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In this paper, domain decomposition is combined with a subdomain pre-processing technique to model wireless power transfer
setups in which the sending and receiving coils move relative to each other. Domain decomposition is used to decouple the problem
into two subdomains, which contain the coils, and a main domain, which contains the medium and the relative placement. The
subdomains are dictated by the coil design, and only the main domain must be modified to vary the relative placement of the
coils. Linear mappings which describe the behaviour of the subdomains in order to reduce the amount of degrees of freedom are
computed. This approach greatly reduces the overall computational complexity of the repated simulation.

Index Terms—Domain decomposition, model order reduction, wireless power transmission

I. INTRODUCTION

IRELESS POWER TRANSFER (WPT) systems can

be utilized in charging of electric vehicles, drones, or
even miniature submarines. Especially, wireless charging of
moving vehicles has great potential of shaping the future in
extending the ranges of electric vehicles [1].

Two big issues of wireless charging are the needs to increase
power densities and mitigate the effects of displacements
between the sending and receiving coils. Detailed models are
needed in order to simulate these effects. These models are
computationally heavy, and simulations must be run multiple
times to reveal e.g. the effects of misalignment between the
two coils.

In this paper, a new simulation technique is proposed, which
can be used to study movement and misalignment of the coils.
The main contribution is a domain decomposition technique
using Fourier series and precomputed linear mappings to
eliminate most of the subdomain’s degrees of freedom (DOF)
from the system. The technique is especially beneficial if
repeated solving of the problem is required, e.g. if losses in
the WPT coils caused by tilting, displacements or movement
of the coils with respect to each other are simulated. A similar
approach has been used in [2] to speed up electrical machine
simulations by eliminating DOF of the winding slots from the
system.

A 2-D cross sectional model of a rectangular WPT coil
is analysed. The static coupling coefficients with different dis-
placements and tilting angles are computed using the proposed
decomposed finite-element (FE) approach. As a reference,
traditional FE model is used with a mesh whose density is
adjusted to be the same as in the decomposed approach.

II. MORTAR METHOD WITH LAGRANGE MULTIPLIERS

A large global problem containing both the intermediate
medium and two (or more) WPT coils is transformed into one
main problem for the intermediate medium and two (or more)
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subproblems for the coils. A variant of the mortar method is
used in which the continuity over the coupling boundaries is
enforced using Lagrange multipliers [3], [4].

The challenge of this approach lies in computing of integrals
of products of two functions over the boundary, when the
functions are defined in different meshes. In this study, the
piecewise integration of the weak form of the continuity
constraint is replaced with approximate integration [5] by
utilizing a Fourier series. This approach is well suited because
the boundary is periodic.

A. Decomposition of the domain

Geometric models for each subdomain are first created and
isometric embeddings ¢; : Q2g — 2 are stated, which place the
subdomains into the total problem domain as seen in Fig. 1.
A WPT system with two identical coils in air is modeled,
so only one geometrical model and two different embeddings
are needed. The embeddings are used especially to map the
boundaries of the subdomains into 2. A mesh for {2 which
has two holes for the subdomains is then created.
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Fig. 1. The problem domain and isometric embeddings ¢1, t2. For the total
problem domain 2 = Qg U Q1 U Q2 holds.

The subproblems depend only on the WPT coil construc-
tions, and the main problem can be modified to account for
changes in orientation, distance, and relative movement of the
coils. This approach also enables the use of meshes that differ
at the common boundary of the main and subdomains.

Let’s denote the total problem domain with €2, the decom-
posed air domain with €2y, and the subdomains with 2; and



CMP-204

Fig. 2. An example of the meshes. The mesh of main domain 2 (black) with
holes where the single mesh for £2; (upper) and Qo (lower) is embedded two
times. The conductors are colored with red and blue in the electronic version.
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Fig. 3. The parametrization of a closed loop I' is a mapping from the interval
[0,1] to a domain €. The parametrized coordinates u of nodes in the mesh
of I' can be solved by first cutting the loop open by introducing an artificial
node a’ which along with a gets mapped to A. Then the nodal values of u
can be solved from V - Vu = 0 with boundary conditions ©v = 0 at a and
u=1ata.

Q9 as seen in Fig 1. The meshes of the decomposed model
problem can be seen in Fig. 2. The boundary of domain n is
denoted with I';,, and the common boundary between domains
Q,, and (,, is denoted with I',,,,,. When the meshed domains
are discussed, a distinction needs to be made between I',,,,
and I',,,,,. Hence, I',,,,, is used to denote the restriction of the
mesh of {2, to the common boundary.

To construct the Fourier series used to realize the weak con-
tinuity constraints, the parametrization of the boundaries needs
to be obtained. This can be done by fixing one point from the
boundary as an origin and solving a 1-D Laplace problem
(see Fig. 3). After obtaining the parametric coordinates, 1-D
Fourier series is used to represent the fields at the boundaries.

In the following sections we show how the mortar mapping
is computed for the upper coil domain €. The other case is
computed similarly.

B. Decomposition of the function spaces

In this model, a static A—¢ formulation in 2-D is used. The
magnetic vector potential is denoted with Ay, A; and A in
the main domain and the subdomains, respectively. To enforce
the continuity of the solution across the boundaries I';y and
T'yp, Lagrange multipliers are needed.

The Lagrange multiplier spaces are defined as spaces of
functions spanned by a Fourier basis which is truncated by
some truncation limit K

Bj(T) = span ({¢x}eq,. ) (1)

where Iy denotes the set of integers from the interval
[-%,X). The Fourier basis functions on the parametric

domain [0, 1) are defined as
Qbk(u) _ eQﬂjku , (2)

where j is the imaginary unit, u € [0,1) is the parametric
coordinate.
The continuity constraint in weak form can be expressed as

/ (x141lr,, — X040y, ) bdu =0, Vb € By (T'10) , (3)
T'io

where X1, xo are projection maps to B3 (I'1o) and the vector
potentials A;|r,, and Ag|r,, are restrictions of A; and Ay on
T'yp and T'yy, respectively.

Let’s denote the number of nodes in the meshes of I'yg
and T'p; with Ny and Ng. After applying the projections and
standard weak form manipulations this leads to

A - A5 =0, “

for all k£ € Ix where K = min(Ny, Ng). This loosely

states that the two functions are approximately equal at the

boundary, if their K first Fourier coefficients are equal. If

K is chosen to be less than min(Ny, Ng) some of the non-

redundant frequencies are neglected. This can be done, but a

further analysis of this is outside the scope of this study.
The k-th Fourier coefficient is computed as

1
Ak = / Ap(u)e 2Ry (5)
01 Nu
:/ Zwi(u)a;e_%jk“du (6)
0 =1
Ni 1
:Zai/ Vi (u)e 2™ Rudy, (7)
i=1 0

where 1); are FE basis functions in I',,,,. This can be formu-
lated as a matrix equation

én = Dnman y (8)

where a,, is a vector of nodal values of the vector potential,
a,, is a vector of the Fourier coefficients, and

1
Dol = / r(w)e2 R dy ©)
0

is a mapping from a field defined on I';,,,, to the Fourier coeffi-
cients. The elements of D,,,,, can be computed analytically for
FE basis functions of different orders in the reference element.
This gives a fast and accurate method to construct the matrices
Dypm.-

With the help of (4) and (8), a relationship between the
nodal values of A; and nodal values of Ay can be written as

(10)

where Djy € CEXM and Dy; € CKE*No. Equation (10)
is utilized to state the continuity constraint in the matrix
formulation of the coupled decomposed system presented in
the following section.

Diga; =Dg1ag ,
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C. The decomposed system

The standard FE discretization of the system in €2 yields a
matrix equation

Sa=f. (11)

Now using the mortar method approach, the domain 2 is
split and weak continuity is enforced at the boundaries I';g
and I'yy by using Lagrange multipliers b. The FE matrices
are decomposed similarly as in Schur complement method,
explained e.g in [6], to separate the parts related to the inner
DOF and the boundary DOF of the domains. Equation (11)

becomes
S DH a f
V] @
where H denotes a conjugate transpose and
[ So 0 0 0 0
0 Si1 Swkio 0 0
S=1] 0 Sgp Sebio 0 0 : (13)
0 0 0 S22 Sp2o
| 0 0 0 ngo Sbb,20
_ [0 Dp 0 0 —-Dyp O 0
D= L 0 0 D02 0 0 0 *DQO (14)
are block matrices where
S0 Swor  Sboz
So=| Sk1 Sebor 0 (15)
Sgoz 0 Sbb,02

Equation (12) has in total nine block rows and columns. Here
matrix S,,,, denotes the part of the stiffness matrix which is
related to inner nodes in domain 2,,, matrix Sy,,,, denotes the
part which relates to the coupling between the inner nodes and
the nodes in the boundary I';,,,,, and matrix Sy, 5., denotes the
part of the matrix related to the connections between the nodes
at the boundary I';,,,,. Matrix D contains the coupling terms
D,,,, between the domains, which are the Fourier transform
matrices derived in the previous section.
The state, Lagrange multiplier, and source vectors are

T
a=[aj ay ayy al ah, a Ay, | , (16)
T
b=[bl, by | , (17)
f=[0 00 Cfn o cf, o], (18)
which are written in the transpose form for brevity and
where a,, are the inner nodal values in the domain n, ap,m,
and b,,,, are the nodal values and the Lagrange multipliers in
boundary I',,,,,, respectively, C,, is a mapping which distributes

the source current into the conducting domains, and I, are the
source currents.

III. PRE-PROCESSING OF THE SUBDOMAINS

The pre-processing is done by following the Schur comple-
ment method. From the fourth and the sixth row of the total
system described in form in (12) first a,, and then Sgnan can
be solved as a function of ay,o and current I,,.

T T q-1 T o-1
Spno@n = —Spn0S;nSbro abno + Spu0S;n Cn In

= Lpp apno + Lin I

19)
(20)

where Ly, = =S¥ ;S,tSbno and Ly, = S{ ;S,~C,,. The
computation involves solving N, + 1 equations, one for each
column of Sy,0 and one for the current. It is beneficial to
factorize S,,,, to do the repeated solving efficiently.

Now (20) can be inserted to the fifth and seventh block rows
of (12), and the fourth and sixth block rows can be eliminated
entirely. After this matrices S and D become

So 0 0
S=1] 0 L1+ Sub0 0 , 2D
0 0 Lb2 + Sbb,20
10 Doi 0 —Dyg 0
D=1y & b o _py (22)
and a, b, and f become
T
a= [ ag agy apy ab, aj ] ) (23)
T
b=[bly, by | , (24)
f=[0 0 0 L -LLL ] . (25)

As a result of the elimination, two dense blocks are intro-
duced into the matrix S. This increases the amount of nonzero
elements and makes the solution process slower than solving
a sparse system, if the amount of eliminated DOF is not high
enough compared to the amound of DOF on the boundary.
However if the winding contains any detailed structure, such
as multilayer windings of litz-wires, this process will yield
shorter solution times and reduce the memory consumption.

The flux linkage of the coil n can be computed from the
nodal values of the full subdomain vector potential as

®, = Cla, | (26)

where

Cli=g [ Ny eRY @)
n JQ

where (2, denotes the domain of the conductors in the
windings, and S,, is the area of the domain. The flux linkage
can be computed from the boundary solution and the input
current by

(I)n, = C;I;Silsbnabn + Cgsilcnjn )

nn nn

(28)

where the coefficient matrices can also be precomputed.

IV. RESULTS

As an example, the coupling coefficient of two rectangular
wireless power transfer coils with six turns is computed using
a 2-D cross section model. The proposed technique was
implemented using python. The geometries and meshing was
handled using GMSH’s [7] python API. The implementation
was done in such a way that results from traditional finely-
discretized single-domain and the proposed approach can be
compared. The model can simulate the behaviour of changing
distance, rotation angle, and displacement between the two
coils. The coupling coefficient k is computed using

M

k= ,
VL1Lo

(29)
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Fig. 4. The coupling coefficients obtained with different angles using the
reference- and proposed approach. Reference curve is solved using 82 DOF
at the boundary and the dashed curve is the worst case using 22 DOF in the
coil domain side of the boundary and 10 DOF in the air domain side.
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Fig. 5. Comparison between the computation time and error for the method.
A preprocessed model for the coil domains with specific amount of nodes in
the boundary (given by the legend) was created and the air mesh was varied.
The annotations point out the amount of DOF in the air domain boundary
at the datapoint. The legend shows the amount of DOF in the coil domain
boundary, which stays constant throughout each data series. Solid and dashed
lines show the average reference computation times and the subdomain pre-
processing times, respectively. Color in electronic version.

where M is the mutual inductance and L, and Lo the induc-
tances of upper and lower coils, respectively. Computation is
done in Ny = 101 displacements along the z-axis ranging
from —150 mm to 150 mm with two angles 7.5° and 0°. The
results are presented in Fig. 4. Each set of parameters is sim-
ulated with varying amount of nodes in the air side boundary
to demonstrate how the difference in the mesh density over
the boundary affects the computation accuracy and time (see
Fig. 5). The simulation times contain the re-meshing, solving
and post-processing times to obtain the coupling coefficient.
The pre-processing times of the subdomains are separately
shown in Fig. 5.

The mesh density in the windings was approximately 100
elements per conductor in all simulations. The results of the
82 coil domain side boundary node case are shown in Table I
with N¢p1 nodes in the air sides of the subdomain boundaries.
The first row is the reference solution.

The error of k is calculated as a relative 2-norm error over

4
TABLE I
RESULTS FOR 82 BOUNDARY NODE CASE.
Ncpi DOF - nonzeros k. (%) avg. time per step (ms)
82 5007 34451 ref. 343
82 2020 78170 0.01 259
42 1209 40253 0.30 129
22 811 26147 1.03 75
12 663 20665 2.83 52
the displacements
- ;) — ka(x;
b |2 kG —Ra) 0

S k()2

where k and kg denote the coupling coefficients using the
traditional and proposed approaches, respectively. From Fig.
5 the development of the error and speedup with respect to
the densities at the boundary can be seen.

V. DISCUSSION & CONCLUSION

It can be seen from the results that using the proposed
approach the amount of DOF and also the amount of nonzero
elements in the total system can be made significantly smaller
than in a traditional FE approach. The re-meshing of the
complex geometries in the coils is avoided. This results in
faster and less resource demanding simulations, especially
when the simulation needs to be repeated. Approximately the
same computational time is achieved regardless of the amount
of DOF selected in the pre-processing stage.

Drawbacks of the Fourier approach are that the approach is
only applicable to domains which have a periodic boundary
and the effects of impulses at the boundary are not local. There
can be artificial responses to impulses which spread through
the coupling domain caused by the global Fourier basis. In
practice, however, they seem to have a very small effect on
the accuracy.
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