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Abstract

An iron-loss model for laminated ferromagnetic cores of electrical machines is presented and applied to estimate the core losses
of an induction machine with finite element analysis. Skin effect in the cross section of the core lamination is modeled using a
set of sinusoidal basis functions while locally considering both the hysteretic material properties and the excess field caused by
domain wall motion. After spatial and time discretization, a single nonlinear equation system is obtained. An accurate vector
Preisach model, the differential reluctivity tensor and the Newton-Raphson method guarantee excellent convergence of the

iteration procedure. Results from the model correspond well to iron-loss data obtained by measurements.

1. Introduction

Two-dimensional finite element (FE) analysis is commonly used in design and analysis of electrical machines with laminated
iron cores. One of the major simplifying assumptions of the 2-D model is that the eddy currents in the core regions are assumed
to be zero and thus have no effect on the magnetic field to be calculated. Although this assumption may be reasonable for the
axial component of the currents in thin laminations, the currents flowing parallel to the cross-sectional plane of the machine may
have a damping effect on the inducing field, especially at higher frequencies. Thus a method to include the eddy-current effects
into the field analysis is needed for accurate loss prediction of variable-speed drives in which high-frequency flux-density
harmonics commonly occur.

In addition to traditionally omitting the eddy-current losses from the analysis, simplified single-valued or even linear material
properties are often assumed in the calculation. However, since ferromagnetic lamination materials generally have hysteretic
material properties, accurate modeling of electrical machines requires application of convenient history-dependent hysteresis
models. The eddy-current distribution in the lamination cross-section is strongly dependent on the actual material properties,
which requires also modeling the coupling between the eddy-current and hysteresis effects. In addition, the local excess eddy
currents caused by the domain wall movement may need to be considered.

Several researchers have proposed methods to include the iron losses into the magnetic field calculation. In [1] this was

implemented by assuming uniform flux-density distribution in the lamination cross section thus neglecting the skin effect. In [2],



a simplified model was presented to take into account the phase lag between the surface field strength and the average flux
density without actually modeling the skin effect. These models are fast but their accuracy may be poor especially in thick
lamination cases and at high frequencies which cause the skin effect to be significant. For instance the poles of large wound-field
synchronous generators and motors are commonly stacked of 2 mm steel laminations to reduce the manufacturing costs. Due to
the thickness and high conductivity of these sheets, significant eddy currents may be induced on the pole surface especially if the
motor is driven by a frequency converter. To accurately study such cases by simulations, more detailed models are needed to
account for the skin effect in the lamination.

In [3] and [4], the skin effect was modeled by a separate 1-D FE model coupled to the 2-D FE model through a nested
iteration procedure. In [5], the 2-D and 1-D models were implemented as a single system of equations. The 2-D/1-D coupling
results in a large number of unknowns and hence slows down the computation but gives better accuracy.

In [6] and [7], a mesh-free model was proposed in which the skin effect was modeled by approximating the flux-density
distribution in the lamination depth by a set of orthogonal basis functions. The coefficients of the basis functions were solved
from a single system of nonlinear equations. In [8], the basis functions were chosen to be cosine terms which made it possible to
utilize Fourier analysis in the calculation and to use analytical integration formulas when forming the FE equations. If the Fourier
coefficients of the flux-density are expressed using corresponding vector potential components, the mesh-free approach yields a
single system of equations in which the eddy currents are globally coupled to the 2-D field solution. The number of unknowns in
this system is typically smaller than is the case with the method presented earlier in [5].

In this paper, hysteretic material properties and excess losses are introduced to the mesh-free eddy-current model allowing full
inclusion of the iron losses into the 2-D calculation. An inverted vector Preisach model is applied and both the hysteresis and
excess losses are considered locally in the lamination depth. The three loss components and the global 2-D field distribution are
strongly coupled and all the phenomena are modeled by solving a single system of equations thus achieving excellent
convergence with the Newton-Raphson method.

The parameters of the proposed model are identified from a set of measurements performed for electrical steel sheet samples.
Finally, the model is applied to predict core losses of a 37-kW induction motor. Results from the model correspond well with

measured core losses.

2. The Lamination Model

2.1. Eddy Currents

The eddy currents in a ferromagnetic lamination oppose the penetration of the flux density into the sheet. If the edge effects are

neglected and the eddy currents are assumed to flow parallel to the lamination surface, the magnetodynamic field in the



lamination is described by the diffusion equation
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where z is the direction in the lamination depth, and the magnetic flux density b = byu, + byuy and field strength k = hu, + hyu,
are assumed to be parallel to the lamination and perpendicular to the z-axis. Depending on what kind of a material model (i.e. the
constitutive relation A = h(b)) is used, vectors h(z,f) and b(z,f) may or may not be parallel to each other locally inside the
lamination [9]. The electrical conductivity o is assumed to be constant for a specific lamination material.

In [6]-[8], a mesh-free lamination model was developed to include the eddy-current effects into the FE implementation. The
model is based on approximating the flux-density distribution in the lamination depth z € [-d/2, d/2] as a truncated Fourier
cosine series with NV, terms:

b(z,t)= N"z_‘ b,(1)a,(z) with a,(z) = cos(2n7z§j . ()

n=0

In a similar way, the field strength is approximated as
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where hy(?) is the field strength on the lamination surface and functions f3,(z) are defined so that 8, (+d/2) =0 and
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With these approximations, b(z,f) and h,,,(z,f) satisfy (1) identically. Since the number of basis functions is finite, the error &(z,f)
= hyp(z,t) — h(z,t) between the approximation h,,,(z,f) and the actual field strength h(z,f) = h(b(z,t)) obtained from the

constitutive material law cannot be identically zero, and is thus set to weakly satisfy
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from which the following equation system is obtained for the surface field strength:

hg(t) d/2 aO(Z) bO (t)
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The elements of the constant matrix C are obtained by integration over the lamination thickness as
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C, = E_,Ij/z a,(2)B,(2)dz, (7)

where the indexing starts from zero to correspond with the indices of the basis functions.

Cosines were chosen as the basis functions because they form an orthogonal basis by definition, which leads to the useful fact
that the spatial average flux density in the lamination is equal to the first term b,. In addition, the cosine functions need no further
derivation in case a higher order approximation is desired. The availability of efficient fast Fourier transform routines also makes
it possible to evaluate the required integrals analytically when the cosine series expansion is used, as will be seen later. However,
if seen reasonable, the basis functions can also be chosen otherwise. For example, polynomial and hyperbolic basis functions
were suggested in [6] and [7]. Hyperbolic functions could be a natural choice in a magnetically linear case, in which the flux-
density distribution actually has a hyperbolic shape. However, in the highly nonlinear case dealt with in this paper, the advantage
is not as trivial.

It should be noted that if only the average term by(7) is considered, and the higher-order terms are neglected, (6) reduces to
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which is the classical low-frequency approximation for the eddy-currents presented e.g. in [1].

2.2. Hysteresis

In ferromagnetic materials, the relation between the flux density b(z) and the field strength A(z) is hysteretic. To include the
effect of hysteresis into the eddy-current model, the field strength A(z) in system (6) must be obtained from a suitable hysteresis
model as a function of the flux density b(z). In this work, an isotropic inverted vector Preisach model presented in [10] and [11]
was used.

The inverted Preisach model is based on modeling the first-order reversal curves by a pre-calculated inverted Everett function

F. The field strength is obtained from F as
hy ==F (= .y )+ 23 [ F(b7.b;, )~ F (b .57 ] 9)
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where F(b;,by) corresponds to reversal point k£ of the flux density and F(~bg,bo) is the inverted Everett weight of the
demagnetization state. The subscripts + and — refer to the increasing and decreasing values of the input flux density b,
respectively [10].

In the vector model, the components of the field-strength vector Ay, are obtained by projecting the flux density b into Ny

equally distributed directions uy;, i = 1,..., Ny applying the scalar model to these projections by; = b - u4; and summing the



outputs to form the field-strength vector [11]:

hy =Y, (b, ), (10)

The Preisach model is able to accurately predict the minor hysteresis loops, making it an attractive choice for loss prediction in
electrical machines where distorted flux-density waveforms occur. The inverted Everett function F must be obtained by

measurements and supplied to the model as parameter data.

2.3. Excess Field

The term “excess loss” is often used to describe the difference between the actually measured eddy-current loss and the loss
predicted by the classical eddy-current loss model (8). This difference has traditionally been explained by microscopic eddy
currents induced by domain wall movement locally in the lamination [12]. As presented in [1], the excess losses can be

accounted for in the field calculation by locally considering an excess field-strength term
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in addition to the term obtained from the hysteresis model. Here S is the cross-sectional area of the lamination, and ¥, and G are
related to the magnetic properties of the lamination material according to [12].

An alternative explanation for the excess loss was presented in [13]. Since the classical eddy-current loss in [12] was assumed
to correspond to a uniform flux density in the lamination and neglecting the skin effect, accurate modeling of the flux-density
distribution according to (1) can at least partly compensate the difference between the measured and calculated eddy-current loss.
The skin effect causes an increase in the classical eddy-current loss in nonlinear materials and the excess loss is reduced by
definition. Thus the contribution of the excess field to the total field may actually be smaller than predicted by [12] if the skin

effect is modeled accurately, as is the case in this study.

2.4. Losses
The local eddy-current loss density (in W/m?) is obtained from the electric field strength e = e u, + eylly as
2
Da (z,t)za|e(z,t)| = O'[e(z,t)~e(z,t)] (12)

According to Faraday’s induction law, the curl of the electric field strength is equal to the negative time derivative of the

magnetic flux density:
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The components of e can be obtained from (13) by integration. Substituting them to (12) gives the eddy-current loss density in

the lamination depth as
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The average power loss density dissipated during one full cycle 7 of the flux density is
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When the magnitude of magnetic field strength is increased, energy needs to be supplied into the magnetic field. In
anhysteretic media, the same amount of energy is released when the field strength is reduced back to its original value. In
hysteretic materials, however, a certain amount of the supplied energy is dissipated as heat in the Barkhausen jumps when the
magnetic domains are rearranging [14]. Although it is difficult to determine this instantaneous hysteresis loss dissipation, the
average value of the loss in a steady state is equal to the average of the energy supplied into the material during one full cycle of
the flux density. The other parts of the energy only contribute to the reactive power which alternates between the power source
and the material but has a zero mean value. Thus the hysteresis loss is here defined as the average value over one cycle, and

instantaneous hysteresis loss is not considered:
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Correspondingly, the average excess loss is calculated as
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2.5. Implementation

Equation (6) is solved with a suitable time-stepping method. Here the backward Euler approximation is applied for the time

discretization:
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where At is the time-step length and f contains values from the previous time step. Equation (11) becomes

()= Wib(z b(z)I(b(z);:;p(z)j’ (19)

where by(z) is the value of the flux density on the previous step.

Due to the nonlinear and hysteretic material characteristics system (18) is nonlinear and thus an iterative approach is required
to obtain the solution. In [15], the fixed-point (FP) technique was adopted to handle the nonlinearity. In hysteretic materials, both
the reluctivity and its derivative with respect to the flux density may have any value between positive and negative infinity. Since
the FP method does not require accurate calculation of the derivative and uses a fixed finite value for the reluctivity, it was found
reasonable when dealing with hysteretic materials. However, the convergence rate of the FP technique is usually much slower
than, for instance, that of the Newton-Raphson (NR) method which utilizes the derivatives to achieve quadratic convergence.

In this paper, the NR method is applied by utilizing the differential reluctivity which is always well defined also for hysteretic
materials [16], [17]. If the derivative of the m™ equation in (18) is taken with respect to the n™ flux-density component, a

submatrix of the total Jacobian needed in the solution is obtained:
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where [ is the 2x2 identity matrix. The differential reluctivity tensor oh/0b is positive definite which should guarantee good
convergence. Similarly to the field strength, the differential reluctivity consists of two parts corresponding to the hysteresis and

excess losses:
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The hysteretic part can be calculated based on (10) as
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where Ohy,/0b; is the differential reluctivity obtained from the scalar model in direction u,;. The excess-loss part is obtained by



differentiating (19):
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In a relatively straightforward manner applying (22) and (23), it can be shown that x"(0h/db)x > 0 for all nonzero vectors x
which means that the differential reluctivity tensor is positive definite, as stated earlier. For brevity, the proof is ignored in this
paper.

Since cosine functions were used as the basis functions, the integrations in (18) and (20) can be performed analytically, if a
fast cosine transform (FCT) is first performed for the field strength and for the differential reluctivity. The flux density is

sampled in the lamination depth and an FCT algorithm is applied to obtain the field strength as

N, -1
h(z)~ 2 ha,(z). (24)
n=0
After this, the integration in (18) becomes
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in which the integrand is now only a product of two cosine terms and can be integrated analytically at the preprocessing stage. In
fact, based on the definition of the cosine series, the integration on line m in (25) always results in term h,. Due to the
orthogonality property of the basis functions, it is enough to select NV, = M, since for the terms n > N, the integral (25) is zero.

Since the relationship between the flux density and field strength is nonlinear, the field strength distribution may actually
include more than M, spatial harmonic components. To reduce aliasing of the higher order components to wave numbers 0, ...,
N, — 1, the number of sample points for the field strength has to be higher than 2N, which would be the theoretical minimum to
obtain the FCT accurately in the linear case. A good convergence was obtained already with 4, samples in the lamination
depth. Since the flux density and field strength are symmetric with respect to the middle point of the lamination thickness, the
number of samples can be further reduced to 2N, +1.

The integration in (20) can be treated similarly by performing the FCT for the differential reluctivity and integrating the

resulting triple product of cosine terms analytically.

3. The 2-D Model

In 2-D finite element formulations for electrical machines, Ampere’s circuital law



VxH=J (26)

is solved in the machine cross section together with the required circuit equations [18], [19]. In the coils and solid core regions,
the current density J is assumed to have only axial component and the magnetic field H does not depend on the axial position z.
In conventional 2-D FE formulations with lamination eddy currents neglected, the previous assumptions (with J = 0) are also
valid in the laminated core regions. However, when the presented lamination loss model is considered, the eddy currents and skin
effect cause the magnetic field to be non-uniform in the lamination which must be taken into account also in the 2-D formulation.

To handle this, the del operator is divided in two parts:

V=V _+V, with V_ :uxﬁ—i-u i, VZ:uzg. (27)
Y Y ox oy 0z

With these definitions, the equations to be solved in the laminated core regions of the 2-D cross-section become

VyxH=0 (28)

V,xH=J. (29)
In all the other regions the equations are

VyxH=J (30)

V,xH =0, 3D

where J = 0 in air and non-conducting regions with no source-current terms. Obviously, Ampere’s law (26) is satisfied in the
whole geometry.
In the laminated core regions, the current density J consists fully of the lamination eddy currents and depends on the time

variation of the flux density according to

oB
Y, xJ(x.9.2.1) :—a%. (32)

The solution for (29) and (32) together was already obtained in (6). As shown e.g. in [20], the relation between the surface field
strength H; and the average flux density B, over the lamination thickness includes all the effects of the iron losses inside the
lamination. Thus these effects can be accounted for in the 2-D FE model simply by applying Ampere’s law to the surface term

H, = H(x,y,t). This yields the time-discretized equation system
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Capital letters are used here to emphasize the x and y dependency of the 2-D quantities, and the curl operator is applied to each
component B,, and Ha,, separately. In principle, the curl only needs to be applied to the first equation, since that one gives the
surface field strength. However, to keep the total system matrix symmetric, the curl is applied also to the rest of the equations.

A numerical solution of (33) requires spatial discretization which is performed by discretizing the cross-section into finite

elements and applying the Galerkin weighted residual method [19]. Discretizing the m™ equation of the system leads to the

subsystem
192 od? Yl
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is the discrete curl operator Vy, x expressed using the N spatial shape functions N(x,y), Na(x,y), ..., Npx,y) and Q denotes the
laminated regions in the solution geometry. The discretized equation system to be solved in the laminated core regions consists
of NyN equations in total. This system can be solved in terms of the nodal values of the axial magnetic vector potential

components a, = (a1, -.., a,y), Withn =0, ..., Ny— 1 corresponding to the flux-density components:

N

B, (x,y,1)=V xA, (x,y,t)=V x> a, ()N, (x,y)u,. (36)

Jj=1

The total system Jacobian matrix needed in the NR iteration consists of N,N, submatrices with sizes of NxN each. The 2-D
submatrix corresponding to (20) is D'J,, ,D.

To ensure a unique solution, suitable boundary conditions are needed for the vector potentials. All the vector potential
components A, , n =0, ..., N, — 1 are set to zero on the outer boundary of the stator to ensure that the flux stays inside the
machine. In addition, the components n = 1, ..., N, — 1 are set to zero on the boundary between the laminated rotor and the solid
steel shaft. This additional condition is needed since the higher-order vector-potential components are not solved in the air gap
and thus the stator-side boundary condition is not enough to ensure a unique solution on the rotor side.

The possibility of applying vector potential components provides global coupling of the eddy-current effects to the field
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solution. In [5], local coupling was used since the eddy-current effects were merely included in the dynamic B-H relationship,
and were thus considered as material properties. Since the number of nodes is typically smaller than the required number of 2-D
integration points in the whole geometry, the globally coupled approach with the vector potentials easily results in fewer

unknowns than is the case with the locally coupled one.

4. Application and Results

4.1. Parameter Identification

If the lamination thickness and conductivity are known, only the inverted Everett function in the Preisach model and the excess
loss coefficient need to be identified. The presented lamination model was identified by best fitting simulation results to B-H
loop measurements performed for 0.5 mm electrical steel sheets used as the core material in an induction motor. The
measurements were done with a 2-D vertical rotational single-sheet tester [21], [22] allowing independent supply of the x and y
components of the average flux density in the lamination. Several loops were measured with different average flux-density
amplitudes and supply frequencies. Since the conductivity of the sheet material was not known accurately, it was set as one extra
parameter in the fitting procedure which was implemented in the least squares sense.

The measured average flux-density waveform was supplied to the model, and the fitting was performed by comparing the
surface field strength obtained from the model to that obtained from the measurements. The Everett function was first identified
from a low-frequency measurement. Next, the conductivity and the excess-loss coefficient were identified by best fitting the
simulation results at 20, 100 and 500 Hz supply and average flux-density amplitudes from 0.6 to 1.4 T. The obtained values were
o= 13.12 MS/m and (6GV,S)"* = 9.39x10™ (W/kg)(s/T)**. The best-fitted B-H loops with alternating flux density are shown in
Figure 1. Figure 2 shows 2-D loci of the surface field strength with 500 Hz rotational flux-density supplies. The supplied flux
density is not exactly circular but varies a bit in amplitude, which causes the simulated field strength to appear slightly
anisotropic despite the isotropic nature of the model. Based on these results, the model is able to predict the physical behavior of

the magnetic field in the sheet reasonably well.

4.2. Core Losses of an Induction Motor

With the identified iron-loss model, a 400-V, 37-kW cage-induction motor was simulated, the core losses of which have been
measured under no-load conditions at different voltages. The ratings and some dimensions of the machine are listed in Table 1.
The method of measuring the no-load losses was described in [23] and [24]. The measurements were performed by rotating the
induction machine by a speed-controlled slip-ring motor and averaging the powers taken by the machine from the network at

small positive and negative slips. In such a way, the sudden change in the input power at zero slip caused by the rotor remanence
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flux can be eliminated, and the terminal input power only comprises the stator resistive loss and the core loss, which here means
the sum of iron losses and the rotor bar resistive losses. The mechanical losses are supplied by the slip-ring motor. The stator
resistance at the operating point temperature was determined by stopping and de-energizing the machine, measuring the
resistance as a function of time during the first couple of minutes when the machine was cooling down, and extrapolating to the
switch-off instant assuming exponential form of the cooling curve. After the resistance was known, the core loss was obtained by
subtracting the stator resistive loss from the input power. As discussed in [23], the uncertainty in the measured core loss
increases with the voltage, since the proportion of the stator resistive loss on the total loss becomes higher. The error is less than
3 % at and below the rated voltage 400 V, but rises close to 8.5 % when the voltage is increased to 500 V.

After some numerical experiments, NV, = 2 cosine terms were chosen to be used for the flux density to model the skin effect in
the calculation. Adding more terms didn’t significantly change the results in this case, but only slowed down the computation. In
the simulations, the no-load operation was forced by setting the rotor to rotate at zero slip while supplying the stator winding
from a voltage source. An initial state for the time-stepping simulation was obtained with a time-harmonic model. 800 time steps
per one supply period of 0.02 s were enough to obtain a good convergence in the Newton-Raphson iteration and to model the
rotor harmonic frequencies accurately up to the kilohertz range, while keeping the computation time reasonable. The machine
was simulated for two periods to reduce the transients in the time stepping. Since the slip was set to zero, no low-frequency flux
existed in the rotor, and the hysteresis loops in all the 2-D elements made at least one full closed cycle during the latter supply
period.

For comparison, the motor was also modeled without the lamination model using single-valued (SV) material characteristics.
In this case, the iron losses were obtained based on the statistical loss theory [12] as superposition of the losses obtained for each

time-harmonic component of the average flux density separately:

100

Pre = Z(Chywn +c,0, )|BO,n|2 ) (37)

n=1

where cyy and ¢ are the loss coefficients given by the sheet manufacturer and w, is the frequency of the average flux-density
harmonic By ,.

To illustrate the skin effect, the distributions of the two Fourier components for the flux density at 400 V are plotted in Figure
3. The second component B; seems to be at maximum on those regions where the average flux density B, has its minimum value.
On these regions By is changing rapidly as the magnetic field is rotating, which increases the significance of the skin effect and
thus the value of B;. The high values of the average flux density show that the iron is saturated already at the rated voltage.

The average flux density and surface field strength near the root of the stator tooth and in the tip of the rotor tooth (points A

and B in Figure 3) are plotted in Figure 4. In these points the flux density has a significant rotational component which implies



13

that the use of a vector hysteresis model is essential for accurate analysis of such complex electromechanical devices. From the
closed B-H loops, it can be seen that the system is magnetically in a steady state.

The no-load currents and core losses are compared in Figure 5. The current is predicted accurately both by the proposed model
and the SV model which implies that the material properties are correctly modeled up to saturation. However, the losses obtained
from the proposed model correspond significantly better with the measured ones than those obtained from the SV model. This
shows the importance of accurate modeling of the magnetic field in the core laminations. Still, the greatest error occurs at the
highest studied voltage when the motor is most saturated.

Figure 6 segregates the core loss into hysteresis, eddy-current, excess and rotor bar losses. Hysteresis loss accounts for over
half of the core loss until high saturation is reached at 500 V. The eddy-current loss increases somewhat quadratically and the
excess loss nearly linearly when the terminal voltage is increased. The rotor bar resistive losses become significant only above
the rated voltage.

Distributions of the iron-loss components near the air gap at 400 V are plotted in Figure 7. The hysteresis loss is the dominant
loss component both on the stator and rotor sides. The eddy currents are induced by the air-gap flux density harmonics and
forced to the surface of the rotor by the rotor bars. The excess loss is at the maximum on the iron bridges above the rotor slots.

However, its proportion on the total loss seems almost negligible.

4.3. Computational Efficiency Considerations

The 2-D mesh consisted of 1692 second order elements with 3777 nodes in total and three integration points per element. The
core region, in which the lamination model was used, had 840 elements and 2176 nodes. The two cosine terms used in the
lamination model and 13 voltage equations resulted in 2x2176 + (3777 — 2176) + 13 = 5966 equations for which the computation
time was approximately 1 h 10 min in total and 2.6 s per time step in the 400 V simulation. The average number of NR iterations
per time step was 6.55. None of the iterations diverged during the time stepping.

For comparison, if the directly coupled 2-D/1-D method in [5] was used for the same problem, even only with three divisions
in the 1-D discretization, the formulation would result in 3777 + 2x3x3x840 + 13 = 18910 equations in total. This is over three
times the amount obtained with the presented model. As already mentioned, global coupling using the vector potential and nodal
values requires fewer unknowns than the local one, especially with second and higher-order elements when more integration

points are needed in the 2-D elements.

5. Conclusion

A method for including hysteresis, eddy-current and excess losses into 2-D finite element analysis was presented. The method
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allows full coupling of the three iron-loss phenomena and their inclusion to the magnetic field computation. A single nonlinear
system of equations is solved by using the Newton-Raphson method and utilizing the differential reluctivity tensor. Excellent
convergence is obtained despite the fact that the material properties are hysteretic and rate dependent due to the hysteresis and
excess-loss effects.

Comparison with experimental measurements implies that the model is able to reasonably predict the iron losses also in
complex electromechanical devices, such as the induction motor. Some error is obviously caused by the effect of punching and
welding on the material properties in the actual machine, as well as inter-bar currents in the rotor core, which are not taken into
account in the presented model. Despite the fact that the no-load currents seem to be modeled correctly, the iron-loss calculation
is sensitive to the material parameters, especially to the shape of the static hysteresis loops. Inaccuracies in these may cause the
overestimation of the losses at 500 V when significant saturation occurs, but also the higher measurement error in this point can
partly explain the difference. Nevertheless, the model is able to give valuable information on the losses and their distribution for
machine design and structural optimization purposes.

For best results, the flux-density range used in the fitting of the hysteresis loops should be extended as high as possible,
preferably up to the point of maximum saturation above which the differential reluctivity corresponds to the reluctivity of
vacuum. Another factor causing inaccuracy in the hysteresis-loss calculation is that when high saturation occurs, the
instantaneous values of the magnetic energy density can be decades higher than its average over one full cycle. This makes the
average hysteresis loss very sensitive to the instantaneous variations of the flux density.

The authors are aware that the results of the single-valued model used for comparison could possibly be significantly
improved by optimizing the loss coefficients cny, and ¢y by comparison to experimentally obtained loss data. However, the
purpose here was to use the loss coefficients provided by the sheet manufacturer. The coefficients are usually determined for
sinusoidally varying average flux density at a specific frequency, and the superposition of the losses calculated separately for
each flux-density harmonic leads to erroneous results.

The efficiency analysis shows that the presented model provides a competitive alternative to other previously presented loss-

prediction methods. Future applications will include analysis of losses in inverter-supplied electrical machines.
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Figure 1 Best-fitted B-H loops with different frequencies and amplitudes. The 20 Hz and 500 Hz curves are shifted from the
origin for clarity.
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Figure 3 The two flux density components in the motor core at 400 V.

A and B denote the points in which the B-H loops of Figure 4 are calculated.
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Figure 4 Normalized 2-D loci of the average flux density and surface field strength at a) stator point A and b) rotor point B.

B-H loops in both tangential and radial directions at c) stator point A and d) rotor point B.
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Figure 7 Iron-loss distributions in the induction motor at 400 V

Table 1 Rated data and dimensions of the motor

Shaft power 37 kW
Voltage 400 V
Frequency 50 Hz
Connection star
Number of pole pairs 2
Stator outer diameter 310 mm
Stator inner diameter 200 mm
Air gap 0.8 mm
Number of stator slots 48
Number of rotor slots 40
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