points of the 
time steps, but performed the time integration using the BWD 
method, which itself is known to be energy-consuming even in 
the linear case [1], [11], [12]. 

As a conclusion from the literature review, general methods 
for calculating the instantaneous power balance consistently 
with different time-integration schemes have not been 
discussed so far. In this paper, we derive a general method for 
calculation of the instantaneous power balance of the FE 
solution for an induction machine. Since inductive power 
consumption is related to time-varying currents and magnetic 
fields, the problem of calculating the instantaneous power 
balance of the FE solution is reduced to the problem of 
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obtaining the instantaneous time derivative of the solution 
accurately. The time derivative can then be used to calculate 
the instantaneous eddy-current losses and the rate-of-change 
of the magnetic field energy. 

Below, we first briefly describe the main problems related 
to obtaining the instantaneous time derivative of the FE 
solution. As a test case, we study a locked-rotor induction 
machine, in which mechanical power transfer does not occur, 
and which thus avoids problems related to the accuracy of 
torque computation. The FE system for the machine is 
formulated as a differential-algebraic equation (DAE) system 
in which the differential equations are coupled to constraint 
equations which do not include the time derivatives of the 
variables. We then use an approach called the collocation 
method to derive the BWD and TR time-integration rules in 
order to know the time instants at which the DAE system is 
satisfied, and to understand how the different integration rules 
approximate the solution in time. Finally, we show that the 
instantaneous time derivative of the solution can be obtained 
by differentiating the constraint equations of the DAE system 
independently of the chosen time-integration rule. The ability 
of the method to satisfy the power balance in the collocation 
points is demonstrated in case of the TR and implicit midpoint 
(IM) rules. 

II. PROBLEM STATEMENT AND TEST CASE 

A. Differential-Algebraic Equations 

Typically, the FE solution regions in electrical machines 
include domains with both conducting and nonconducting 
regions. The spatial FE discretization of the magnetic field 
problem in these regions leads to DAE systems. For example, 
consider the following eddy-current problem with the 
magnetic vector potential A as the variable: 

   st
  

   

A

A J . (2) 

Here ν is the magnetic reluctivity and σ the electrical 
conductivity which is zero in nonconducting regions (subscript 
n) and nonzero in conducting regions (c). Js includes the 
source currents which are assumed to be nonzero only in the 
nonconducting regions. Spatial discretization of (2) results in a 
DAE system 

 nn nc n n s

cn cc c cc c

d

dt

         
          

        

S S a 0 0 a j

S S a 0 T a 0
, (3) 

in which js includes the source terms, vectors a include the 
nodal values of the vector potential, submatrices S are the 
magnetic stiffness matrices, and submatrix Tcc the damping 
matrix related to the eddy currents.  

What distinguishes the DAE system from a system of 
ordinary differential equations (ODE) is that the total damping 
matrix multiplying the time derivative of the solution has 
empty rows and columns, and thus it cannot be inverted to 
directly solve the time derivative from (3). The equations for 
which the damping part is zero, i.e., the ones in the upper part 
of 2, are called constraint equations. The differentiation index 

of the DAE is defined as the number of times the constraint 
equations have to be differentiated in order to transform the 
DAE into an ODE. For (3), this index is one. Although the 
numerical solution of a general high-index DAE system can be 
rather difficult [16], [17], the solution for (3) can be 
straightforwardly obtained by applying a numerical time-
integration scheme similar to the ones used for the solution of 
ODEs. In this paper, we focus on the BWD, TR and IM time-
integration rules (the TR rule being sometimes also called the 
Crank-Nicolson method), which, for a general ODE dx / dt = 
f(x,t), can be written, respectively, as 

  end beg end end, t t  x x f x , (4) 

 
   beg beg end end

end beg

, ,

2

t t
t


  

f x f x
x x , (5) 

 beg end beg end
end beg ,

2 2

t t
t

  
   

 

x x
x x f , (6) 

in which subscripts ‘beg’ and ‘end’ denote the solution at the 
beginning and end of a time step, and Δt is the time-step 
length. In case of DAEs, regardless of the chosen time-
integration method, it has to be ensured that the initial 
conditions given for an and ac are consistent, meaning that 
they satisfy the constraint equations. 

B. Induction-Machine Model 

As a test case to the power balance studies, a voltage-
supplied star-connected locked-rotor 37-kW induction 
machine (IM) is considered. The FE mesh, rated data and 
some dimensions of the machine are given in Fig. 1 and Table 
I. The voltage-supplied IM is a reasonable application for the 
problem due to the coupling of the FE equations not only to 
the circuit equations of the stator winding but also to the rotor 
cage equations. On the other hand, locking the rotor ensures 
that no mechanical power transfer occurs which allows 
neglecting possible errors in the computation of the 
electromagnetic torque from the FE solution. 

The FE and circuit equations for the induction machine are 
derived following the approach of [18]. For a 2-D case, the 
vector potential A = Auz is perpendicular to the solution region 
(xy-plane). Coupling to the stator voltage equations is 
relatively straightforward and thus only the rotor cage voltage 
equations are discussed here in more detail. The potential 
differences over the rotor bars are 

 c r
r bar bar r eb2

d d
lR R L

dt dt
   

a i
u C i , (7) 

in which l, Rbar, and Leb are the axial length of the machine, the 
resistance of the rotor bar and the inductance of the bar end 
outside the core region, respectively, and the elements of 
matrix C are obtained as  integrals over the rotor bars: 

  
bar 

1
,

i

ij jC N x y d
l




   . (8) 

The bar currents ir are obtained as differences of the adjacent 
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end ring currents isc, which can be written as (p. 42 of [18]) 

 T
r sc i M i . (9) 

The voltages over the end-ring segments are caused by the 
segment resistances and inductances Rsc and Lsc, respectively, 
and equal half of the differences of the bar potentials: 

 sc
sc sc sc sc r

1

2

d
R L

dt
  

i
u i Mu . (10) 

Substituting (9) into (7) yields  

 T Tc sc
r bar bar sc eb2

d d
lR R L

dt dt
   

a i
u C M i M , (11) 

which together with (10) describes the rotor cage voltage 
equations. In principle the potentials ur could be easily 
eliminated from the equations by multiplying (11) by M and 
substituting Mur into (10). However, choosing the currents as 
the variables results in an integro-differential formulation for 
the source of the field, which significantly increases the 
computational burden of the model. We thus prefer to keep 
both the bar voltages and end-ring currents in the equations 
and calculate the source for the field as T

rC u . 
The full FE system coupled to the circuit equations can now 

be written as 

   d

dt
 

x
S x x T v , (12) 

in which the variable (column) vector x = [an ; ac ; is ; ur ; isc] 
includes the nodal values of the vector potential A, the stator 
currents, as well as the rotor voltages and currents. The source 
vector v = [0 ; 0 ; vs ; 0 ; 0] includes stator line-to-line 
voltages. The stiffness and damping matrices, respectively, are 

  

     
 

T

nn n nc
T

cn cc
T

s
T

bar

sc

1

2

R

R

R

  
 

  
      

   
 
    
  

S a S a KD

S a S C

KKS x
I M

M I

 (13) 

 
cc

T
ew

T
bar eb

sc

2

l L

lR L

L

     
     
    
 

   
      

T

T KD KK

C M

I

. (14) 

in which the stiffness matrix depends on the solution in the 
nonlinear case, matrix D defines the stator flux linkage and 
gives the source for the field from the stator currents, while K 
is related to the connection of the stator winding. With star 
connection, only two independent currents is = iab = [ia ib]

T are 
solved, iabc = Kiab, and vs  = [vab vbc]

T. I denotes the identity 
matrix with its size corresponding to the number of rotor bars. 
To simplify the notation, it has been assumed that the stator 

winding nodes belong to the nonconducting regions, all the 
conducting regions are linear, and that the Dirichlet and 
periodic boundary conditions are included in the matrices. 

C. Problems in Power-Balance Calculation 

The error in the power balance of the locked-rotor machine 
can be written as 

        mag
P in Cu,s cage

dW t
r P t P t P t

dt
    , (15) 

in which 

             in a ab bc b bcP t i t v t v t i t v t   , (16) 

      T

Cu,s s abc abcP t R t t i i , (17) 

      bar
2

r,
cage

1

, , , ,

i

n
i

i

uA x y t A x y t
P t dxdy

t l t


 

   
       

  , (18) 

 
     mag T abc

ew abc

, ,
, , ,

dW t x y t d
x y t dxdy L

dt t dt





  


B i

B i  (19) 

respectively, are the electrical input power, the resistive loss of 
the stator winding, the power fed into the cage, as well as the 
rate-of-change of the magnetic field energy in the solution 
region. In (18), nbar denotes the number of the rotor bars and 
the integrations are performed over each bar Ωi. In addition to 

 

Fig. 1 FE mesh of the induction machine. 

TABLE I 
DATA AND DIMENSIONS OF THE INDUCTION MACHINE 

Machine type motor 
Rated shaft power 37 kW 
Rated voltage 400 V 
Rated current 69 A 
Rated frequency 50 Hz 
Connection star 
Number of pole pairs 2 
Stator outer diameter 310 mm 
Stator inner diameter 200 mm 
Air gap 0.8 mm 
Number of stator slots 48 
Number of rotor slots 40 
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the eddy-current losses in the core region, Pcage(t) includes the 
power fed to the end rings of the cage, which changes the 
magnetic field energy stored in the inductances Leb and Lsc and 
is consumed as losses in the short-circuit ring resistances Rsc. 

It is clear that obtaining the instantaneous values of the 
power terms (18) and (19) requires knowing the instantaneous 
values of the time derivatives of the vector potential and the 
stator currents. However, since the damping matrix T has 
empty rows, the system is clearly a DAE and the time 
derivative of x cannot be directly solved from (12). Thus a 
typical approach for the calculation of the time derivative is to 
apply the BWD method (4) to the numerical solution to 
approximate the time derivative: 

 end beg

end

d

dt t

     

x xx
. (20) 

However, it seems obvious that the BWD approximation for 
the derivative is only consistent with the BWD time-
integration method, and thus errors may arise if, for example, 
the TR rule is applied for the time-integration. This is indeed 
shown in Fig. 2 which presents the powers and the power 
balance calculated with the BWD approximation (20) for the 

time derivative during the first tenth of a period after a 50-Hz, 
400-V terminal voltage with 10 % of the 35th harmonic is 
connected to the terminals of the machine. Fig. 2 a) shows the 
results obtained with the BWD rule (4) for the time 
integration, while in b) the TR rule (5) has been used. It can be 
seen that the power balance is very well satisfied in a) in 
which the derivative approximation is consistent with the 
integration method. However, in b), the instantaneous error in 
the power balance rises close to 5 % of the input power which 
confirms that the BWD formula (20) doesn’t yield correct 
results with the TR integration rule. 

The question now arises how the time derivative of the 
solution should be calculated when using the TR rule or, more 
generally, any other time integration rule for the numerical 
solution of (12). A possible approach is proposed next. 

III. METHODS 

A. Collocation Method 

We start by deriving a group of time-integration methods 
for the solution of (12) using a technique called the 
collocation method [12], [19]. The solution over a time step is 
approximated as an nth-order polynomial: 

   beg
1

n
k

k
k

t t


 x x α , (21) 

in which xbeg is the solution at the beginning of the time step 
and the (vector) coefficients αk are constants in time. For 
simplicity, the initial time is assumed to be zero and the end-
point of the time step is Δt. Owing to the nth-order 
approximation, we can now require (12) to be exactly satisfied 
at n separate time instants ti called the collocation points, for 
which 0 ≤ t1 < t2 < … < tn ≤ Δt. Now, by differentiating (21), 
multiplying with T, and requiring (12) to be satisfied at the 
collocation points ti, we get 

 1

1

n
k
i k i i i

k

kt 



 T α v S x , (22) 

in which  

 beg
1

n
k

i i k
k

t


 x x α , (23) 

and a short-hand notation Si = S(xi) is used for the dependence 
of the stiffness matrix on the solution. Combining (22) and 
(23) yields 

  1
beg

1

n
k
i i i k i i

k

t k t



   T S α v S x , (24) 

which, when evaluated for each i = 1, …, n, gives a system 

 

 

1
1 1 1 1 1 1 1 1

beg
1

n

n
n n n n n n n n

t t n t

t t n t





        
               
               

T S T S α v S

x

T S T S α v S


    


. (25) 

In the case of an ODE system, there are no constraint 
equations, matrix T is invertible and αi can be solved from 

 
a) Integration with BWD, derivative with BWD  

 
b) Integration with TR, derivative with BWD 

Fig. 2 End-point powers and power balances for the induction machine 
calculated with the BWD approximation for the time derivative while using 

a) the BWD rule and b) the TR rule for the time integration. 
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(25) for any n separate collocation points. In case of a DAE, 
however, T has empty rows corresponding to the constraint 
equations, and thus the left-hand-side matrix is invertible only 
if t1 > 0. In this case, coefficients αi are again solvable from 
(25), and the solution at the end point of the time-step can be 
calculated as 

 end beg
1

n
k

k
k

t


  x x α . (26) 

In the nonlinear case, the solution of (25) has to be iterated, 
e.g., with the Newton-Raphson method which requires 
knowing the Jacobian matrix  

   
      d d

d d
  

S x x S x
P x S x x

x x
. (27) 

It is obvious that if αi are solvable, the derivative of the 
solution can be directly calculated by differentiating (21). 
However, if n > 1 and the first collocation point is chosen to 
coincide with the beginning of the time step, i.e., t1 = 0, the 
left-hand-side matrix in (25) is not invertible and αi cannot be 
solved. This makes it necessary to set the last collocation point 
to coincide with the end point of the time step, tn = Δt, in order 
to know the initial value for the next step. In addition, we also 
know that Tα1 = vbeg – Sbegxbeg, and by evaluating (22) for i = 
2, …, n gives a system from which Tαi can be solved:   

 

1
2 2 2 2 2 2 1

1
end end end 1

2

2

n

n
n n n

t nt

t nt





         
                    
                 

I I Tα v S x Tα

I I Tα v S x Tα


     


. (28) 

Now, multiplication of (23) by T and again evaluating for  
i = 2, …, n gives a system, into which the solution of Tαi from 
(28) can be substituted. The resulting system finally allows 
solving for x2, …., xend without the need to know αi. Finally, 
we point out that if n = 1 and t1 = 0, the system is not solvable. 
This case corresponds to the explicit Euler or forward-
difference method, which together with other explicit methods 
is not well applicable for the solution of DAE systems. 

After the idea of the collocation method is clear, it is 
straightforward to show that many commonly-used implicit 
methods including the BWD and TR rules can be obtained by 
the following choices of collocation points: 

backward-difference:  n = 1, t1 = Δt, 

trapezoidal:  n = 2, t1 = 0, t2 = Δt, 

implicit midpoint:  n = 1, t1 = Δt / 2 

4-th order Gauss-Legendre: n = 2, t1,2 = (1 ± 3-0.5) Δt / 2. 

Although the BWD and TR methods could be implemented 
directly using (4) and (5), the derivation with the collocation 
method reveals interesting facts on these methods which may 
otherwise be difficult to observe. First of all, we now know 
that the system equation (12) is satisfied in the chosen 
collocation points, at least in the sense of the convergence 
tolerance set for the nonlinear iteration. Secondly, the TR rule 
uses a second-order polynomial to approximate the solution in 
time, with the collocation points set both at the beginning and 

the end of the time steps. This essentially makes the first 
derivative of the solution continuous on the boundary between 
adjacent steps. On the other hand, the solution is only known 
in the two collocation points and thus not uniquely determined 
over the whole time step. Also the derivative of the solution is 
not known. However, if a value for the derivative in one of the 
collocation points can be obtained, also the solution 
polynomial becomes unique. 

The BWD and IM rules only use a linear approximation for 
the solution and one collocation point either at the end or in 
the middle of the time step. Thus the time derivative of the 
solution is constant over the whole step and not continuous 
from one step to the other. However, the derivative is easily 
obtained since the only collocation coefficient α1 is uniquely 
defined and solvable from (25). 

At the end, it is emphasized that the order of the time-
integration method referring to the convergence rate with 
respect to time-step length is not the same as the order of the 
polynomial used for the approximation in time. For example, 
the IM method uses a linear approximation for the solution in 
time but is a second-order method regarding the convergence. 

B. Differentiation of Constraint Equations 

As discussed above, the problem in obtaining the derivative 
of the solution mainly occurs if the first collocation point is set 
at the beginning of the time step (as is the case with the TR 
rule). In order to obtain the derivative also in these cases, we 
propose to differentiate the constraint equations with respect 
to time, which can sometimes be used to solve DAE systems 
[16]. In our case, the collocation method revealed that the 
solution is differentiable in the collocation points, if a second- 
or higher-order polynomial is used for the approximation in 
time, or if the collocation point in a linear approximation is 
not set and the end of the time step (corresponding to the 
BWD rule). Thus, differentiation of the constraint equations is 
allowed in the collocation points. In the locked-rotor case the 
stiffness matrices S only depend on time through their 
dependence on the solution itself, and differentiation of the 
first rows of (12) gives 

    d

dt
 

x
L x v R x x , (29) 

in which 
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, (30) 
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 Here 

        nn n nc n c
nn nn n n c

n n

, 
  

 
S a S a a

P a S a a a
a a

 (32) 

and 

      nc n c
nc nc c

c

,
 


S a a

P a S a a
a

 (33) 

are the Jacobian matrices resulting from the differentiation of 
the stiffness matrix with respect to the vector potential. 

The left-hand-side matrix L(x) still has empty columns and 
is thus not yet invertible. These columns, however, are related 
to the time derivative of the rotor bar potential differences 
which are of no interest, since they do not cause losses in the 
machine and do not affect the other derivatives which are to be 
calculated. To make L(x) invertible, we can thus change it to  

  

     T

nn nc

cc
T

ew

sc

l L

L

   
 

    
     

    
      

P a P a KD

T
L x KD KK

I

I

. (34) 

The resulting system (29) for the time derivative of the FE 
solution is independent of the chosen time-integration method, 
as long as the method provides continuity of the first 
derivative of the solution in the collocation points. In case of a 
rotating machine, also the time derivative of the stiffness 
matrix S needs to be calculated.  

IV. RESULTS 

The proposed method was first tested in case of the TR rule. 
The simulation parameters were equal to those in Section II C. 
The instantaneous powers and power balance are shown in 
Fig. 3. The input power and stator resistive losses do not 
depend on the derivative of the solution and are thus equal to 
those in Fig. 2 b). However, more accurate calculation of the 
cage losses and the rate-of-change of the field energy now 
allows satisfying the power balance. 

Fig. 4 shows the effect of the time-step length on the 
absolute value of the power balance, eddy-current losses and 
rate-of-change of the field energy averaged over the first tenth 
of a period by summing up the powers in the collocation 
points. The proposed method and the BWD method for the 
calculation of the derivative are compared. The proposed 
method satisfies the power balance in the collocation points 
very well with different time-step lengths. In addition, when 
the time step is shortened, the average powers obtained with 
the proposed method converge faster than those obtained with 
the BWD approximation. 

The continuous solution (21) obtained with the collocation 
method allows studying the power balance also during the 
time steps. Fig. 5 shows the continuous powers and power 
balances obtained both with the TR rule and the IM rules. It is 
clearly seen that the TR rule provides continuity of the 
derivative of the solution from one time step to another thus 
also making the cage losses, the rate-of-change of the field 

energy and the power balance continuous. On the other hand, 
the IM method provides only a linear approximation for the 
solution and thus the two powers and the power balance are 
not continuous at the end points. However, also in this case, 
the power balance is satisfied in the collocation points. 

V. DISCUSSION 

A method for accurate calculation of the time derivative of 
an FE solution based on the collocation method and 
differentiation of the constraint equations was described. 
Unlike the commonly-used backward-difference 
approximation, the proposed method allows calculating the 
instantaneous powers related to the variation of the magnetic 
field and conductor currents accurately in the collocation 
points. 

Derivation of the time-integration methods using the 
collocation approach also helps to understand how the solution 
actually behaves during the time step and at which instants the 
system equation and the power balance are satisfied. This 
knowledge can later be used to study how the instantaneous 
powers should be integrated in order to obtain the energy 
balance of the machine accurately. 

One application for the proposed method is power balanced 
torque computation of a rotating machine. However, in this 
case, differentiation of the constraint equations requires 
differentiation of the system matrix, which strongly depends 
on the method chosen for modeling the motion of the rotor. 
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Integration with TR, derivative with proposed method 

Fig. 3 End-point powers and power balances for the induction machine 
calculated with the proposed method while using the TR rule for the time 

integration. 

 
 

Fig. 4 Effect of time-step length on the absolute value of the end-point power 
balances and powers averaged over 1/10 period with both the proposed and 

BWD methods while using the TR rule for the time integration. 

 
a) TR rule 

 
b) IM rule 

Fig. 5 Continuous powers and power balances in case of a) the TR rule and b) the IM rule. The markers denote the values at the collocation points and the dots 
at the start and end points of the time steps. 
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