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Abstract. Throughout our digital lives, we are getting recommenda-
tions for about almost everything we do, buy or consume. However, it
is often the case that recommenders cannot locate the best data items
to suggest. To deal with this shortcoming, they provide explanations for
the reasons specific items are suggested. In this work, we focus on expla-
nations for items that do not appear in the recommendations they way
we expect them to, expressed in why-not questions, to aid the system
engineer improve the recommender. That is, instead of offering explana-
tions on every item proposed by the system, we allow the developer give
feedback about items that were not proposed. We consider here the most
traditional category of recommenders, i.e., the collaborative filtering one,
and propose ways for providing explanations for why-not questions. We
provide a detailed taxonomy of why-not questions on recommenders, and
model-specific explanations based on the inherent parameters of the rec-
ommender. Finally, we propose an algorithm for producing explanations
for the proposed why-not questions.

Keywords: explanations; why-not questions; recommendations; collaborative
filtering; recommender systems

1 Introduction

Recommendations have been integrated in many of the services available to users
in recent times. Although, recommenders try to accurately propose interesting
items to users according to their preferences, it is often the case that they cannot
locate the best data items to suggest. This can be due to many different reasons.
One reason can be the cold start problem, where the system does not have
enough information about a user to make accurate predictions. Another cause
may be the over-specification on the part of the users. This means that a user
has previously expressed a preference for a specific category and the system is
unlikely to propose items that belong to a different category. Furthermore, often
the systems can be misdirected due to ambiguous information on the users and



their preferences. Finally, as a system relies a lot on its hyper-parameters and
thresholds, unlucky recommendations may be tight to the system’s configuration.

The problem of explaining recommendations is a long-standing problem,
which is most regularly approached by introducing explanations along with rec-
ommendations (e.g., [22, 16, 4]). This way, the user or the system’s designer gets
insights on why an item is suggested. The explanations can then vary on granu-
larity or presentation format based on the final consumer, i.e., the final user of
the recommender or the designer of the system. In this work, we expand on the
concept of post-hoc, model-based explanations [23], i.e., explanations provided
after the recommendations have been produced and based on the knowledge of
the system, by exploiting the concept of why-not questions. These questions are
not about why items were proposed, but why items were not proposed. We judge
that this kind of questions are necessary for the system engineer, who needs to
better understand the system and get hints on how to debug it. For example,
assume a system that recommends products to users. If the engineer finds that
the products of a specific company are never proposed to a user, he/she may
need to understand why, and find the best way(s) to turn the situation around.
This could be in the benefit of the diversity of recommendations proposed to
the final user, or even for promotional campaigns of the specific company, who
does not see their products proposed by the system. On the other side, asking a
why-not question may not be such a straightforward task for a final user, who
is totally unaware of the context or his/her preferences. However, it can still be
applied in the case of a knowledgeable user, who is aware of the context of the
recommendations. For instance, a female user of a career development site may
wonder why she never gets suggestions for managerial positions. In this case, a
why-not explanation would help the user gain trust on the system and promote
its gender-fairness. In this work, we assume the system designer as the consumer
of the explanations, and leave the case of the final user as a future work.

One could suggest that explaining why a certain item is not proposed is dual
to explaining why all the recommended items are proposed. With the standard
explanation method, a user has to go over the recommended list and understand
the differences between the proposed items and the one(s) expected. This would
be a time consuming, or even impossible, task, depending on the user’s under-
standing of the data set and the recommendation model. For this reason, already
existing systems that treat the ‘why’ aspect of explanations cannot trivially ex-
plain missing recommendations, especially without the user feedback in the form
of a why-not question. By having the system answering why-not questions, this
process is streamlined and not strictly dependent on the user knowledge.

In this paper, we consider the traditional paradigm of a user-based collab-
orative filtering recommendation system for providing explanations to why-not
questions. First, we provide a detailed categorization of why-not questions char-
acterized by three main properties: (i) the level of absenteeism that the why-not
questions mention (absence or low position in the ranking of a result set), (ii)
their granularity (referring to a single result or a set), and (iii) their dependency
to existing recommended items. Note, that a why not question may belong to



multiple classes. Second, we provide fine-grained and personalised model-based
explanations targeted for system engineers. The explanations are not dependent
on the context of the system (e.g., social, product, PoI recommendation). We
distinguish explanations between the general ones, based on the general set-
ting of the problem, and the model-specific explanations, based on the inherent
parameters of the recommendation model. Fourth, we propose an algorithmic
method for computing explanations for why-not questions in collaborative fil-
tering. Finally, we conduct a preliminary experimental study that explores the
explanations space and motivates their usage by a system designer.

2 Preliminaries and Related Work

For a general setting of our recommender, assume a set of data items I and a set
of users U , where each user provides ratings for a subset of I. Specifically, a user
u ∈ U rates an item i ∈ I with a score s. The subset of users that rated an item
i is denoted by Ui, whereas the subset of items rated by a user u, is denoted
by Iu. For every item i not rated by a user u, the recommender estimates a
relevance score, p(u, i). The items with a high relevance score for u will compose
the recommendation list (called also recommended items) for the user.

The literature regarding how to estimate the relevance score of an item for
a user is extensive. In this work, we will focus on collaborative filtering, a well
established recommendation approach that recommends items that users with
similar preferences like (e.g., [11, 3, 13]). Specifically, the collaborative filtering
(CF) approach is based on the idea that people who agreed in their evaluation
of certain items in the past are likely to agree again in the future. The steps of a
CF algorithm to produce a list of recommendations for a user u are: (1) Find the
most similar users Peersu with u by means of a similarity function sim(u, u′)
between u and every other user u′. (2) Predict a relevance score p for each item
not rated by u based on his/her similar users Peersu. (3) Recommend a list Ru

with the top-k items with the highest relevance score.
The first step of the CF algorithm is to compute similarities between the

users. To measure the similarity sim(u, u′) between two users, we exploit their
ratings that are available in the recommender. Several metrics appear in the re-
lated work for counting similarities between users based on ratings. We employ
here the Pearson correlation measure [11], which is fast to compute and performs
very well for the case of collaborative filtering. It directly calculates the correla-
tion between two users with a score from -1 for entirely dissimilar users, to 1 for
identical users. A user u′ is considered similar to u if their similarity is above a
threshold th and if they have rated more than numI common items. We further
refine the process, by keeping only the numP users with the highest similarity
scores. We name these users as peers of u, Peersu. In the second step of the algo-
rithm, we use the peers of u to predict a relevance score p(u, i) for any item i that
u has not yet rated. To this end, we use the weighted sum of others ratings [18].
We only recommend items to u if more than numPI peers have rated them. In
this way, we have a more robust understanding of the items’ preference by the



peers. Additionally, we do not have many false positives, by avoiding proposing
an item only liked by one (or few) peer(s), while it is unknown to the rest. In
the final step, we sort all the items we have predicted a score for and return the
k items with the highest score in the list Ru. Furthermore, we denote by posRu,i

the index of the item i in the list Ru.

Related Work on Explanations in CF. CF explanations are typically provided
based on users implicit or explicit feedback (for a survey of explanations in rec-
ommenders, refer to [20]). For example, a direct solution is to first find a set of
peers for the user in question and then produce a recommendation to this user.
The explanation is that the user is similar to the peers, and the peers made good
ratings on the recommended item [14]. [9] compares the effectiveness of different
display styles for explanations in CF. Specifically, explanations can be displayed
as an aggregated histogram of the ratings of the peers, or be displayed as the de-
tailed ratings of the peers. Alternatively, explanations can be provided by telling
the user that the recommended item is similar to other items the user liked be-
fore, where several highly rated items by the user are shown as explanations
[15]. To study the usefulness of explanations in recommender systems, [19] de-
veloped a prototype system to study the effect of different types of explanations.
In brief, this study shows that providing appropriate explanations can benefit
the recommender system over specific goals, like transparency, persuasiveness,
trustworthiness and satisfaction. More recently, there exist approaches, e.g., [6,
21, 2], for generating explanations with methods using matrix or tensor factor-
ization, where the goal is to make latent factors more tangible. From a different
perspective, [8] studies the problem of computing minimum subsets of user ac-
tions to change the top-ranked recommendations in a counterfactual setup. The
concept of why-not questions is used also for probabilistic range queries in [5],
either by modifying the original query or by modifying the why-not set. [7] offers
a similar framework for why-not questions on reverse top-k queries. To the best
of our knowledge, we are the first to define and study the problem of providing
explanations based on why not questions in recommender systems.

3 Why-Not Questions

In this paper, we expand on the concept of explanations in recommender sys-
tems, by exploiting the concept of why-not questions. These questions are not
about why an item is recommended but why an item is not recommended in the
expected way. Instead of offering explanations on every item that is proposed
by the system, we allow the user to give feedback in the form of questions. For
instance, in a movies recommender if the user is not satisfied with the movies list
provided by the system, he/she can ask questions like: Why were there not any
comedies recommended? The system will answer with information based on the
system characteristics and the data associated with these items. This paradigm is
not yet explored in recommendation systems, while it has been recently explored
in other contexts like in explaining query results in relational databases [1], in
reverse skyline queries [10], and briefly in machine learning systems [12].



We propose to characterise why-not questions by three main properties: (i)
their level of absenteeism, (ii) their granularity, and (iii) their dependency to
existing recommended items. The first property is naturally derived from the
notion of false negative results, i.e., the items that should have been returned
(in a certain position) but are not. The second property goes one step beyond
to express groupings of missing items (that can be regarded as false negatives).
The third property, corresponds to the need of the system expert to express the
fact that an item that is returned (true positive) and an item that is not (false
negative) should be encountered together in a result set.

First, we examine why-not questions based on absenteeism. In this respect,
we further distinguish between (i) total absenteeism, and (ii) position absen-
teeism. Question such as Why not Titanic? belong to the total category, since
they are about items that do not appear in the recommendation list, without
a specific requirement for the position on which they should appear. Questions
that ask about the ranking of items, such as Why not rank Titanic first? be-
long to the position category. It is evident thus, that a position absenteeism
why-not question can be applied on items that are recommended, but still not
as highly as expected. Second, we review Granularity. Granularity describes the
level of detail of the question that is asked, distinguishing between atomic cases
and group cases. In more detail, the user is able to ask questions about spe-
cific items (atomic case), such as: Why not Titanic?, or about set of items that
share a common characteristic (group case), such as: Why not comedies? Third,
the Dependency property describes items that usually appear together in the
answers, or should be returned in a specific order. Example questions are Why
there are not any comedies but there are dramas? This kind of questions fall also
in the case of group recommendations, when users expect to find groups of items
together. We subsequently define why-not questions in a formal way.

Definition 1. Let I be a set of items, u a specific user of a recommender system
built on I, Ru ⊆ I the set of recommended items for user u by a recommender
system. A why-not question is a set of the form

wn = {(m, pos, d) | m ∈ I and pos ∈ {1, . . . , |Ru|} and d ∈ Ru}

Definition 1 is general enough to cover all the cases that we mentioned before,
i.e., absenteeism (m and pos), granularity, and dependency (d). Even though not
explicitly apparent, a granularity why-not question can be derived by expanding
the group to the related items in I. For example, a why-not questions of the
style Why not comedies? can be represented by wn = {(Big, , ), (Zoolander, , )},
given that the system can find these two comedies in its database. Moreover,
if the user wants to ask one specific type of a why-not question that does not
involve all three parts m, pos, and d, then he/she can leave that part empty.
For example, in the case of a total absenteeism why-not question of the style
Why not Titanic?, the corresponding wn would be {(Titanic, , )}. In the next
paragraphs we elaborate more on the different types of why-not questions that
we consider and how they are expressed using Definition 1.



Next, we specify Definition 1 to express the different properties of why-not
questions (absenteeism, granularity, dependency). As the absenteeism property
is always apparent in a why-not question, we discuss both sub-categories of the
absenteeism property (total and position), with respect to granularity and de-
pendency. In order to keep the notation from becoming too cumbersome, we will
only give the notation for set of items (the group subcategory of the granularity
property). This does not affect the formalization of the why-not questions, since
both granularity questions can be noted using a set format (an individual item
belongs to a set that consists of just one item). For each case, we present an in-
tuitive description, examples in the context of a movie recommendation system,
and the formal expression corresponding to that case of why-not question.

– Total Absenteeism:
• Independent : The user asks why some items do not exist in the recom-

mendation list.
Example-Atomic: Why is there not Titanic?
Example-Group: Why are there not any comedies?
Formally, an independent total absenteeism why-not question is:

wnti = {(m, , ) | m ∈ I \Ru}

• Dependent : The user asks why certain items do not exist while other (that
usually appear together) exist.
Example-Atomic: Why is there not Titanic while there is Up?
Example-Group: Why not any thrillers when there are action films?
Formally, a dependent total absenteeism why-not question has the form:

wntd = {(m, , d) | m ∈ I \Ru and d ∈ Ru}

– Position Absenteeism:
• Independent : The user can question the ranking of a set.

Example-Atomic: Why is Titanic not ranked first?
Example-Group: Why are comedies not in a higher ranking?
Formally, an independent position absenteeism why-not question is:

wnpi = {(m, pos, ) | m ∈ Ru and posRu,m < pos}

• Dependent : The user asks why certain items do not appear higher in the
recommendation list than other recommended items.
Example-Atomic: Why not place Titanic before Up?
Example-Group: Why not place comedies before dramas?
Formally, an independent position absenteeism why-not question is:

wnpd = {(m, pos, d) | m ∈ I and pos > posRu,d and d ∈ Ru}

4 Why-Not Explanations

To answer a why-not question, we seek to provide meaningful explanations to the
system designers. By meaningful, we mean the information that is adequate to



help the designer understand why the items are not recommended in the expected
way, and subsequently use this information in order to repair the system. For
this reason, we split the input of the problem to distinct components that can
explain - either individually or combined - the why-not question provided by the
user. These components are: the input item set, the sets of all and of similar
users given the user in question, the set of ranking scores, and the recommender
system design (hyperparameters) itself. To accommodate the different sources
of error, we define a multi-type structure, called an explanation, as follows:

Definition 2. A why-not explanation for a why-not question on the recommen-
dations of a user u is a set of parameters of the recommender system, responsible
for the absence of the missing item(s) from the (specific positions of the) recom-
mendation list.

We distinguish between general explanations, which can appear in any recom-
mender system, and model-specific explanations that are based on the inherent
parameters of the CF recommendation model. We further describe the general
and CF explanations in Sections 4.1 and 4.2, respectively, while we provide an
algorithm to compute them in Section 5. We accompany the discussion with ex-
amples of why-not questions and respective possible explanations, summarized
in Table 1. For clarity, we include in this table a description in natural language
for the question and the explanation. The descriptions of the explanations can
be regarded as the output of a statistical analysis of the resulting explanations.

4.1 General Explanations

Users, in most cases, ask about an item that does not appear in the recommen-
dation list. So, it is very likely that this item does not exist in the database of
the system. The explanation, then, is straightforward; this item is not suggested
because it is unknown to the system. Another explanation emerges from the
number of returned top-k items. If that number is low, then the missing item
may be further down the recommendation list. However, we do not consider that
the selected k may be the problem if the item is found at an index greater than
2k, to promote other potential (model-specific) explanations. Finally, the system
may produce the same score for different items. To break the ties, it adopts a
specific method, e.g., it will place first the first encountered item in the database.
So, when a user poses a why-not question on an item that has been neglected due
to the tie-breaking method, the system may designate the tie-breaking method
as a culprit. E1-E3 in Table 1 are examples of such explanations.

4.2 CF Explanations

The concept behind CF is that the system suggests items to a user that his/her
similar users have liked in the past. This makes all the possible explanations
revolving around the user’s peers. One scenario is that none of the peers have
rated an item. In this case, the item is invisible to the system and cannot be



suggested. A similar scenario is for that item to have never been rated before by
any user. This again makes the item invisible to the system. Aside from these two
explanations, an answer for a “Why not item A?” question is the combination
of the results for the three following questions: (i) how many peers have rated
it, (ii) what scores they have given it, and (iii) how similar they are to the user.
If just one or two peers have rated an item, then the system ignores it, to avoid
a false suggestion. If all or most of the peers have given a low score to an item,
then the system, in turn, calculates a low score for it. Finally, the similarity that
a peer shares with the user is also primordial. If a peer who has a high similarity
with the user does not like an item, then this has an impact on that item’s final
predicted score. E4-E11 in Table 1 are examples of such explanations.

We represent the results of the three aforementioned questions “How many
peers have rated it?”, “What scores have they given it?” and “How similar are
these peers to the user?” as a set of tuples of the form (peer, score, similarity).
Each tuple describes a peer who has rated the targeted item and consists of three
values: (i) the peer’s id, (ii) the score that he/she has given to the item, and (iii)
the similarity shared between the peer and the user. If the set is empty then none
of the peers have rated this item and we provide explanation E10 (Table 1). If the
set consists of only one or two tuples (peers) then it corresponds to explanation
E4. To produce the rest of the explanations, we combine into a user-friendly
explanation the number of peers that have rated the item, the similarity that
these peers share with the user and the scores they have given to the item.

When a user questions the item’s ranking in the recommendation list, the
system again checks the same information. The system answers questions like:
“Why was not item A ranked higher?” by explaining the item’s statistics: how
many peers have rated the item, if they favored it and how similar these peers are
to the user. This type of question is vague, in the sense that the user questions the
general ranking of an item without comparing it to another item; the user issued
an independent question. So the system treats it as if it was a total absenteeism
question. For this reason, explanations E17-E19 are the same as for a total
absenteeism why-not question. Another alternative for handling these types of
questions is to transform them from independent to dependent by arbitrarily
selecting an item in the list. We select this item according to the specifics of the
question - higher or lower ranking. For example, a question like “Why was not
item A ranked higher?” can be transformed into “Why not place item A before
item B?”. In this case, the system returns a more detailed explanation as shown
in lines E20-E23 in Table 1.

Explanations to dependent why-not questions, such as “Why not item A but
item B?” or “Why not place item A before item B?”, are more complicated
since they involve multiple items, some of which exist and others not, mixing
explanations and why-not explanations. We explain the process for the first
question. The second is answered in a similar way. First, we decompose the why-
not question to two separate queries. The first is a part of the user’s question:
“Why not item A”. The second query we make is “Why not item B”3. Intuitively,

3 An alternative here could be to employ a solution for explaining recommendations.



WN Question Model WN Explanation Description Id

Any why-not question
General/I Item A does not exists in the database. E1
General/k You asked for few items. E2
General/Tie Item had the same score as another item. E3

Why not suggest
item A?

wn = (A, , )

CF/numPI Only x (<numPI) of your peers has rated this item. E4
CF/{(peer, s, sim)} x of your peers have given a low score to this item. E5
CF/{(peer, s, sim)} x of your most similar users have given a low score to A E6
CF/{(peer, s, sim)} x peers like A, but y dislike it. E7
CF/{(peer, s, sim)} All of your peers have given the item a low score. E8

CF/numP
None of your most similar users have rated A, but x
with a lower similarity have given it a high/low score.

E9

CF/Peers None of your peers has rated this item. E10
CF/S No one has rated this item. E11

Why not suggest
item A but suggest B?

wn = (A, , B)

CF/numPI
x of your peers have rated item B but only y (<numPI)
has rated item A.

E12

CF/{(peer, s, sim)} x of your peers like item B but dislike A. E13
CF/{(peer, s, sim)} x peers like item B and y dislike item A. E14
CF/numP Your most similar peers have not rated A but have rated B. E15
CF/Peers Your peers have rated B but none of them have rated A. E16

Why is not item A
ranked higher?

wn = {(A, posRuA − 1, )}

CF/{(peer, s, sim)} x of your peers have given a low score to
this item.

E17

CF/{(peer, s, sim)} x of your most similar peers have given a
low score to A.

E18

CF/{(peer, s, sim)} x peers like A, but y dislike it. E19

Why is not item A
higher than B?

wn =
{(A, posRuB − 1, B)}

CF/{(peer, s, sim)} x of your peers like item B but dislike A. E20
CF/{(peer, s, sim)} x peers like item B and y dislike A. E21

CF/numP
Your most similar peers have not rated
A but have rated B.

E22

CF/Peers
Your peers have rated B but none of
them have rated A.

E23

Why not suggest
comedies?

wn = {(C1, , ), ..., (Cn)}

CF/Peers None of your peers rated the same movie. E24
CF/{(peer, s, sim)} Your peers dislike comedies. E25
CF/Peers None of your peers has rated a comedy. E26
CF/{(peer, s, sim)} Only x of your peers like comedies. E27

CF/numP
Your most similar peers do not like
comedies but x of your least similar do.

E28

Table 1: Examples of why-not questions and explanations in CF.

since the system has promoted item B to the user instead of A (either by not
even suggesting A for total why-not questions or with a better ranking in the
recommendation list for position why-not questions), the results of the questions
”How many peers have rated it?”, ”What scores have they given it?” and ”How
similar are these peers to the user?” have higher values than the results for A.
Then, we combine the answers of these two why-not questions. For example, see
E12-E16 in Table 1. We choose to explain the existence of item B as a why-not
explanation, because it allows us to combine the results of the two questions
more effectively than if we used a generic explanation method, such as [9].

When the user formulates a group why-not question, for example “Why not
more comedies?”, the explanation that the system provides is a union of all the
answers that it would have provided for individual items. For each item in the
same category as the one the user asked about and a peer has preferred in the
past, we formulate a why-not question. Since this can become very cumbersome
for the user to consume, one can summarize the results into a user-friendly
output. For instance, “Your peers like comedies, but they have not liked the
same one”, meaning that the peers have shown some preference for comedies,
but each peer has rated a different movie. This explains why none of them were
suggested. To reduce the number of questions we issue to the system, we can
take into consideration the items that the peers have shown a great preference
for. These items are the most important for us, since they have the highest
probability to be suggested. For example, in a system where the ratings are in
the range from 1 to 5, we can only consider the items that have a rating higher



than the average 2.5. We provide more explanations for a group why-not question
in lines E24-E28 of Table 1.

Algorithm 1: WNCF

Input: item set I, user set U , user u, why-not question {(i, , )}, rating scores
S, recommendation list Ru for user u, threshold numPI, threshold
numP ,peers of u Peers, relevance score function p(u, i)

Output: e, explanation
1 if i /∈ I then
2 e.add(‘I’);

3 else if ∃i′ : p(u, i)=p(u, i′) and posRi′ ≤ k then
4 e.add(‘Tie’);

5 else if i in the 2k first entries of expanded R then
6 e.add(‘k’);

7 else if i has no ratings in S then
8 e.add(‘S’);

9 else if at least one peer of u has rated i then
10 for peer ∈ Peers do
11 if peer has rated i then
12 e.add((peer, s(peer, i),sim(u, peer)));

13 if less than numPI most similar peers of u have rated i then
14 e.add(‘numP’);

15 if less than numPI peers of u have rated i then
16 e.add(‘numPI’);

17 else
18 for u′ user in U do
19 if u′ has rated i then
20 e.add((u′, s(u′, i),-));

21 e.add(‘Peers’);

22 return e;

5 WNCF Algorithm

In this section, we introduce WNCF (standing for Why-Not in Collaborative
Filtering), an algorithm for the computation of why-not explanations for the CF
model (Algorithm 1). WNCF addresses total absenteeism for atomic granularity
independent why-not questions. The extension of this algorithm to explain other
types of why-not questions, as discussed in Section 4, is trivial for some cases,
e.g., group independent why-not questions, but not for all. We postpone the
extensions to future work.



As mentioned in Section 4, we first check if a general explanation can be
provided; if not, we proceed with the model-specific explanations modeled in
tuples representing the peers who have rated i, along with information on their
rating on i and the similarity to user u. If such peers do not exist, we provide
explanations based on other users who have rated i.

In more detail, WNCF receives as input the item set, user set, the ranking
scores, and the threshold values numPI and numP of the CF system, as well
as the why-not question for a user u. We also consider known the peers of u and
the recommendation list calculated for u, as well as the relevance score function.
Line 1 checks if the specific item exists in the database. If it does not, we return
the explanation code I, to indicate that the source of error is the input data set.
Line 3 checks if the item shares the same relevance score with another item that
appears in the list. In this case, we return the explanation code Tie, to indicate
that the source of error is the tie breaking method. Line 5 checks if the item
appears between the kth and 2kth entry. In this case, we return the explanation
code k, to indicate the the k maybe too low. Line 7 checks if any user in the
system has rated i. If none of them did, then we return the explanation code S,
to indicate that there are not rating scores for i.

Lines 9-16 check the peers of the user. For every peer who has rated i, we
report the score he/she has given, as well as the similarity he/she shares with u
(Line 12). Then, we check the numP most similar peers of the user (Line 13).
If less than numPI of them have rated the item, we return the code ‘numP’
to express that there are not enough most similar peers who have rated the
item. Subsequently, we check the rest of the peers and if there were not at least
numPI peers who have rated i (Line 15), then we return the explanation code
‘numPI’. This indicates that from all the peers of user u less than numPI peers
have rated this item. Finally, if none of the peers has rated this item (Line 17)
we return the explanation code Peers to indicate that there are no peers who
have rated the item. We also return information about the users (non-peers) who
have rated the item and their scores.

Overall, our rational for returning the extra information on the users (peers
or not), their ratings for the item in question and their similarity to the user u
for CF systems, is two-fold. First, we can compute statistics that can be easily
consumed by the developers (in their raw format or as visualisations) and help
them understand more about the setting. Second, we can use this information
as input to a repair mechanism, which would propose changes to the system so
as to make the missing item appear in the list.

6 Experiments

We study WNCF with respect to different parameters, namely the characteristics
of the users for whom we pose the why-not question, and the popularity of the
missing movie. Moreover, we perform an experiment that shows the next step
that a developer can take, after he/she receives a WNCF explanation.



Experimental Setup. In the experiments we used the MovieLens 20 Million Rat-
ings4 that consists of 27.278 movies and 138.493 users. To study the behavior
of the algorithm for different types of users we randomly selected 100 users that
have rated a few items (45 to 55), called Moderate Users, and 100 users that
have rated many items (145 to 155), called Active Users. To experiment with
the characteristics of the movies that comprise our why-not questions we used
movies of varying popularity. We randomly selected 4 sets of 100 movies that
have 2K (least popular), 4K, 6K and 8K (most popular) ratings, respectively.
We denote these sets as Movies2K, Movies4K, Movies6K, and Movies8K. We en-
sured that the movies selected are not in the recommendation lists of the users,
in order to be able to run why-not questions with them. To find the peers of a
user, we used the Pearson Correlation with a threshold of 0.8 (th), while to pre-
dict a score for an unrated item we utilized 100 (numP ) peers. An item cannot
be considered for addition in the recommendation least, unless 3 (numPI) or
more peers of the user have given it a rating. We report to the user the top-10
movies with the highest predicted scores.

Explanations Study. First, we define a total absenteeism why-not question for
each item in the varying popularity movie sets, for moderate and active users
(Figure 1(a) and (b) respectively). Then, we runWNCF for each user and why-
not question, and we calculate the percentage of occurrences of each explanation
depending on the different parameters as they appear in the different segments of
Algorithm 1. The k explanation indicates that the item in question was further
down in the list that was provided to the user. The numP explanation means
that we should augment the numP threshold to be able to find enough most
similar peers that have rated this specific item. The Peers explanation occurs
when none of the peers of the user has rated an item. Finally, by Tuples we denote
explanations comprised by information on the peers of the user, calculated in
Algorithm 1 line 12, and when the conditions in lines 13 and 15 are false.

Let us further analyze the result of the experiment in Figure 1. When we use
the more popular movies, more of them are in the k range, almost all of them
are rated by a peer of the user and most of them are rated by a top peer. This
is most evident when we compare the results for Movies2K and Movies8K. For
Movies2K, less than 20% of the movies could be explained by the information
provided on the peers in the moderate case, while for the Movies8K more than
95% of explanations were composed by the peers. Additionally, in the Movies2K
more than half of them were not rated by any of the user’s peers, while in the
Movies8K this number has dropped down to almost zero. We can observe similar
numbers for the Active Users for the Movies2K and Movies8K movie sets. This
is a self-evident result since the more popular movies have a higher chance to be
rated by the peers of a user. This is further corroborated by the Tuples values.
For the Movies2K, it has low values, since the movies are not that popular. With
each subsequent movies set, as the popularity of the movies rises, so does the

4 https://grouplens.org/datasets/movielens
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Fig. 1: Explanations for varying popularity of missing movies for (a) moderate,
and (b) active users.

the values of the Tuples variable. The most popular movies are more likely to
have been voted by a top peer.

When comparing the results for the two sets of users, the Active Users have
more explanations about the top peers not having rated an item (numP) than
the Moderate Users. This is because the more ratings a user has given, the more
similar other users he/she has. Since the number of peers we use is a constant
variable and not a percentage, there is a higher chance the selected users have
not rated the movies questioned. At the same time, we can see that the number
of movies that were not rated by any of peers is lower than that of the Moderate
Users. This is again because Active Users have a higher number of peers.

To demonstrate how the developer can proceed when he/she has acquired
one explanation, we considered the case of Peers explanations. We took all the
movies that were not rated by any peer (corresponding to Peers explanations),
and we examined all the users in the system in order to find the new threshold
needed in the similarity function, so as the recommender to be able to calculate
a preference score for that item for the considered users. Then, we calculated
the difference between the threshold we used originally (in our experiments, 0.8)
and the new calculated threshold. Figures 2a and 2b show the results for the
Moderate and Active users, respectively. In both experiments, we excluded the
Movies8K set because the number of movies that were not rated by any of the
peers is very small (less than 5 in both user sets). In both cases the adjustments
needed in the similarity threshold are small. The average values (denoted with x
in the figures) is below 0.04. While the Active Users have more outliers (dots in
the figures) their ranges are similar to those in the Moderate user set. Finally,
the median value (line inside the box) is comparable for both user sets across all
movie sets. Thus, we see that with the provided explanation the developer can
directly explore the right direction for debugging his system.
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Fig. 2: The similarity threshold (th) adjustment needed for the recommender to
be able to calculate a preference score for the missing items corresponding to a
Peers explanation for (a) moderate, and (b) active users.

7 Summary

In this work, we pay special attention on transparency provided via explanations
in recommender systems. We exploit the concept of why-not questions, allow-
ing the user to give feedback in the form of questions about why items are not
proposed in the expected way. We consider the collaborative filtering approach,
and propose ways for providing explanations for why-not questions. We provide
a detailed taxonomy of why-not questions with respect to three main properties:
(i) the level of absenteeism that the why-not questions mentions (absence or low
position in the ranking of a result set), (ii) their granularity (referring to a single
result or a group), and (iii) their dependency to existing recommended items. An
explanation for a why-not question is meant to inform the user about the possi-
ble sources of error linked to the why-not question. We distinguish explanations
between general ones, i.e., explanations that are independent to the recommen-
dation model used, and model-specific ones, based on the inherent parameters of
CF. Finally, we provide an algorithm for computing why-not explanations in CF
systems. Clearly, there are many directions for future work, including propos-
ing explanations for content-based, hybrid and sequential [17] recommendation
models, as well as efficient algorithms and implementations in specific contexts.
Furthermore, we target the automatic refinement of the recommendations com-
puted for the users, by exploiting the defined explanations.
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