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This paper demonstrates a novel approach for analyzing 3-D electromagnetic fields in toroidal inductors with minimal computational
time and resources. A 2-D magnetodynamic finite element (FE) problem is solved in several axial and radial slices of the 3-D inductor
geometry using the AVI-formulation. A procedure to couple the slices with each other through circuit equations and suitable interface
conditions is proposed. The obtained results are validated with a 3-D FE model in a time-harmonic case. The modelling shows massive
reduction in computation time compared to traditional 3-D FE analysis.

Index Terms— Eddy currents, finite element analysis, inductor, proximity effect, skin effect, winding loss, winding resistance.

I. INTRODUCTION

 HE IMPROVEMENTS in semiconductors and soft-
switching topologies have made higher switching

frequency operations possible for power converters. Such high
frequency operations drastically influence the design of
magnetic components in power electronics. Especially, the
presence of skin and proximity effects in the windings of
magnetic components cannot be neglected at high switching
frequencies.

The skin effect is a result of eddy currents flowing under the
influence of the local magnetic field of a conductor, while
proximity effect refers to eddy currents induced by an external
magnetic field. In particular, under presence of such frequency
dependent effects, windings of power magnetic components
share the highest percentage of loss at high frequencies [1]-[3].
For getting most optimal designs, skin and proximity effects
need thorough treatment during modelling stage.

At high frequencies, eddy current effects in windings with
multiple strands (sub-conductors) become too complex for
conventional analytical methods [4], [5]. Parameters like
porosity factor and changing penetration depth require tuning
of analytical methods based on experiments or heavy numerical
simulations [6].

Several loss models have been developed to reduce the
computation times and to reach accuracy levels as high as
possible [7]-[10]. However, precise analytical models of the
fields in problems like windings with multiple stranded
conductors or any asymmetrical winding structures are missing
[11]. This makes it difficult for industry to completely rely on
analytical or empirical methods for design of magnetic
components. Hence, numerical methods based on two
dimensional (2-D) and three dimensional (3-D) approaches are
the preferred alternatives for better reliability and accuracy.
Although 2-D finite element (FE) method (FEM) is an ideal
choice considering computational time and cost, the traditional
2-D FEM stays limited to simple structures. Therefore, to attain
high level of precision, the 3-D FEM has to be used for
optimization.

3-D FE analysis of eddy currents and circulating currents in
the inductors and transformers with multiple parallel
conductors would require fine 3-D discretization of each wire.
The entire problem becomes substantially big for solving in a

single computer system. For addressing these issues, there have
been concrete efforts in [12] and [13] for analyzing complex
winding structures. An approach combining rotationally
symmetric 2-D and 3-D simulation was presented in [12]. The
method presented in [13] is based on the partial element
equivalent circuit (PEEC). For the precise computations in case
of inductors with ferromagnetic cores, PEEC has been
combined with the boundary element method in [14] and with
FEM in [15]. The method is consistently being developed for
accurate modelling of linear inhomogeneous conductive and
magnetic media [16]-[19]. PEEC is also extended for different
loss models for coreless inductors [20]. However, for exploring
inhomogeneous distribution of current density in winding
conductors at high frequency, FEM is still seen as more robust
and reliable approach [5], [21].

This paper presents a computationally efficient and optimal
method for exploring 3-D eddy current effects in the winding of
toroidal inductors used in power conversion units. The idea is
based on coupled solution of electromagnetic fields in 2-D
slices taken axially and radially from the inductor. The approach
will be called a multi-axial slice model (MASM).

As a test case, a single symmetry sector of a toroidal inductor
with an equally distributed winding is considered. Since the
paper targets on providing the concept of MASM, two
simplified windings with one and three parallel sub-conductors
are considered. The MASM is created in the MATLAB
environment. For validating the proposed modelling approach,
comparison is made against 3-D simulations from COMSOL
Multiphysics. Section II covers the theoretical aspects about the
MASM. It also includes details about the geometry and
supporting technical aspects for the simulations. Along with the
necessary results, Section III provides in-depth comparative
analysis followed by conclusions in Section IV. We widely use
the definitions explained in [22], [23].

II. MODELLING METHODOLOGY

A. Geometric model
Fig. 1 shows the considered toroidal inductor as well as one

of its symmetry sectors. Both the MASM and 3-D FEM are built
for the symmetry sector. A linear ferrite core with relative
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permeability ௥= 3000 is considered. The inner and outerߤ
radiuses of the core are designated by rm and rout, respectively.

The height of the core is h. A copper conductor with 0.6 mm
diameter is used. The inductor carries N = 50 turns equally
distributed over the periphery as shown in Fig.1. The symmetry
sector covers an angle of φsym = 2π / N.

In Fig. 1, the symmetry sector is sliced with four planes, two
axial ones in green (z = constant) and two radial ones in blue (r
= constant), so that the current-carrying conductors are
approximately perpendicular to each slice. The axial slices
allow accounting for the magnetic core as well as the
conductors at the inner and outer sides of the core. The radial
slices allow accounting for the stray field on the top and bottom
of the core. The core is only considered in the axial slices, not
in the radial ones.

In general, we can consider naxi axial slices and nrad radial
slices, indexing the slices with k = 1, …, naxi + nrad. We assume
that the winding consists of npar parallel conductors, which
means that each 2-D slice will include 2npar distinct conductor
regions corresponding to the positive and negative coils sides.
The conductor regions Ωkq are indexed with q = 1, …, 2npar and
the parallel paths with p = 1, …, npar.

B. Equations in one slice
The magnetic field in each slice k is mostly parallel to the

slice plane, and can be analyzed comfortably using 2-D FE
analysis. In this paper, the AVI formulation [24] is used for the
field analysis. The governing equations for the 2-D
electromagnetic field in slice k associated with a perpendicular
length lk are given by
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in Ωkq. In the equations, Ak is the component of the magnetic
vector potential perpendicular to the slice, ukq is the potential
difference in Ωkq, ν is the reluctivity and σ is the electrical
conductivity. The current in the conductor branch p is given by
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and Rkq is the resistance of corresponding to domain Ωkq. It is
emphasized that the currents are common for each slice, so that
ip is independent of k. Now based on (3), the voltage over
conductor domains Ωkq is expressed as
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The voltage over each conductor p in each slice k is
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q

U m u= å (5)

Discretizing (2) and (4) with the Galerkin method yields
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where ak contains the nodal values of Ak, uk contains ukq and i
contains ip. Sk and Tk are the stiffness and damping matrices
respectively. DΩ,k and CΩ,k  are related to the field source and
the  back-emf induced to the conductors, respectively. They are
obtained as
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where nw  is the FE shape function associated with node n. Mk

represents the coupling matrix for conductor domains and
parallel branches according to (5), and Rk is the diagonal matrix
for conductor resistances Rkq:

[ ]Mk kqpqp
m= (9)

[ ]Rk kqqq R= (10)

C. Multi-axial slice model and simulation
As shown in Fig.2, the toroidal inductor is assumed to be

placed in the cylindrical coordinate system r-φ-z so that the core
covers the region [-h/2 h/2] ´ [rin rout]  ´ [-φsym/2 φsym/2]. The
axial slices are equally-sized circular sectors [0 rmax]  ´ [-φsym/2
φsym/2] chosen from axial positions zk corresponding to naxi-
point Gauss quadrature points over z Î [-h/2 h/2]. The relative
perpendicular lengths lk / h correspond to Gauss integration
weights. The fields in the axial slices are described in x-y

Fig. 1.  Approximation of one symmetry sector of a toroidal inductor by
two axial (in green) and two radial (in blue) slices.



coordinates, so that Ak corresponds to the z-component of the 
vector potential.

The radial slices consist of two separate planes [h/2 
 hmax/2] ´ [-φsym/2 φsym/2] and [-hmax/2 -h/2] ´ [-φsym/2 φsym/2] 
on the top and bottom of the core chosen from radial positions 
rk corresponding to nrad-point Gauss quadrature points over r Î
[rin rout]. The relative perpendicular lengths lk / (rout - rin) 
correspond to Gauss integration weights. The fields in the radial 
slices are described in rkφ-z coordinates, where rk is constant in 
each slice. Thus, the width of the slices increases as we move 
radially outwards (Fig.2). By change of variables, rkφ → x, z → 
y and r → z, the fields can be handled similarly to the axial 
slices.

The FE systems of each slice can be written as a large 
uncoupled system
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where matrices S, T, DΩ and CΩ are block diagonal matrices 
assembled from Sk, Tk, DΩ,k and CΩ,k, a and u are vectors 
containing ak and uk, and 
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are summed over the slices. R and U contain the total 
resistances and total voltages affecting over each conductor p in 
one symmetry sector.

The idea of the MASM comes into picture after coupling 
axial and radial slices. The coupling includes three conditions:

1. Forcing the total currents in each conductor to be equal in 
each slice.

2. Forcing the tangential magnetic fields H·uφ at the 
interfaces between the radial and axial slices to be 
continuous in the weak sense.

3. Accounting for the perpendicular flux crossing the 
interfaces between the radial and axial slices.

Condition 1 is satisfied automatically in the AVI formulation, 
since the currents are common for each slice. Condition 2 is 

implemented through a non-homogeneous Neumann condition 
in the radial slices k as
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where Гrad,k is the boundary of radial slice k = naxi + 1, ..., naxi + 
nrad at the top (z = h/2) or bottom (z = -h/2) surface of the core, 
and Гaxi,k is the corresponding boundary in the top or bottom 
axial slice. However, to avoid complex interpolations between 
two possibly non-conforming meshes, we derive here a simple 
approach by approximating the circumferential field strength in 
radial slice k as
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is the total current carried by the npar parallel conductors in one 
symmetry sector. When (14) and (15) are substituted in right-
hand-side of (13), a non-homogeneous Neumann condition for 
the radial slices is obtained. The FE block matrix thus becomes
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where the additional matrix DГ is a vertical assembly of 
matrices 

rad ,

, 2
D

k

k nnp
k

N w d
rpG

G

é ù = Gë û ò (17)

for all p and for k = naxi + 1, ..., naxi + nrad, which account for the 
tangential field strength in the radial slices.

Condition 3 could perhaps be implemented by considering 
the flux crossing the interface as a non-zero divergence of the 
flux-density in the axial slices. However, this would be 
challenging to implement. We thus again derive a simpler 
approach using the Poynting theorem [25], based on which the 
power passing through the interface between the radial and 
axial slices is given by 
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where E is the electric field strength. Since the radial slices are 
placed at the Gauss quadrature points, we can write the integral 
as
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Fig. 2. Axial and radial slice models with interface conditions.



Using (10) and
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This power should be seen as a change Δup in the conductor
potential differences, such that
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meaning that
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for all p. This voltage is added to the voltage equation in (5),
yielding a final system of
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where the additional matrix CГ is a horizontal assembly of
matrices
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for all p and for k = naxi + 1, ..., naxi + nrad, which account for the
power coming from the radial slices. Note that
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Equation (24) represents the whole MASM system, where the
slices are coupled together.

D. 3-D simulation
Time-harmonic 3-D FE simulation with COMSOL

Multiphysics is used to validate the proposed MASM. Two test
cases with npar = 1 and npar = 3 parallel conductors are simulated.
The respective models are represented in Fig.3. The multiple
sub-conductor case provides better insight about frequency
dependent power losses in each conductors. The chosen
geometries are symmetric with respect to the z = 0 plane, and
thus only the lower half z ≤ 0 is considered in the 3-D model for
minimizing the required computation time and resources. Both
halves are considered in the MASM.

A boundary layer mesh is used in the conductor section for
accurately capturing the influence of skin effect on power
losses. Periodic boundary conditions are used on the sides of
the symmetry sector. This ensures the continuity of flux density
along the circumferential path of toroid. A voltage is imposed

between the inner and outer conductor cross sections in the
z = 0 plane. The currents and power losses are computed in each
conductor for both cases and compared to those obtained from
the MASM.

III. RESULTS

The simulation results presented here are computed on a
single Windows machine with 32 GB RAM  and Intel Core i7-
8650U (4 cores  8 threads) 1.9 GHz processor. All simulations
including 3-D FEM are with linear discretization. The currents
and power losses of the MASM and the 3-D FEM for the single-
conductor case are shown in Fig. 4. The values are computed
over a frequency range from 10 kHz to 1 MHz for sinusoidal
voltage input. The current is kept constant by maintaining
constant voltage to frequency ratio for all frequencies. This
allows good insight on the change in losses as a function of
frequency. Each graph shows data for three simulations: the
reference results from 3-D FEM, results from the MASM with
two axial and two radial slices, as well as results from the
MASM with two axial slices, but no radial slices. The last case
is done for studying the significance of including the radial
slices into the model. In all simulations, the losses increase
significantly above 60 kHz. As the frequency increases, the
MASM without radial slices underestimates the losses. Thus,
simple 2-D FEM fails to capture high frequency 3-D effects in
the windings. On the other hand, the results from the MASM
with both axial and radial slices agree well with those from the
3-D FEM.

Fig. 5 compares the current density distributions in the axial
slices of the MASM to those obtained from the 3-D model in
identical locations at 100 kHz. Similar comparison for the
current densities in the radial slices is shown in Fig. 6. In this
case, distribution of the current density is similar in all slices.
The reason is that the conductor is perfectly aligned in the radial
and the axial directions. Moreover, in a single conductor case,
the skin effect plays the most influential role in the current
distribution.

Similar results are produced for the winding with triple sub-
conductors. The computed results for the total current and
losses are shown in Fig 7. The results from the MASM are very
close to the 3-D FEM computations. Again, neglecting the
radial slices fails to provide precise information on frequency
dependent power loss.

Along with skin effect losses, the triple conductor case also
include loss components from proximity effect and circulating
currents [26], [27]. The resultant distribution of the current
density is shown in Figs. 8 and 9. The former depicts current

(a) (b)
Fig. 3.  3-D geometric model for (a) winding with single conductor
and (b) winding with triple sub-conductor.



density in axial direction while the latter shows radially directed 
current densities. The share of current among the parallel 
conductors changes as a function of the frequency. The 
computed currents and losses for each sub-conductor are shown 
in Fig. 10.  The red curves indicate conductor 1, located closest 
to the core. The conductor 2 and 3 quantities are represented by 
blue and green curves respectively. As conductor 2 lies right 
above conductor 1, it has the largest distance from the surface 
of the core among the conductors. It shares the smallest amount 
of current at higher frequency, which explains lower AC losses 
than in the other two conductors. Conductor 3 is located at the 
intermediate distance between conductors 1 and 2 from the 
surface of core. For the entire frequency range, the current and 
power losses of conductor 3 stay between the respective values 
of conductors 1 and 2. 

By having a closer view at the results from simulation with 
only 2 axial slices, but no radial ones, the computed current 
values deviate from the 3-D FEM quantities. For the frequency 
range from 10 kHz to 500 kHz, the currents have higher 
deviation. At lower and higher frequencies, the currents match 
well with the 3-D FEM. However, the scenarios are different 

with power losses. The computed values of losses with the 
MASM are quite close to the ones from 3-D FEM. The accurate 
understanding of such quantities is important for deciding the 
optimal number of parallel conductors in windings [28]. In the 
same context, simple 2-D FEM with only axial slices does not 
provide the required accuracy level at high frequencies.

The simulation times for all frequencies were observed in 
each simulated case. On average, one MASM simulation took 
4.91 seconds while one 3-D FEM simulation took 73.4 seconds 
in the single conductor case. In the triple conductor case, the 

(a) (b)
Fig. 7. Comparison of total (a) current and (b) power loss for the triple 
conductor case.

Fig. 8. Current density distribution in the triple conductor case: (top) Axial 
slice of the proposed model, and (bottom) an identical section of the 3-D 
model.

(a) (b)

(c) (d)
Fig. 9. Current density distribution in the triple conductor case: (a) Inner and 
(b) outer radial slices of the proposed model, and (c,d) identical sections of the 
3-D model.

(a) (b)
Fig. 10. Comparison of (a) currents and (b) power losses in each conductor 
in the triple conductor case.
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Fig. 4. Comparison of total (a) current and (b) power loss for the single 
conductor case.

Fig. 5. Current density distribution in the single conductor case: (top) Axial 
slice of the proposed model, and (bottom) an identical section of the 3-D 
model.
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(c) (d)
Fig. 6. Current density distribution in the single conductor case: (a) Inner and 
(b) outer radial slices of the proposed model, and (c,d) identical sections of the 
3-D model.
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MASM took 4.95 seconds while the 3-D FEM took 1325
seconds. The speedup ratio of 3-D FEM and MASM
computations are shown in Fig. 11. It is clearly seen that in the
single conductor case, the MASM is about 15 times faster
compared to 3D FEM. A more significant difference is seen in
the triple conductor case, where the MASM is 265.7 times
faster on an average scale compared to 3-D FEM analysis. In
comparison to 3-D FEM, the computed power losses with
MASM are on average less by 2.8% and 3.5% for single and
triple conductor cases, respectively.

IV. CONCLUSION

The method proposed here carries potential to replace the
usage of 3-D FEM approach for the toroidal inductor
modelling. With a reasonable trade-off between accuracy level
and simulation time, the proposed multiaxial slice model is
promisingly fast. The frequency dependent power losses for
multiple conductor winding can easily be analyzed without
stressing available computational resources. The obtained
results have shown good agreement with the results from 3-D
FEM simulation of commercial software.

Based on the results, the implementation of this idea can give
an extra edge to industries in cutting down massive amount of
time in their design process. As a part of future work, twisting
effect of multiple conductor winding for toroidal inductors will
be incorporated in the developed method.

ACKNOWLEDGMENT

The foundation of Emil Aaltonen and the Academy of Finland
are acknowledged for financial support.

REFERENCES

[1] J. Smajic, J. Hughes, T. Steinmetz, D. Pusch, W. Monig and M. Carlen,
“Numerical Computation of Ohmic and Eddy-Current Winding Losses of
Converter Transformers Including Higher Harmonics of Load Current,”
IEEE Trans. Magn., vol. 48, no. 2, pp. 827-830, Feb. 2012.

[2] D. Fu, Topology Investigation and System Optimization of Resonant
Converters, Ph.D. dissertation, Virginia Polytechnic Institute and State
University, Virginia, USA, 2010.

[3] A. Van den Bossche and V. C. Valchev, Inductors and Transformers for
Power Electronics, CRC Press, Taylor Francis Group, 2005.

[4] G. S. Dimitrakakis and E. C. Tatakis, “High-Frequency Copper Losses in
Magnetic Components With Layered Windings,” IEEE Trans. Magn.,
vol. 45, no. 8, pp. 3187-3199, Aug. 2009.

[5] L. Taylor, X. Margueron, Y. Le Menach and P. Le Moigne, “Numerical
modelling of PCB planar inductors: impact of 3D modelling on high-
frequency copper loss evaluation,” IET Power Electron., vol. 10, no. 14,
pp. 1966-1974, Nov. 2017.

[6] A. Pereira, F. Sixdenier, M. A. Raulet, B. Lefebvre and N. Burais,
“Comparison Between Numerical and Analytical Methods of AC
Resistance Evaluation for Medium-Frequency Transformers: Validation

on a Prototype and Thermal Impact Analysis,” Can. J. Elect. Comput.
Eng., vol. 40, no. 2, pp. 101-109, Spring 2017.

[7] E. Langlois, T. Monson, D. Huber and J. Watt, “Finite element modeling
of nanoscale-enabled microinductors for power electronics,” J. Mater.
Res., vol. 33, no. 15, pp. 2223-2233. Aug. 2018.

[8] M. Kaymak, Z. Shen and R. W. De Doncker, “Comparison of analytical
methods for calculating the AC resistance and leakage inductance of
medium-frequency transformers,” Proc. COMPEL, Trondheim, pp. 1-8,
June 2016.

[9] A. Reatti and M. K. Kazimierczuk, “Comparison of various methods for
calculating the AC resistance of inductors,” IEEE Trans. Magn., vol. 38,
no. 3, pp. 1512-1518, May 2002.

[10] C. R. Sullivan and L. Losses, “Analytical model for effects of twisting on
litz-wire losses,” Proc. COMPEL, Santander, pp. 1-10, June 2014.

[11] E. Plumed, J. Acero, I. Lope and C. Carretero, "3D Finite Element
Simulation of Litz Wires with Multilevel Bundle Structure," Proc.
IECON, Washington, DC, pp. 3479-3484, Oct. 2018.

[12] A. Roßkopf, E. Bär and C. Joffe, “Influence of Inner Skin- and Proximity
Effects on Conduction in Litz Wires,” IEEE Trans. Power Electron., vol.
29, no. 10, pp. 5454-5461, Oct. 2014.

[13] T. Guillod, J. Huber, F. Krismer and J. W. Kolar, “Litz-wire losses: Effects
of twisting imperfections,” Proc. COMPEL, Stanford, CA, pp. 1-8, July
2017.

[14] I. F. Kovacevic, A. M. Musing and J. W. Kolar, “An Extension of PEEC
Method for Magnetic Materials Modeling in Frequency Domain,” IEEE
Trans. Magn., vol. 47, no. 5, pp. 910-913, May 2011.

[15] A. Roßkopf, E. Bär, C. Joffe and C. Bonse, “Calculation of Power Losses
in Litz Wire Systems by Coupling FEM and PEEC Method,” IEEE Trans.
Power Electron., vol. 31, no. 9, pp. 6442-6449, Sept. 2016.

[16] Y. Hackl, P. Scholz, W. Ackermann and T. Weiland, "Efficient Simulation
of Magnetic Components Using the MagPEEC-Method," IEEE Trans.
Magn., vol. 53, no. 3, pp. 1-9, Mar. 2017.

[17] R. Torchio, P. Alotto, P. Bettini, D. Voltolina and F. Moro, "A 3-D PEEC
Formulation Based on the Cell Method for Full-Wave Analyses With
Conductive, Dielectric, and Magnetic Media," IEEE Trans. Magn., vol.
54, no. 3, pp. 1-4, Mar. 2018.

[18] L. Lombardi, D. Romano and G. Antonini, "Analytical Formula for the
Magnetic-to-Electric Field Coupling of Magnetization in the Partial
Element Equivalent Circuit Method," IEEE Trans. Magn., vol. 54, no. 10,
pp. 1-12, Oct. 2018.

[19] R. Torchio, F. Moro, G. Meunier, J. -. Guichon and O. Chadebec, "An
Extension of Unstructured-PEEC Method to Magnetic Media," IEEE
Trans. Magn., vol. 55, no. 6, pp. 1-4, June 2019.

[20] Z. De Grève, J. Siau, G. Meunier, J. Guichon and O. Chadebec, “A Mixed
Surface Volume Integral Formulation for the Modeling of High-
Frequency Coreless Inductors,” IEEE Trans. Magn., vol. 52, no. 3, pp. 1-
4, Mar. 2016.

[21] S. Wang, D. Yuan, A. Wang, K. Liu, H. Li and S. Wang, "Circuit-Field
Coupling and Magnetic-Thermal Coupling Analysis of RRF Converter
Designed With Magnetic Integration," IEEE Trans. Magn., vol. 55, no. 5,
pp. 1-8, May 2019.

[22] A. Lehikoinen, Circulating and eddy current losses in random-wound
electrical machines, Ph.D. dissertation, Aalto University, Espoo, Finland,
2017.

[23] M. J. Islam, J. Pippuri, J. Perho and A. Arkkio, “Time-harmonic finite-
element analysis of eddy currents in the form-wound stator winding of a
cage induction motor,” IET Electr. Power App., vol. 1, no. 5, pp. 839-846,
Sept. 2007.

[24] I. A. Tsukerman, A. Konrad and J. D. Lavers, “A method for circuit
connections in time-dependent eddy current problems,” IEEE Trans.
Magn., vol. 28, no. 2, pp. 1299-1302, Mar. 1992.

[25] B. Bolund, M. Leijon and U. Lundin, “Poynting Theorem Applied to
Cable Wound Generators,” IEEE Trans. Dielectr. Electr. Insul., vol. 15,
no. 2, pp. 600-605, Apr. 2008.

[26] D. Barth, B. Klaus and T. Leibfried, “Litz wire design for wireless power
transfer in electric vehicles,” Proc. WPTC, Taipei, May 2017.

[27] S. Wang, M. A. de Rooij, W. G. Odendaal, J. D. van Wyk and D.
Boroyevich, “Reduction of high-frequency conduction losses using a
planar litz structure,” IEEE Trans. Power Electron., vol. 20, no. 2, pp.
261-267, Mar. 2005.

[28] X. Tang and C. R. Sullivan, “Optimization of stranded-wire windings and
comparison with litz wire on the basis of cost and loss,” Proc. PESC,
Aachen, Germany, vol.2, pp. 854-860, June 2004.

(a) (b)
Fig. 11. Speedup ratio for (a) single conductor and (b) triple conductor case.
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