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A recursive domain decomposition approach based on a 2-D time-harmonic finite element (FE) model with AVI formulation is
used to model a wireless power transfer (WPT) unit with litz wires. Similar techniques exist in the literature, but they have not yet
been applied to WPT units. The approach produces a model that is significantly faster to update and resolve than a traditional FE
model, and hence, it is suitable for performing parametric sweeps where the positioning of the coils is varied. Using the technique,
it is possible to study losses emerging in individual strands even with an extremely high number of strands. The loss distribution
between the litz wire strands is studied, varying the number of strands from 7 to 925. The results and speed are compared with
a traditional FE AVI model. The method yields the results up to a 1% relative error compared with the traditional model with

significantly faster simulation time.

Index Terms— Domain decomposition, iterative substructuring, macroelement method, multiscale model, reduction to the interface,

static condensation, wireless power transfer (WPT).

I. INTRODUCTION

IRELESS power transfer (WPT) systems can be used

to transfer power without the need for physical con-
tacts [1]. Wireless charging is expected to drastically improve
the potential of electric vehicles. For example, parking squares
and sections near traffic lights could be equipped with dynamic
wireless charging coils that would boost the ranges of electric
vehicles without the need for larger batteries [2]. In these kinds
of applications, the WPT coils are perfectly aligned only for
a short period of time, so it is crucial to analyze and optimize
the operation of the windings also when the coils are badly
aligned.

The WPT systems contain windings that, due to the high
operation frequencies, are made of litz wires to reduce
eddy-current losses. The designing of a WPT unit is a complex
process. The units usually contain power electronic converters
in both sending and receiving sides of the unit that needs to
be dimensioned correctly. A compensation topology has to be
selected, and in order to select the values for the compen-
sation components, it is necessary to obtain certain lumped
parameters, e.g., self-inductance and mutual inductance of the
windings [3]. The load also affects the operation of the WPT
device. On top of these considerations, there are several para-
meters that have a negative impact on the performance of the
WPT unit. These parameters include offsets from the optimal
position, variance in the distance between the windings, and
misalignment of the magnetic axes of the windings.

The inductances and coupling factors, which are needed in
the design process, are typically estimated using simplified
formulas [4], [5], computed using a simplified 3-D or 2-D
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magnetic field simulations [6], [7], or just measured from a
prototype system [8], [9]. After the identification, the analysis
is usually carried out using equivalent circuits. This approach
is suitable for system-level optimization but not enough for
optimizing the actual winding geometries.

The models used in the field simulations must be simplified
in such a way that individual conductors are not modeled, but
the wire is considered as a homogenous block of conduct-
ing material. This simplification is necessary already in 2-D
models especially if the litz wire contains a large number of
strands. This simplification, however, loses a lot of the infor-
mation about how eddy currents and proximity effect affect
the current distribution in and between the wires. It would
require the use of special techniques, such as homogenization
[10]-[13], to incorporate the proximity information in the
models. This information is crucial in order to optimize coil
designs, improve efficiency, and avoid local overheating of the
winding.

In [14], harmonic decomposition is used to simulate losses
with respect to frequency since direct field simulation is found
to be too heavy for daily engineering work. The heaviness
of computing results through simulations prohibits the use
of many optimization techniques where losses have to be
simulated repeatedly with many different offsets, distances,
and angles.

In this study, a WPT unit that contains two rectangu-
lar spiral windings that are made of litz wire is analyzed
using a time-harmonic 2-D cross-sectional model. A recursive
domain decomposition approach, where repeated domains
(e.g., the winding and litz wire) are isolated, pre-processed,
and reused in a recursive manner during the simulation,
is proposed.

The proposed decomposition technique is presented and
applied to a finite element (FE) model used to compute
winding losses of a WPT system. The accuracy is verified,
and the speed is compared against a traditional FE model.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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The approach is based on a non-overlapping domain decom-
position technique called Schur complement method [15], [16]
which is sometimes called reduction to the interface, or,
especially in mechanics, iterative substructuring [17], [18].
It also shares similarities with static condensation [19], and
macroelement methods [20]-[22]. The relationships of the
methods are discussed in [23]. The proposed technique can
also be understood as a macroelement method coupled with
the standard magnetic vector potential-voltage—current (AVI)
formulation [24] that is used to model the current in the strands
of the litz wires.

The ultimate goal is to divide the problem domain into
smaller subdomains and eliminate interior regions of subdo-
mains that, e.g., contain highly complex structures, such as
windings made of litz wire. This results in a problem whose
solving is faster and less resource-intensive and, thus, offers
time savings when it has to be done repeatedly. To achieve
this goal, domain decomposition techniques have been used
in electrical machine simulations [20], [25], [26]. Model
reduction methods have been studied to achieve a similar
goal [27] for WPT units. However, the domain decomposition
approach has not been used before to model WPT systems
containing litz wires.

The subproblems are, to some extent, made independent
of each other and composable in a flexible way by utilizing
the mortar method with the Lagrange multipliers [28], [29].
The mortar method is slightly customized to benefit from the
fact that the subdomains are closed regions with a periodic
boundary. An auxiliary function space [30] that is spanned
by the Fourier basis functions is used as the space for the
Lagrange multipliers. For further details of the spatial decom-
position technique, we refer to our earlier work [31] where we
demonstrate the use of the Fourier basis for the Lagrange mul-
tiplier space in static magnetic field computations. This work
extends the previous work by incorporating the time-harmonic
AVI formulation and enabling the use of the method in a
recursive manner to model more complex hierarchical winding
structures made from stranded conductors. This is done in
order to be able to compute global and local eddy-current and
proximity losses in the litz wire windings of WPT systems.

The decomposition is done at the earliest step by identifying
the repeated geometrical entities and utilizing the problem
geometry. All domains are meshed independently of each other
instead of meshing the total problem first and dividing the
elements and degrees of freedom (DOF) after discretization.
This enables aggressive reusing and caching of all precom-
puted data. Using the mortar method, this precomputed data
can be used in several places and embedded in multiple ways
when the total problem is assembled. The circuit equations
modeling the strand currents are coupled into the reduced
Schur complement models in a flexible way.

The main contribution of this study is to show that the
combination of the techniques presented in this article can
be used to achieve significant speed benefits when modeling
WPT systems. The technique results in a significant drop in
the number of DOF and faster solving times in repeated sim-
ulations, such as simulating the effects of misalignment of the
WPT coils. It can be used as a part of optimization algorithms
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Fig. 1. Rectangular spiral WPT winding and the cross section. Each litz
wire and its strands are modeled in the 2-D FE model of the system. Color
in electronic version.
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Fig. 2. Diagram of a model tree of a WPT setup (with only two turns for
clarity). The leaves are litz wire cross sections, the branches are cross sections
of windings with holes for the litz wires, and the root is an air domain with
holes for both coils. The symbol d is the offset. Color in electronic version.

with moving coils in order to find new coil topologies that have
better efficiency and misalignment tolerance.

II. METHODS
A. Decomposition Principle

A WPT unit that consists of two windings is considered (see
Fig. 1). The windings are identical, and they have six turns
of litz wire. The number of strands in the litz wires is varied
from 7 to 925 while keeping the total copper cross section
constant. We model the system using a time-harmonic 2-D
cross-sectional FE approach with magnetic vector potential.
In this approach, transversal symmetry is assumed, and hence,
the vector potential has only an out-of-plane component.

The proposed decomposition strategy produces a tree of
models. In substructuring methods, this tree is called an
elimination tree, and it describes the order in which the
inner nodes of the models can be eliminated. In the proposed
approach, the building of the discretization for the whole
model is avoided completely. Instead, the elimination tree is
first created, each submodel is discretized separately, lower
level submodels are embedded using the mortar method, and,
finally, the inner DOF are eliminated. The tree is illustrated
in Fig. 2. It has three different levels of models that are
denoted, in this article, as the root, branch, and leaf models.
In the decomposition tree, there can be only one root model
that is the topmost one and does not have a parent model.
Branch models have a single parent model and one or more
submodels. A leaf model has only a parent model but no
submodels. It is possible to reuse an existing model in the
model tree. Only one litz wire model can be used for all wires
in the coil.



MARJAMAKI AND RASILO: RECURSIVE DOMAIN DECOMPOSITION APPROACH IN 2-D TIME-HARMONIC WPT SIMULATIONS

Each submodel in the model tree is responsible for provid-
ing its parent a precomputed mapping of itself. The tree below
the submodel is incorporated in this precomputed mapping.
Hence, the geometric details present in the tree below are
not visible to the parent model. A cross-sectional model
requires that the currents of the wires are mapped between the
cross sections according to the winding geometry. A common
approach is to use the AVI formulation where an external
circuit model is used to connect the cross sections of the
strands together. This adds some complexity on the top of
a standard domain decomposition technique.

The construction of the total system proceeds by traversing
the model tree from the leaves to the root. It is noteworthy
that, in this approach, precomputed models can be reused in
multiple ways. For example, a leaf level model (a litz wire)
can be embedded multiple times into a branch level model
to create a model of a litz winding. It is enough to create,
mesh, and pre-process only one litz wire cross section model.
In Sections II-B to D, we go through how a time-harmonic
AVI formulation for a three-level model tree is constructed.

B. Litz Wire as a Leaf Model

A litz wire consists of multiple thin strands that are isolated
from each other and indexed with index /. The total current
entering the wire gets distributed between the strands. A strand
is thought to be a conductive solid tube, and the voltage over
the tube acts as a source to a quasistatic field problem where
magnetic vector potential is used. The standard commonly
used AVI formulation [24] that is fed with current can be
expressed as

K C 0 a 0
joCg —I RL ul=/(0 (1)
0 0 I i i

where w =2x f, where f is the frequency, j is the imaginary
unit, K = S 4+ jowM, where S is the magnetic stiffness
matrix emerging from both the non-conductive and conductive
domains (QaL and all QIC“’ ;) of the litz wire domain represented
in Fig. 3, and M is the eddy-current damping matrix, which
emerges from the conductive domains (only Q%,z)- The super-
script L denotes the litz domain. Symbol a represents the nodal
values of the z-component of the magnetic vector potential, u
represents the voltages over the strand tubes in the z-direction,
and i represents the strand currents.
The matrix Cy is computed as

z

g
[Csliy = —— / i dQY, 2)
L Jar, ’

where ¢ is the conductivity of copper, [, is the length in
the symmetric z-direction (see Fig. 1), y; is the ith FE basis
function, and QI& ; 1s the domain of the /th strand (see Fig. 3).
The matrix Cg is computed as

L
[Cel; =

L
- IQLzl oL Vi dQc,l (3)
c, il

where |QCL ;| is the area of the domain QCL I
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Fig. 3. Cross sections of a litz wire, winding, and the total domain. The red
dashed line represents a magnification, and the blue dashed lines represent a
mortar mapping where the boundaries I' j from a parent model i and I" f, from a
submodel j are glued together. The symbol Qg‘ denotes the insulation, which
is assumed to behave magnetically like a vacuum, Qaw denotes the former
of the winding, here assumed to be air, and QQ’I denotes the air around the
windings. Color in electronic version.

The matrix R = diag(Ry, ..., R,,), where ny is the number
of strands, is a diagonal matrix of the resistances of the strand
tubes, which are computed as

R L 4)
l f—
o |Q§, /|
for strand /. L is a matrix where

1,  current iy flows through [/ forward
-1,

0, otherwise

[L]yx = current i; flows through / backwards (5)

i.e., it maps strand currents to the cross sections of the
conductors in the litz wire.

The last row and column of the matrix in (1) are associated
with the external circuit equations that are related to the wind-
ing structure, i.e., how the strands connect to each other and
how many turns there are. In a current-fed model, the strand
currents flowing through the strand cross sections can be set
directly using is. The strand currents are included in the state
vector for convenience. Treating the strand currents separately
would result in a smaller amount of state variables, but this
only has an impact on the precomputation step.

System (1) is transformed to the Schur complement form.
The DOF in vector a are decomposed into a; and a, denot-
ing the interior nodes and boundary nodes in the boundary
between the litz domain and the parent domain, respectively

Kii Kip C] 0 a; 0
Ki Ky 0 0||a|_|0 ©
joCg 0 —-I R u 0|
0 0 0 I i ig



8001010

The system (6) can be written as

L EE G

where
B=[Ky C 0] ®)
C = [Kgi ijE 0T ]T )
Kp 0 0
D= 0 -1 R (10)
0 0 I

From the first row of (7), a; can be solved as

a, = —K; 'Bx" (11)
and substituted to the second row of (7) to obtain
(D — CK;'B)x" =f" (12)
—_—
=Gl
where
Gy Gp 0
G:=|G) G R (13)
0 0 I
and its blocks are
G1L1 = Kpp — (KPiK; lKip) (14)
Gl = —KuK;'G (15)
G} = — joCeK;'K;p (16)
G, = —1— jwCeK;'Cy. (17)
The remaining state vector is
x"=[a] uT iT]" (18)
and the source vector is
fo=[0" o if]". (19)

The vectors are presented in transposed form for brevity.

The mapping G is what is meant by a precomputed map-
ping that characterizes the litz wire cross section completely.
It can be precomputed independently and reused later. The
state vector x* will be visible for the parent model, but all
other variables (a; in this case) are eliminated. The vector a;
can be recovered from the state vector x" by using (11).

C. Winding as a Branch Model

A winding consists of multiple turns of a conductor. The six
turns in the rectangular spiral winding result in 12 litz wire
domains in the cross section of the winding. We assume that
there are no core materials or other conducting materials than
the litz wires in the winding domain. The litz wires have been
cut out from the geometry. The cross section is obtained by
doing a cut in the xy-plane as in Fig. 1, and the length [, is
the length to the transversal symmetric direction.

After FE discretization, the matrix equation of the air
domain QY in the winding cross section can be written as

sVa% =0 (20)
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since there are no source fields in this model as the litz
wire domains are not included. The superscript W denotes
the winding domain.

A voltage-fed AVI formulation is used as a starting point in
the winding level. This is written as

K C; 0 a 0
joCg —I RL u|=1|(20 21
0 LT Zew i Ui

where Z.,, contains the end winding impedances. The last row
of (21) contains the circuit equations connecting the strands
of each cross section to each other through voltage equations.
In the third row, the voltages over the windings can be set
using ujy,.

The internal nodes in the domain are separated from the
boundary nodes in such a way that we distinctively separate
the boundary to the parent model and the boundaries to
the submodels. We also plug in the submodel systems by
following the approach presented in [31] that is based on the
mortar method with the Lagrange multipliers denoted with bY.
The total system then takes the form

V0 0 0 D!t a% 0

0 GY o -LY -DY|[|xV¥ 0

0 LY I Z 0 wWl=10 (22)
0 0 I 0 0 i i

D -D, 0 0 0 pV 0

where the superscript H denotes a conjugate transpose
and the block matrices are defined as follows. The
zeroes in most of the sparse matrices are left out
for clarity.

The stiffness matrix part SV is decomposed into internal
node parts and boundary node parts, and its structure is

N N \4 N
Sii Sip Sis,l Sis,12
\ \
Spi Spp
W __ \% W
ST = Ssi,l Sss,l (23)
\ \\4
Ssi, 12 Sss, 12

where SXV contains the entries related to the interior nodes,
Si‘g contains the entries connecting the interior nodes and the
nodes at the parent model boundary, SY¥, and S, contain
the entries connecting the interior nodes and the nodes at the
boundary to the kth submodel, and the diagonal blocks SE}’,
and S:;:k correspond to the entries connecting the boundary
nodes in the parent boundary and submodel boundary to each
other, respectively. The block G in (22) is

Gy
G) =

S

(24)
Gl

where G% corresponds to the block of the precomputed map-
ping (12) of the kth litz wire subdomain.

The f% term (19) contains the strand currents that flow
through the strands in the litz wire model, and it has been
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moved to the left-hand side. The term i, can be computed
from the winding level strand currents as

i, = Li;V (25)

with the strand current mapping (5). With suitable zero
padding, f" is represented using a matrix multiplication with
x" of each subdomain

£l = Lx- (26)

where

LY=[0 0 LT 0 0o LT]". Q27
This results in the term —LiW in (22). The matrix LXV contains
strand current mappings (5) for each subdomain block that

maps all the subdomain voltages to the global strand voltages
LY=[0 LT o 0 L" o] (28)

The matrix Z., = diag(Zi,...,Z,,) contains the external
impedances of each strand in the winding, e.g., the end
winding parts. By changing the block rows corresponding to
u;’“ and i‘gN in (22), and the number of voltages and currents,
we can change the connection topology of the winding to, e.g.,
parallelly connected turns.

The matrices D; and Dy contain the mortar mappings that
connect the magnetic fields of the winding domain and the litz
wire subdomains. The mappings D}" are the mortar mappings
defined in F;"’ of each winding domain, and DE are mortar

mappings defined in '

0 0 DY

D=|: : (29)
(0 0 DY
DF 0 0

D, = (30)
_ D 0 0

It must be emphasized that the mappings DiW completely
define the way how the subdomains are connected to the parent
domain. By changing only these mappings, it is possible to
change the way the subdomain connects to the parent domain.
The state vector is also defined in blocks. The first block
corresponds to the magnetic problem in the coil domain

a¥ =[al a] al,

T oal 31)

a: 12b ]T
where a; are the nodal values of the vector potential in the
inner nodes, a, are the nodal values at the external boundary to
the parent model, and ag 4, are the nodal values at the boundary
of the kth subdomain.

The second block contains the states of the subdomains

w T T T (32)

X :[31 up i

T T 117
aj, up, ip]
where a; are the nodal values of the magnetic vector potential
at the kth subdomain’s boundary and u; are the strand voltages
of the kth subdomain.

The third block contains all voltages over the whole strand

loops

u

. (33)

= [ i |-
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The fourth block contains all winding level strand currents
iz" = [i1 i,,s] (34)

and the block b¥ contains all Lagrange multipliers used to
enforce the continuity over the mortar boundaries

bl, "

where by are the Lagrange multiplier values of the kth
subdomain boundary. Finally, on the right-hand side, we have
u;, that is a vector of voltages over the whole length of the
strands that act as an input for the winding.

Solving the precomputed mapping from (22) is done sim-
ilarly as in the case of the litz wire slice. We pick the state
vector that we want to expose to the parent model as

T TqT
W_ | T w W
el @) @)
The rest of the state variables are packed in a vector x", and
the system is rearranged into the following form:

i IN

where A, B, C, and D contain the entries from the system
matrix of (22), which are picked from the rows and columns
to match the state variables in x;¥ and x". The source term is
T

=[0 0 ul].

in

b = [b] (35)

(36)

(37)

(38)

Next, the system is taken into the Schur complement form.
The term xiw can be solved from the first row of (37) as

x" = A" 'BxV

(39)

and this can be inserted to the second row of (37) to obtain

(D—CA'B)xV =1V (40)
GV

Here, the mapping GV is the precomputed mapping that
completely describes this model and all its submodels. Only
the variables in the state vector X" are exposed to the parent
model. It is noteworthy that the states of the submodels and
the Lagrange multipliers related to submodels get eliminated,
and they are not visible to the parent model. The solution
inside the subdomain can be recovered from the reduced state
by using (39).

D. WPT Setup as Root Model

The highest level, i.e., the root model, is a magnetoquasi-
static problem containing the surroundings and placement of
the windings. In this level, we model the air region around
the windings and connect two or possibly more winding
subdomains using the mortar method. The root model is after
FE discretization writable as (20). The approach is similar to
that in the branch level model that we assemble an equation
system, including the mortar equations. However, at the root
level, we do not have to do the precomputation step; instead,
we will enforce a Dirichlet boundary condition to the outer
boundary of the domain.
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The root model system can be written as

s o DI aM 0
0 GM -Df||xM|=|M (41)
D; -D 0 pM 0
where
Si  Seib Sazn
SM=1Swp Ssu 0 (42)
Sapz2 0 Si»

consists of the entries corresponding to nodes in the area
surrounding the coils and the boundaries to the winding slots

@[T &

contains the precomputed submodel blocks of the windings

0 DIIVI 0
Di = [0 0 Dy} (44
is the mortar matrix of the root model side, and
DX{ 0 0
D, = [ ) 0} 45)

is the mortar matrix of the subdomain side. The superscript M
denotes the main domain. The state vector consists of blocks
M

a) = [a]

; ]

A 5p (46)

T
as,lb
where a; are the nodal values inside the domain and a ;, and
agpp are the nodal values at the boundaries to the upper and
lower coil domains, respectively. The subdomain state block

=T @]

consists of the states of the subdomains of upper and lower
coils, respectively. The block b™ contains the Lagrange mul-
tipliers for each subdomain

(47)

b =[bl bl (48)
The right-hand side has a block fM that is used to specify the
source voltages over the windings

o= @]

The construction has the benefit that the DOF visible
in any model in the tree consist of only the DOF of the
model itself, the DOF related to Lagrange multipliers, and the
boundary nodes of its submodels. The DOF inside the problem
domain of the submodel are eliminated from the total system.
The resulting equation system, which is linear in this linear
problem, can be solved using a direct solver, and the results
in the subdomains can be recovered directly from the reduced
states by using (39) for each subdomain. The total process of
building a decomposed model is summarized in Fig. 4.

(49)
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A~'B and mesh
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Fig. 4. Flowchart that summarizes the solution process. The symbols G, Dy,
and D, denote the precomputed Schur complement matrices, mortar matrices
for the boundaries facing a subdomain, and mortar matrices for the boundaries
facing the parent domain, respectively.

TABLE I
DESIGN PARAMETERS OF THE WPT SYSTEM

Winding outer diameter 800 mm
Winding inner diameter 300 mm
Transfer distance 400 mm

Number of turns 6
Litz copper cross section 3 mm?
Operating frequency 120 kHz

III. RESULTS

The generation of eddy current losses inside the litz wires
with different numbers of strands is simulated for a WPT
unit whose design parameters are given in Table 1. The
series—series compensation topology is used because its reso-
nance frequency is independent of the load and the coupling
coefficient [3]. The coupling coefficient k is computed as

k= M (50)
- JIL L,
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Fig. 5.  Meshes of the decomposed domains. For clarity, the meshes here

are sparser than the meshes used in the computations. Also, the root domain
has been cropped from the original width and height. Each domain has been
meshed separately. The same meshes are reused for the lower coil slot.

where M is the mutual inductance between the windings and
L, and L, are the self-inductances of the receiving and sending
coils.

A. FE Simulations

The decomposed model is verified against a traditional
FE simulation where each strand is modeled individually for
as many strands as possible until the traditional simulation
turns infeasible; 51 different winding positions were simulated,
in which the horizontal offset d (see Fig. 2) between the
primary and secondary coils varied from 0 to 400 mm. The
litz wire geometries are generated using hexagonal packing,
and only symmetric configurations were used. The studied
strand numbers were 7, 19, 31, 55, 85, 109, 151, 199,
241, 301, 349, 421, 499, 559, 649, 733, 823, and 925. The
cross-sectional area of the strands was chosen so that the total
copper cross-sectional area remained constant at 3.0 mm?. The
traditional FE model turned infeasible after 199 strands, while
the decomposed approach allowed simulations up to higher
values.

The operating frequency was chosen to be 120 kHz. The
decomposition technique does not have limitations regarding
the frequency. It shares similar properties than a standard
quasistatic FE formulation: capacitive effects are neglected,
and meshes in conductive regions need to be dense enough to
account for skin effect.

The meshes used in the decomposed simulation are con-
structed, as presented in Fig. 5. In the decomposed version,
each domain has been meshed separately. In the traditional
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version, the whole geometry, including all strands, was meshed
all at once. The meshes in Fig. 4 are for illustrational purposes,
and denser meshes were used in the actual simulations. The
average lengths of element edges were 4.41 - 1072, 4.43, and
29.4 mm in the litz wire, winding domain, and root domain,
respectively, in seven strands. The lengths were determined
by the strand diameter ds such that the edge length was
set to (ds/20) in the litz strands. The mesh densities were
set to be equal at the domain boundaries in both traditional
and decomposed cases to obtain comparable results. This
makes the meshes close to conforming, so the accuracy is the
highest. This also provides a worst case scenario considering
the performance. The meshes could be made sparser over the
boundaries with reasonable accuracy, and it would speed up
the decomposed computations [31].

The FE simulations were run in a 30BES18S00 Lenovo
ThinkStation P520 with 192-GB RAM. The equation systems
were solved with SuperLU direct solver. For a higher number
of strands than 199, the traditional simulation started to take a
considerable amount of time and memory. In the decomposed
approach, the amount of DOF in the root level FE system
stays the same, but there are two DOF per strand coming
from the voltage and current of the strand. Hence, the root
level total system grows linearly with the number of strands.
The solvers are implemented on top of an in-house FE toolkit
written with Python, and the geometry and meshing are done
using GMSH:s Python API.

The results in Table II show that the proposed technique
yields a model that is significantly faster to update and re-solve
than the implemented traditional FE approach. The numbers
of DOF in the decomposed side contain only DOF in the final
system of the root model. There is also some growth as a
function of ng in the numbers of decomposed DOF. One reason
is that each strand is visible at the root level as two DOF: one
for the voltage and one for the current. Also, when the element
size needs to be decreased in the strand level with respect to
the strand size, the element size in the parent models needs
to be decreased slightly to avoid generating meshes of bad
quality. This effect is especially visible in the extreme case
of 925 strands, and it could be countered by sparsening the
meshes over the mortar boundaries.

The solving time contains the solving of the equation system
and the extraction of the net currents in both scenarios. The
remeshing column shows the time needed to remesh the
regions that are affected by the change of alignment of coils.
In the traditional approach, the whole domain needs to be
remeshed; in the decomposed approach, only the root model
is remeshed. From this, it can be concluded that if the total
simulation needs to be repeated many times, the proposed
technique is faster, especially with litz wires with a high
number of strands. The precomputations can be cached to
further reduce the need for recomputation.

B. Loss Analysis

At the system level, an equivalent circuit model presented
in Fig. 6 is used. The eddy-current losses are included in the
winding resistances R; and R, that depend on frequency and
position of the coils. The resistive load that gives the highest
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TABLE II
PRECOMPUTATION TIMES, AVERAGE NUMBERS OF DOF, AND AVERAGE RUNTIMES PER STEP OF THE FE SIMULATIONS

Traditional Decomposed
Ng DOF Remeshing (s)  Solve (s) | Precomp. (s) DOF Remeshing (s)  Solve (s)
7 126616 7.30 3.35 12.22 14262 0.71 0.42
19 276527 7.30 3.35 12.78 14310 0.71 0.42
85 1047441 77.03 43.40 26.37 14574 0.72 0.42
199 | 2363706 238.70 128.50 71.99 15030 0.72 0.54
925 - - - 911.28 17934 0.73 1.02
I il L L f I 0.35 1
 0.304
8
Vi"TGD % M Ry, © 0.25
 0.20
0.15 A
Fig. 6. Equivalent circuit for the WPT system with series—series compensa-

tion. The stray inductances in the circuit are L} = Ly —M and L), = L, —M.

efficiency can be solved from the equivalent circuit as

R
Ry = \/Rz (L1L2k2a)(2) + R1R2) (1))

1
where wy =2 fy, where fy is the supply frequency, chosen to
be equal to the resonance frequency.

The lumped parameters, Ry, R, L, L, and M, were
identified through the FE simulations. The FE problem was
solved twice for each frequency, the number of strands, and
alignment. An input rms voltage of 1 V is first set into the
sending coil, and the secondary is short-circuited, i.e., rms
voltage of 0 V is set over the receiving coil. A second
simulation is done with a short-circuited sending coil and
an rms voltage 1 V in the receiving coil. The sending and
receiving coil currents are then recovered in both cases, and
the lumped parameters are then computed using a least-squares
fitting from the voltages and the currents. Due to linearity,
the powers and losses calculated with FE models and the
lumped parameters are equal.

The system is then tuned by computing the compensation
capacitances in the position where coils are perfectly aligned
using

1
C()(Z)L,
where i = 1, 2. For each data point, the optimal load resistance
Ry is calculated. The efficiency of the WPT system is then
computed based on the equivalent circuit.

The results are shown in Fig. 7. It can be seen from the
figure that the 19-strand case has slightly worse efficiency
due to proximity effects, but the efficiency is, in general,
better when the number of strands increases. The results of the
decomposed and traditional approach are matching well. There
is, in general, less than 1% error in the computed currents used
for parameter identification. Hence, it can be concluded that
the decomposition does not significantly reduce accuracy.

Operating voltages and currents were obtained from the
equivalent circuit model. To make the losses comparable,

Ci = (52)

0 50 100 150 200 250
offset d (mm)

Fig. 7. Relative loss 1 —#, where 7 is the efficiency with respect to alignment
and number of strands. Solid lines denote the results obtained through the
decomposed approach, and markers denote the results obtained through a
traditional FE approach. Color in electronic version.
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Fig. 8. Reconstructed magnitude of the current density of the cross section

of 7-, 19-, 81-, and 925-strand wires at the same position. The scale in each
cross section is from 0 A to the maximum value of the current density in
the cross section. The reduction of the skin effect is clearly visible when the
strand diameter gets smaller.

the net current of the sending coil was forced to 18 A, resulting
in an average current density of 6 A/mm? in the litz wire
of the sending coil. The current densities in the strands were
computed to observe the skin effect and proximity effect inside
the litz wire, and they are visualized in Fig. 8. To visualize the
uneven distribution of losses between the strands, the losses
in each strand were computed and plotted in Fig. 9. The loss
per strand is inversely proportional to the number of strands.
The reference line (67.97/ns) W (matching the loss at ng = 1)
shows how the loss should behave when skin and proximity



MARJAMAKI AND RASILO: RECURSIVE DOMAIN DECOMPOSITION APPROACH IN 2-D TIME-HARMONIC WPT SIMULATIONS

8001010

102 80 A
—— max/min
— avg.
2 10'4 601
T —
g = 40
7 00 2
g 3
2 20 A
- 1014
oA
~ ) A O B D K QDR D ADDDO ~ A RN O DD A
RO SNV R S U R e K V2 P PP SR
ns ns

Fig. 9. Losses in sending coil for different amounts of strands in perfect  Fig. 10. Losses in the sending coil of the WPT unit separated into dc, skin

alignment. The solid lines show the maximum and minimum amongst all
strands. The dashed line shows the average loss per strand, and the markers
show the data points. The red line shows the reference line (67.97/ns) W,
which shows how the loss should behave for a dc current. Both the x- and
y-axes are logarithmic.

effects are neglected. As the average loss drops below the
reference line, it can be concluded that increasing the number
of strands reduces the losses in the wire.

The skin and proximity effects were separated by analyti-
cally computing the losses purely caused by the skin effect.
The ac resistance of an individual strand in the litz wire can
be computed as (see [32, eq. (6-14)])

i (i)
2rro Jl (]%kr)

R, =Re (53)

where r is the strand radius, Jy and J; are the Bessel functions
of the first kind of order 0 and 1, respectively, and

k = /oo 1o

where u is the permeability of the free space.

Dividing the total current of 18 A evenly into the strands
and applying (53) yield the sum of losses caused by the
dc resistance (Pg.) and pure skin effect (P.q). The dc loss
can be further separated by using only the dc resistance (4).
The proximity effect losses are obtained by subtracting the
analytically calculated loss from the loss obtained from the
FE solution (Pgg), which accounts for the uneven distribution
of the current between the strands

(54)

Ppx = Ppg — Peq — Puc. (595

The different loss components are shown in Fig. 10. It is
noteworthy that the loss arising in the lumped-parameter
end-winding resistances includes not only dc losses but also
proximity losses due to the uneven distribution of the current
between the strands.

From the results, it can be seen that, in the sending coil,
the dc loss stays constant with respect to the number of strands.
This is expected since the current of the sending coil was
constant. The skin effect losses decay quickly. The proximity
effect of other strands, other turns, and the receiving coil then
accounts for the rest of the losses. The proximity losses vary
depending on the position of the strands. For the single-strand
case, the proximity losses are negligible, which indicates that
most of the proximity losses emerge from the interaction
between parallel strands, not series turns. On the other hand,

effect, and proximity losses denoted with Pyc, Ped, and Ppy, respectively. The
x-axis is logarithmic. Color in electronic version.

increasing the number of strands seems to radically decrease
the losses in the wire.

IV. CONCLUSION

A recursive domain decomposition approach was presented
and applied in an efficiency study of a WPT unit. The simula-
tions show that the ac-resistance of a litz wire winding drops
when the number of strands increases and the copper cross
section is kept constant. The proposed decomposition approach
results in a faster and less resource-intensive simulation model
than a traditional FE approach. This is beneficial when the
model has to be repeatedly solved, e.g., when a parameter
sweep is done. It also enables one to model litz wires with
an extremely high number of strands without homogenization
techniques. In future work, the method could be extended
to 3-D problems. The method could also be developed as a
part of, e.g., multi-slice methods that could also incorporate
capacitive effects.
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