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Abstract—Recent investigations on magnetic properties of Non-Oriented steel sheets enhance the comprehension of the
magnetic anisotropy behavior of widely employed electrical sheets. Our investigation consists of developing an analytical
model to consider these magnetic properties while modelling electromagnetic systems. From rotational measurements, the
anhysteretic curves are interpolated in order to extract the magnetic energy density for different directions and amplitudes
of the magnetic flux density. Furthermore, the analytical representation of this energy is suggested based on statistical
distribution which aims to minimize the intrinsic energy of the material. Our model is finally validated by comparing
measured and computed values of the magnetic field strength.

Index Terms—Magnetic properties, Non-Oriented steel sheets, Anisotropy

I. INTRODUCTION

Non-oriented (NO) electrical steel sheets are usually

composed of iron doped with silicon. Although their

manufacturing process tends to confer isotropic proper-

ties [1], [2], magnetic anisotropy has been always ob-

served and recently investigated [3], [4], [5]. Three main

intrinsic phenomena involve anisotropic characterization

of body centered cubic iron [6]:

• Shape anisotropy is a purely magnetostatic phe-

nomenon. It depends on the shape of ferromagnetic

crystal and its magnetic moment. These magnetic

moments within the crystal produce not only an

external magnetic field but also an internal field

known as the demagnetization field [7].

• Magnetocrystalline anisotropy is mainly caused by

spin-orbit interaction [8]. Thus it depends on the

molecular structure of the crystal. In grain-oriented

(GO) electrical steel sheet, the body centered cubic

structure for pure iron is enhanced in order to bring

a hard direction in the diagonal of the cube. With

NO steel sheet, this phenomenon is diminished.

• Magnetostriction results by strain due to an external

field which rotates magnetic moments [8]. Although,

this effect would be neglected in case of perfectly

spheroidal crystal, the spin-orbit interaction also

involves significant magnetomechanical effects on

electrical sheets (vibration, additional losses, ...) [9],

[8], [10], [11].

Models of magnetic anisotropy derive from different

formulations regarding to the target application. The

following non-exhaustive literature review considers

applications dedicated to finite element formulation.

Since the magnetic anisotropy infers a dependance of

reluctivity on both amplitude and direction of the applied

flux density, its model can be developed by interpolating

between two adjacent measured B−H curves [12].

Under rotational applied flux density, Enokizono and

Soda [13] develop a Garlerkin’s formulation based

on the decomposition of the magnetic field into a

purely rotational field (isotropic) and an effective field

(anisotropic). The isotropic reluctivity and components

of the effective magnetic field are interpolated and

implemented into their numerical method.

Derived from magnetocrystalline theory [9], Vernescu-

Spornic et al. [14] develop a mixed Preisach/biastroide

model. The biaxial anisotropy is considered by

minimizing the sum of the applied field and the

magnetocrystalline anisotropy energy, which depends on

the first anisotropy constant. Their model was validated

by comparison with measurements on NiFe samples at

1.5 T and 50 Hz under rotating induction, alternating

sinusoidal along hard direction and both rolling and

transverse directions. However discrepancies were

noticed at low flux level especially under rotational

measurements. Considering the phase mode theory [15],

Fiorillo et al. [16] investigate the impact of experimental

setup on magnetic measurements of GO iron steel sheets

under alternating flux. Their improved model includes

not only the first and the second anisotropy constants

but also hysteresis loops. From 0.4 to 1.5 T, their model

fits well with measurements performed on X-stack (low

effect of shape anisotropy), Epstein frame and Single

Sheet Tester.

Based on energy/coenergy density principle [17],

Péra et al [18], [19] expand a phenomenological model

on GO sheets which needs only the rolling (RD) and

the transverse (TD) direction given by manufacturers.

For low value of coenergy density (shape anisotropy),

hard direction is close to 90 ◦ while the hard direction

appears, in theory, in the diagonal of a cubic crystal

(55◦) for higher coenergy density level. Although,

their computational implementation requires some

numerical derivation based on interpolation, their model

matches with alternating flux measurements for 4 various

directions in the range of 200 A/m to 30 kA/m. However,

the four magnetization modes introduced by Néel [15]



are not fully described by this phenomenological

approach, so data in more directions are needed to

characterize these sheets completely [4], [20]. Thus,

Higuchi et al. [4] model the magnetic energy density for

NO sheets with Fourier series. Their decomposition is

based on alternating flux with 7 different cutting angles

on Single Sheet Tester [21]. Their approach shows

that magnetic anisotropy impacts on torque ripples and

hysteresis losses of an interior permanent magnet motor.

In this paper, we present an original model developed

by including Gumbel distribution on energy density

principle. Originally, Gumbel distribution can be

employed to model the distribution of the maximum

(or the minimum) corresponding to many samples

characterized with various distributions [22]. The

arrangement of the grains, containing different crystals

within the sheets, depends on manufacturing process.

Grain size, wall thickness, and magnetic moment

orientation differ within the NO sheets. While applying

an external field, we assume that this macroscopic

structure will move in order to minimize its intrinsic

energy. As energy density is a scalar, its implementation

in finite element method should result in faster resolution

of the energy functional formulation than manipulating

B and H vectors. Whereas the energy density presents

an implicit form in [18], [23], we suggest an explicit

formulation in order to ease the computations. The

proposed model is fitted with 16 parameters from 9

rotational measurements with Gumbel functions.

II. EXTRACTION OF ENERGY DENSITY FROM

ROTATIONAL MEASUREMENTS

Measurements have been carried out in two cross shape

NO sheets [24]. In order to reduce the effect of shape

anisotropy [16], the rolling direction of both sheets are

shifted by 180 ◦. Every component of B−H loci are

measured with 3 072 points at 10 Hz. Rotating magnetic

flux density presents 9 different amplitudes: 0.2 T, 0.42

T, 0.64 T, 0.87 T, 1.09 T, 1.34 T, 1.52 T, 1.65 T, and 1.89

T. We are interested in extracting the anisotropic energy

density which does not produce losses over a cycle.

A. Interpolation of anhysteretic curves

In order to retrieve the anhysteretic curves, we remove

the hysteresis by assuming that B loci are perfectly

circular. Along each locus, hysteresis induces an average

phase difference φhys between the magnetic flux density

and the magnetic field strength over a full cycle. Hence,

components hx and hy are calculated by :

[
hx

hy

]
=

[
cosφhys sinφhys

− sinφhys cosφhys

]
×
[

hx−meas

hy−meas

]
(1)

where hx−meas and hy−meas correspond to measured

magnetic field strength components.

Since the anisotropic angle between magnetic magni-

tude presents less variation when the material approaches

its saturation, the reference angle φh−max corresponds to

the H locus matching with 1.89 T B locus. From the 3

072 different directions, we select the amplitude of 9

H loci whose polar angle is closest to the reference.

While each H amplitude is associated with its corre-

sponding B amplitude, H(B) anhysteretic curves (Fig.

1) are extracted and interpolated with a shape-preserving

piecewise cubic polynomial function.
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Fig. 1: Representation of the method for determining the

anhysteretic curves from B−H loci for a given direction

φh−max

B. Energy density distribution and equal contour of
energy density

The energy density w(bx, by) is computed by integra-

tion of the interpolated anhysteretic curves by :

w(bx, by) =

∫ B

0

H .dB (2)

Figure 2 represents the extracted energy density from the

measurements by the described method.

Fig. 2: Representation of the magnetic energy density

w(bx, by) extracted from the quasi-static measurements



This energy density is interpolated by a surface spline

in order to compute equal contour of energy density.

From the 0.2 T and 1.89 T loci, the highest and the

lowest energy density are respectively selected for both

extrema contours of energy density. With all other loci,

average values of energy density are retained in order

to compute the equal contour of energy with Brent’s

method [25]. Figure 3 represents the equal contours of

energy density.

Fig. 3: Contours of equal energy corresponding to the

interpolated anhysteretic curves

Since, we aim to improve the modified elliptic model

of isolines of energy developed by T. Péra et al. [18],

[23], we compute the value of energy density w0, the in-

tersection Bx0 and By0 between these contours and both

axes (0, bx) and (0, by) respectively, and the parameter n
which is equal to 2 in the specific case of elliptic contours

(Tab. I).

TABLE I: Data of equal energy contours

w0 [J/m3] Bx0 [T] By0 [T] n

5.55 0.238 0.2249 2.098

13.3 0.408 0.3977 2.362

24.4 0.606 0.6494 2.348

38.3 0.8107 0.8698 2.200

56.8 1.000 1.0878 2.028

96.6 1.2178 1.3062 2.092

231 1.500 1.4898 2.000

621 1.6792 1.6272 2.000

1053 1.7541 1.7012 2.011

III. ANALYTICAL REPRESENTATION BASED ON

GUMBEL DISTRIBUTION

The modified elliptic model represents the equal con-

tour of energy density with the following assumptions

[18], [23]:

• B and H are collinear in both rolling and transverse

directions so equal contours of energy density are

orthogonal to these directions;

• Hysteresis is neglected in order to provide a

monotonous implicit function Hy(Hx);

Thus equal contours of energy density can be modeled

by the following implicit function F :

F (bx, by) =

(
bx
Bx0

)n

+

(
by
By0

)n

− 1 = 0 (3)

The 3 functions Bx0, By0, and n can also be calculated

as a function of the energy density as in [18], [23].

A. An improved expression of energy density

With our approach, we propose an explicit expression

of the energy density in order to compute components of

magnetic field by analytical differentiation. In its general

form, energy density could be expressed by :

w(bx, by) = C(bx, by) bx
n(bx, by)+D(bx, by) by

n(bx, by)

(4)

Where C, D, and n are 3 functions that only depend on

the components of magnetic flux density.

With the suggested model, equal contours of energy

density are linked with the original approach by :

F =
C

wo
bx

n +
D

wo
by

n − 1 (5)

By simple identification of (5) and (3), we can notice

that functions n are the same and functions C, D can be

computed by :

C =
w0

Bx0
n

D =
w0

By0
n

(6)

These 3 functional parameters can be interpolated by

piecewise polynomials but in order to ease the compu-

tation of energy density differentiations, we suggest an

interpolation by Gumbel distributions.

B. Representation and interpolation of functional param-
eters

Considering NO steels, functions C, D, and n can be

expressed as a function of the amplitude of magnetic

flux density B. Originally, Gumbel distribution aims to

approach the maximum value corresponding to many

samples with different distributions. While applying an

external field, we assume that grains and walls will

move in order to minimize the intrinsic energy. Hence,

functional parameters C and D could be interpolated

with the inverse of a Gumbel function g. The functional

parameters n which corresponds to the intrinsic magnetic

moment could be modeled with a Gumbel function too.

Moreover, from the extracted value of n (Tab. I), we can



notice that the elliptic assumption would be correct in

both cases : without applied field and when steel reaches

its saturation. So, we suggest the following interpolated

functions :

C(B) = g(B,αC , bC , βC , kC)
−1

D(B) = g(B,αD, bD, βD, kD)−1

n(B) = g(B,αC , bC , βC , kC) + 2

(7)

Where B is the amplitude of the magnetic flux density, α,

b, β, and k are the parameters of the Gumbel distribution.

The Gumbel distribution is given by:

g(B) = α exp

[
−B − b

β
− exp

(
−B − b

kβ

)]
(8)

The functional parameters C, D, and n are represented

in figures 4-6.

Fig. 4: Representation of the function n(bx, by) fitted by

the contour of equal energy

Fig. 5: Representation of the function 1/C(bx, by) fitted

by Gumbel distribution

Fig. 6: Representation of the function 1/D(bx, by) fitted

by Gumbel distribution

The fitted parameters, error and correlation coefficients

are given in table II.

TABLE II: Parameters of the Gumbel distributions to

model n, C, and D in the energy density model

n(bx, by) C−1(bx, by) D−1(bx, by)

α 1.041 0.0456 0.0569

b 0.6135 1.2209 1.0568

β 0.1856 -0.5473 -0.4140

k 1.3809 0.7054 1.0378

Correlation r2 0.9979 0.9749 0.9834

Error rmse 0.0063 0.0007 0.0008

First, we can notice that Gumbel distribution provides

both good correlation coefficients and small root mean

square errors for the interpolation of the 3 functional

parameters C, D, and n. Then, parameter k which is

originally equal to 1 is close to unity. Since we model

C, D, and n to describe the energy density as a function

of the amplitude of B, we suppose that equal contours

of energy are close to elliptic shape. The parameter

k which allows a modification of original slopes of

Gumbel distribution, has been introduced in order to

overcome this assumption and improve the interpolation.

IV. INVESTIGATION ON THE SUGGESTED MODEL

The H loci can be determined by differentiating the

energy density with respect to the components of flux

density. These computed H loci are compared with

the measured loci. A sensitivity analysis is introduced

to evaluate the effect of uncertainty on flux density

measurements.



A. Comparison between measured and computated mag-
netic field

Components of magnetic field strength are determined

by:

hx =
∂w(bx, by)

∂bx

hy =
∂w(bx, by)

∂by

(9)

These components only depend on the components of

magnetic flux density and parameters of Gumbel distri-

bution. Hence, H loci can be computed from measured

B loci. In figures 7a-7i, we can notice that both measured

and computed H loci present similar shapes. For higher

value of magnetic flux density, the flower shape related to

anisotropy is reproduced by the suggested model and for

low value of magnetic flux density, the model reproduces

a quasi-isotropic shape. Then, the average relative error

between the model and the measurements is 27 %. The

highest error is reached for the locus corresponding to

the amplitude of 1.79 T of magnetic flux density (Fig.

7i). Therefore, we propose to investigate the impact of

errors in the measurements of the magnetic flux density.

B. A sensitivity analysis

In order to appreciate the comparison between

computed and measured H loci, we propose to modeled

H loci with an error of +/- 5% on the measurements

of bx and by . The gray area in figure 7a-7i represent

the impact of this error on the computed magnetic field

strength. We can notice that for 1.79 T which contains

the maximum error of our proposed model, the impact

of uncertainty in magnetic flux density measurements

is strongly significant. Thus, it may not be relevant to

estimate the accuracy of the model based on this locus.

Besides, since the B loci are not perfectly circular, their

hysteresis angles differ within every locus. Hence, the

proposed method to extract the B − H anhysteretic

curves for different directions also presents some error.

Although, errors arise from different phenomena, the

proposed method models the magnetic anisotropy of

non-oriented steel sheets with relatively low error (27 %).

V. CONCLUSION

The proposed model is based on an analytical

formulation of the energy depending on the components

of the magnetic flux density. This formulation is

composed of 3 Gumbel distributions. Every functional

parameters of energy density is formulated with only 4

parameters which are calculated by fitting the energy

extracted from measurements. The components of the

magnetic field are then deduced by differentiating the

magnetic energy with respect to the components of

the magnetic flux density. Hence, with this analytical

formulation, the determination of H does not require

(a) H locus - 0.20 T (b) H locus - 0.42 T

(c) H locus - 0.64 T (d) H locus - 0.87 T

(e) H locus - 1.09 T (f) H locus - 1.34 T

(g) H locus - 1.52 T (h) H locus - 1.65 T

(i) H locus - 1.79 T

Fig. 7: Comparison of the calculated magnetic field (in

red) and the measured field (in blue) from the rotating

measure at 10 Hz. The grey area corresponds to the

impact of +/- 5% of error in flux density measurements

on the computed field.

any iterative process as it is usually the case with this

energy method coupled with implicit function. Finally,

the proposed model is validated by comparing the

computation and the measurements of 9 H loci for non-

oriented steel sheets at 10 Hz. The proposed analytical



model shows good agreements with an average relative

error of 27 %.

In further work, it could be relevant to improve the

measurement control in order to apply perfectly circular

loci of the rotating flux density. Besides, implementation

of the proposed model in 2D finite element method is

actually in process in order to highlight the effectiveness

and usefulness of the suggested method.
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