
Enabling Social Search in Time through Graphs

Kostas Stefanidis
FORTH, Heraklion, Greece

kstef@ics.forth.gr

Georgia Koloniari
University of Macedonia, Thessaloniki, Greece

gkoloniari@uom.gr

ABSTRACT
Recently, social networks have attracted considerable atten-
tion. The huge volume of information contained in them, as
well as their dynamic nature, make the problem of searching
social data challenging. In this work, we envision the design
of a complete framework for social search by exploiting both
the underlying social graph and the temporal information
available in social networks. To encompass the numerous
search needs, our framework includes a time-aware graph
and query model. To deploy the proposed query model over
any social network, we define a logical algebra that provides
a set of operators required for query evaluation, and for sup-
porting a ranking functionality. We conclude by presenting
SQTime, a prototype that implements our framework.

1. INTRODUCTION
Due to the increasing popularity of social networks and

the vast amount of information in them, there have been
many efforts in enhancing web search based on social data.
Also, given that social networks contain data about the net-
work, i.e., data for which users visit the network, data about
the users and their social connections and data about the so-
cial activities users perform, it is evident that an effective
and efficient way to manage such data is essential for satis-
fying the user search needs. This has lead to the emergence
of social search that utilizes the underlying graph structure
and the content of a social network to provide more person-
alized and expressive search features for the users.

Besides the graph structure dictated by the relationships
among the entities of the network, another important di-
mension of social networks is their dynamic nature. New
content is added through user activities and updates occur
both in the structure of the graph and the content shared,
representing respective changes in the users’ interests. This
temporal aspect of the information should influence social
search either explicitly by enabling users to query for par-
ticular time points or periods, or implicitly by providing the
most recent results and higher ranking of fresher content.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Here, we envision the design of a complete social search
framework that exploits the underlying social graph and its
temporal aspects. To satisfy the varying search needs, the
framework includes a time-aware query model and a corre-
sponding logical algebra. To deal with the temporal aspect
of the social network, instead of relying on managing differ-
ent graph snapshots, as [3, 5], we adopt an annotated graph
model that incorporates time by associating each element in
the graph with a label with its temporal information. Nodes,
representing users and objects, and the edges between them,
representing social relationships, have a label that indicates
their valid time. Dissimilarly to [3] that focuses on graph
evolution, to encompass various querying needs, we define
a query model that exploits the underlying graph represen-
tation. The model defines queries for the entities of the
network, i.e., users and objects. User-centric queries offer
a personalized search feature by exploiting the social rela-
tionships of a user, whereas, system-centric queries provide
a global search feature with many applications in online-
shopping and target-advertising, so as to select the best
group for a new product or the best products to promote
to a given user. Unlike [2] that does not concern about any
temporal information, our model enables time-awareness by
allowing time-dependent queries that exploit time explicitly
using it as a hard constraint to filter out irrelevant results.

To deploy our querying model over any social network, we
define a logical algebra that provides the set of basic opera-
tors required to evaluate the queries specified by our model.
Besides the basic operators, the algebra includes a set of op-
erators for supporting a ranking functionality. Specifically,
the ranking mechanism enables the implicit use of time to
enhance the results of a query by providing a time-dependent
ranking, so that more recent or fresher results are returned
first. We conclude with a description of SQTime, a pro-
totype that implements our framework offering a graphical
interface for running time-dependent queries expressed in
natural language, and visualizing the returned results.

2. DATA & QUERY MODEL

2.1 Data Model
The entities of a social network represent users and ob-

jects. An entity ni is described by a set of predicates aij
of the form (aij .attribute = aij .value). For example, an
attribute for a user can be “name = Alice” and an attribute
for an object, e.g., an event, can be “location = Shanghai”.

We model a social network as an undirected graph, G =
(V,E). The set of nodes V corresponds to the entities that
belong to the social network, i.e., V = U ∪ O, where U is

the set of users and O the set of objects. The set of edges E
captures the relationships between the entities that belong
to V ; user-to-user edges capture the friendship between the
corresponding users, while user-to-object edges declare that
a user uses or participates in some way in an object oj .

We extend the typical graph model with temporal infor-
mation towards making social search time-dependent. We
exploit the valid time of data items and consider an element,
node or edge, of a graph G as valid for the period for which
the corresponding element of the network it represents is also
valid. To do this, each element ei in the social graph is anno-
tated with a label with the time intervals for which the ele-
ment is valid. To cope with the dynamic nature of the social
network that causes elements to become valid (a user joins
the network), invalid (it leaves) and then valid again (rejoins
the network), for each element ei ∈ G, its label is defined

as a set of disjoint intervals l(ei) = {(tjstart, t
j
end)|j ≥ 1},

which implies that element ei is valid for the time intervals
{[t1start, t1end), [t2start, t

2
end), . . . }.

2.2 Query Model
The goal of our framework is to support queries for the

social graph that exploit both the graph structure and its
time dimension. Let us consider an example of a popular
query, Q1: “find all of Ross’ friends that attend sports events
in July 2014”. This query expresses constraints both on time
and the structure of the graph. We use Q1 as our illustrative
example to demonstrate the different possibilities one has for
querying the social graph, so as to deduce a complete query
model that covers our social search needs1.

Let us begin with the result of Q1. The query retrieves
a subset of the friends of the user Ross, i.e., the result set,
V ′, is a set of user nodes, V ′ ⊆ U ⊆ V . Similarly, one
could query for object instead of user nodes, i.e., Q2: “find
all events in July 2014 that Ross’ friends attend”, where it
holds: V ′ ⊆ O ⊆ V . Thus, we can discern, according to
the type of nodes that form our result set, between queries
for friends, such as Q1, and queries for objects, such as Q2.
The first type gives emphasis on the company of the user,
while the second focuses on the objects to be consumed.

We ignore the time constraint for now, as we treat time
as a separate dimension. As our goal is to exploit the graph
structure, our queries include constraints on the connectiv-
ity between the different entities that are referenced in the
query context. In particular, Q1 requires the result nodes to
be directly connected to a set of intermediate object nodes
specified through a set of predicates, i.e., Q1 requires the
friends of Ross that are connected with objects of type sports
events. Let P be a set of predicates concerning the attributes
in the nodes descriptions of the form (attribute θ value).
For numerical attributes, θ ∈ {=, <,>,≤,≥, 6=}, and, for
non-numerical attributes, θ ∈ {=, 6=, prefix}. We say that
P (vi) = true, if and only if, node vi satisfies all predicates
in P . We refer to nodes, for which P is true, as the qualify-
ing nodes in the query, denoted as QV . The retrieved nodes
(the ones forming the result set) need to be connected to all
the qualifying nodes, i.e., we want the friends of Ross that
attend all sports events in July 2014. Since the all operator
is a very strict requirement, it can be relaxed to require that
the retrieved nodes are at least connected to one qualifying

1The proposed model extends and generalizes a preliminary
query model that was presented in [4].

node, i.e., the friends of Ross that attend any sports event
in July 2014.

Similarly to the result nodes, the predicates can also refer
to either user or object nodes. To illustrate this, for Q2,
the result nodes, i.e., events, need to be connected to all
Ross’ friends. In this example, P is empty as we have no
predicates specified for these user nodes. Note that as our
graph model does not define connections between objects,
for a query for objects the predicates are only applied on
user nodes. However, we may also define queries for users
on which the predicates are also applied on other users. For
instance, Q3: “find all of Ross’ friends that are friends with
users with occupation athlete”. In Q3, the result user nodes
need to be connected (be friends) with other users for which
the predicate occupation = athlete is true.

Furthermore, Q1 includes a reference node, i.e., the user
node that corresponds to user Ross. Our query is centered
around this reference node, ui, and we call such queries user-
centric queries. Q1 requires the user nodes that form the
result set to be friends with Ross, i.e., it requires for them
to be directly connected to the reference node.

We can consider extensions, such as Q4: “find all the
friends of the friends of Ross that attend sports events in
July 2014”. In this example, the result nodes are at distance
d = 2 from the reference node, which means that there is
a path of 2 edges connecting them. Although d > 2 is also
plausible, in practice it is rarely used.
Q2 is also a user-centric query, but in this case, the ref-

erence node is not directly connected to the result nodes.
Instead, it is required that the qualifying user nodes of the
query are directly connected to Ross.

On the other hand, one may also want to pose queries
where no reference node is specified at all, i.e., system-centric
queries. For instance, consider query Q5: “find all users that
attend sports events in July 2014”. Such queries, capture the
system perspective and their goal is to identify either sets of
users that share some common interests and, for instance,
may be interested in a particular product or event the system
wants to promote, or similarly, sets of objects that may be
of interest to some particular users so that they can choose
to promote these objects to them.

System-centric queries can be extended to allow for con-
nectivity constraints to be specified on the returned results.
For instance, Q6: “find all groups of users that are friends
and attend sports events in July” requires not a set of user
nodes as a result, but groups of such users that are directly
connected within each group.

The last part of our query is the time constraint. Thus,
for Q1, T specifies that the sports events that Ross’ friends
attend are valid in July 2014. In Q1, T is applied on the
qualifying nodes QV and therefore can be treated as an-
other predicate that however does not concern the object
descriptions, but rather their labels. Another possibility is
to specify time constraints on the result nodes, i.e., Q7: “find
all the friends of Ross that are valid in July 2014 and have
attended sports events”. If a time constraint is specified for
any part of the query, then we are able to capture time-
dependent queries.
T can be also applied on the labels of the edges of the

social graph, introducing a different type of queries. For
instance, Q8: “find all the friends of Ross that express that
they will attend CIKM 2014 in March 2014”, requires a set of
users that have established their connections with an event
during a specific time period.

Given that T is defined as a time period [b, c), we dis-
cuss next how we handle validity. Specifically, to determine
whether a node vi is valid for T , one needs to compare T
against l(vi). If one of the time intervals included in l(vi) is

included in the interval specified by T , i.e., ∃(tjstart, t
j
end) ∈

l(vi), such that, tjstart ≥ b and tjend < c, then vi is valid for
T . A reverse interpretation is also possible. That is, one
could require the valid time of the node to include T , i.e.,
∃(tjstart, t

j
end) ∈ l(vi), such that, tjstart < b and tjend > c.

From a different perspective, we consider before and after
semantics, requiring tjend < b or tjstart > c, respectively. In
a more relaxed interpretation, it suffices for the valid time
of a node to simply intersect with T , for the node to be
considered valid. Finally, for b = c, time point queries are
supported. Similarly, we can define the validity of the edges
appearing in the social graph.

To sum up, one can discern between four structural parts
that compose a query:

(i) The set of result nodes V ′, which are the nodes to be
retrieved and form the query result.

(ii) The set of qualifying nodes QV , which are the inter-
mediate nodes through which the different entities in
the query are connected, and are specified by a set of
predicates P .

(iii) The reference node ui, which is the node around which
the query is centered, and a distance d from it.

(iv) The time constraint T that checks for the validity of
nodes and edges involved in the query.

More formally, we can define a generic query Q that encom-
passes the queries we have described.

Definition 1. Given a graph G = (V,E), V = U ∪ O,
predicates P , a user node ui, a distance d and time con-
straints T , we define a query Q as a query that retrieves a
set of nodes V ′ ⊆ V , such that, vj ∈ V ′, if and only if,
∀vl ∈ V for which P (vl) = true and (vl is valid accord-
ing to T and ∃(vj , vl) ∈ E), or (∃(vj , vl) ∈ E that is valid
according to T), and
• if vl ∈ U , ∃ path between vi and vl with length = d, or
• if vl ∈ O, ∃ path between vi and vj with length = d.

3. A LOGICAL ALGEBRA
Developing a flexible and expressive mechanism to manip-

ulate data in social graphs is an important challenge that we
need to face. Our focus here, is on integrating in a principled
way the search process into the context of social graphs. To-
wards discovering information that covers the needs of users
in a flexible manner, we propose a logical algebraic frame-
work. By using this logical algebra, we can express sophis-
ticated tasks for retrieving data relevant to the user queries
both at a semantic (e.g., by querying for specific predicates)
and social (e.g., by querying for friendships) level. We start
this section with the core operators of the algebra that can
be used for evaluating the system- and user-centric queries
introduced above, and then define temporal-dependent and
ranking operators.

The select node operator takes as input a set of nodes V ,
a set of predicates P and a parameter Z that defines the
retrieving focus of the operator, i.e., users U or objects O.
The operator outputs the nodes that satisfy the predicates
in P . Formally:

Definition 2. (Select Node Operator). σP,Z(V) =
{v|v ∈ Z ∧ P (v) = true}.

This operator is appropriate for implementing system-centric
queries.

For user-centric queries, we have additional parameters,
i.e., the reference node and a distance from it. Thus, we
define the select node from graph operator that takes as input
a social graph G, a node vi corresponding to a user ui ∈ U ,
a distance d, a set of predicates P and a parameter Z that
defines the retrieving focus of the operator, i.e., users U or
objects O. The operator outputs the nodes vj from G that
satisfy the predicates in P for which there exists at least one
path with length at most d between vi and vj . Formally:

Definition 3. (Select Node from Graph Operator).
σP,Z,d(vi, G) = {vj |vj ∈ Z ∧ P (vj) = true ∧ ∃ path between
vi and vj with length ≤ d}.

In the main framework, we define also the difference op-
erator for excluding from a set, nodes that are not directly
connected with the nodes of a different set.

Definition 4. (Difference Operator). dif(Vi, Vj , G)
= {vx|vx ∈ Vi ∧ ∃vy ∈ Vj, such that, ∃ (vx,vy) in G}.

Given G = (V,E), the query Q9: “find all Ross’ friends
that have attended sports events” can be accomplished as
follows. Direct friends of Ross, say V1, are captured by
σ{},friends,1(Ross,G). We retrieve the objects, say V2, with
topic = sports events, by σtopic=sports events,objects(V), and
dif(V1, V2, G) locates the subset of Ross’ friends that have
attended sports events.

For handling time-dependent queries, we extend our op-
erators in order to take into account time constraints T for
users and/or objects.

Definition 5. (Temporal Select Node Operator).
σP,Z,T (V) = {v|v ∈ Z ∧ P (v) = true ∧ v is valid for T}.

Definition 6. (Temporal Select Node from Graph
Operator). σP,Z,T,d(vi, G) = {vj |vj ∈ Z∧P (vj) = true∧∃
path between vi and vj with length ≤ d ∧ vj is valid for T}.

Then, for evaluating Q1 that augments Q8 with the tem-
poral constraint [1/12/2013, 31/12/2012) for events, we lo-
cate set V 2 as:
σtopic=sports events,objects,[1/12/2013,31/12/2012)(V).

Operators for locating valid edges are defined in a similar
manner.

Besides the basic operators implementing our query model,
additional operators can be specified to support extended
functionalities. To provide more meaningful results than a
simple set of returned nodes and enable the implicit use of
time, we define a ranking functionality. Ranking is time-
dependent, in the sense that it ranks more recent nodes
higher. To determine how recent a node is, we rely on the
time of the user activities rather than the actual valid time
of the nodes themselves, as we expect that more recent activ-
ities tend to better reflect the current trends in the network.
This information is captured in the labels of the edges of the
network that connect the result and qualifying nodes.

Thus, given a node vj , we define the freshness of a node
vi (fresh(vi)) as the maximum tstart value in the labels of
the edges that connect vi and vj . To support our ranking
functionality, we introduce the temporal social winner and
rank operators. Then, a node vi belongs to the winner if
there is no node vl with age greater than the age of vi.

Figure 1: SQTime results presentation.

Definition 7. (Temporal Social Winner Operator).
winner(V) = {vi|vi ∈ V ∧ @vl ∈ V, such that, fresh(vl) >
fresh(vi)}.

Ranking all nodes in V can be achieved by repetitive ap-
plications of this operator.

Definition 8. (Temporal Social Rank Operator).

ranki(V) =

{
rank1(V) = winner(V)
ranki+1(V) = winner(V − ∪i

k=1rank
k(V))

In general, there are different ways for handling operators.
Firstly, operators can be implemented on-top of a DBMS ei-
ther as stand-alone programs or as user-defined functions.
Alternatively, operators may be translated into other, exist-
ing relational algebra operators during a pre-processing step.
Finally, operators can be implemented inside the database
engine using specific physical operators and algorithms. It
is our purpose, in this line of work, to study which direction
better fits our complex scenario.

4. USER-SYSTEM INTERACTION
In this section, we present SQTime, a prototype that al-

lows users to explore the different types of social search
queries in our model, and the implications of enhancing
queries with time both implicitly and explicitly. SQTime
is built on top of a social graph with data from [1], that
includes anonymized information about the evolution of the
Flickr social network and in particular, user-to-user links,
photos and favorite markings of photos by users. Photos
are randomly assigned to given photo ids to preserve the re-
lationships among them and the users. This first version
of SQTime offers a graphical interface for running time-
dependent queries and visualizing the returned results sets.
Querying Interface. The querying interface provides lists
of options for each of the building blocks of a query, which
users can combine in four easy steps to compose their own
queries. All options are expressed in natural language not
requiring from the user to have an understanding of the un-
derlying graph structure. Firstly, users select between the
user-centric or system-centric query perspective. Then, they
determine whether the query concerns users or objects, i.e.,
Flickr photos. Options such as “get all photos liked by my
friends”, for user-centric queries, and “get all photos liked
by the group of users specified in step 1”, for system-centric
queries, are available. SQTime includes as well queries at
distance two. Thus, one may also select to“get all photos the
friends of my friends liked”. The next two steps guide users
to augment their queries with time. Step 3 supports the ex-
plicit use of time allowing users to add a time constraint in

their queries. One can either select a predefined constraint
that concerns the most recent past, as such queries are more
popular, or specify her own time period for the constraint.
For example, for the time constraint “six months ago”, we
may construct queries like “get all photos that were liked by
my friends 6 months ago” and “get all photos that were valid
six months ago and were liked by my friends”. The last pa-
rameter configures ranking. Two options are provided, “no
ranking” and “ranking based on freshness”. Ranking enables
users to see the implicit use of time, as the results are re-
turned ranked based on their freshness.
Results Presentation. The result presentation interface
visualizes query results in an intuitive way that clearly illus-
trates their temporal relationships. For a query for objects,
the qualifying photos are displayed to the user. For clarity,
we limit the returned results to 10. If no ranking is used,
10 random photos from the result set are returned. When
ranking based on freshness is selected, the 10 fresher results
are displayed. As shown in Fig. 1, we display results as pho-
tos of different size, where photos of bigger size represent
the higher ranked objects, i.e., the fresher ones. For queries
for users, a graph is used to display the qualifying users and
their relationships. For the ranking based on freshness op-
tion, shades of green are used to represented the ids of each
user, with bolder colored ids reflecting the fresher results.

5. SUMMARY
In this paper, we have shown the growing importance of

introducing new mechanisms for social search queries through
graphs. The user experience in querying a social network can
be significantly improved by exploiting, in addition to the
underlying graph structure, the temporal characteristics of
social data, towards offering query results that better meet
the users information needs, as well as more expressive user-
system interactions. One of our first goals for future work, is
to experimentally evaluate the effectiveness of our approach.
Moving forward, we envision enabling open access to a so-
cial graph that as a whole brings together different social
networks. For this scenario, a time-aware search functional-
ity is essential to answer the query needs of users who are
looking for information obtained by integrating numerous
and heterogeneous sources. To support such cross-network
queries, we need to extend both our algebraic framework
and the way that users interact with the system.

Acknowledgments
This work was partially supported by the European project
DIACHRON (IP, FP7-ICT-2011.4.3, #601043).

6. REFERENCES
[1] M. Cha, A. Mislove, and K. P. Gummadi. A

Measurement-driven Analysis of Information Propagation in
the Flickr Social Network. In WWW, 2009.

[2] M. Curtiss, I. Becker, T. Bosman, S. Doroshenko,
L. Grijincu, T. Jackson, S. Kunnatur, S. Lassen, P. Pronin,
S. Sankar, G. Shen, G. Woss, C. Yang, and N. Zhang.
Unicorn: A system for searching the social graph. PVLDB,
6(11):1150–1161, 2013.

[3] U. Khurana and A. Deshpande. Efficient snapshot retrieval
over historical graph data. In ICDE, 2013.

[4] G. Koloniari and K. Stefanidis. Social search queries in time.
In PersDB, 2013.

[5] A. G. Labouseur, P. W. Olsen, and J.-H. Hwang. Scalable
and robust management of dynamic graph data. In BD3,
2013.

