
Open Source Software Recommendations
Using Github

Miika Koskela1, Inka Simola1, and Kostas Stefanidis2

1 University of Tampere, Finland
{miika.s.koskela, inkariina.simola}@gmail.com

2 University of Tampere, Finland
kostas.stefanidis@uta.fi

Abstract. The focus of this work is on providing an open source soft-
ware recommendations using the Github API. Specifically, we propose
a hybrid method that considers the programming languages, topics and
README documents that appear in the users’ repositories. To demon-
strate our approach, we implement a proof of concept that provides rec-
ommendations.

1 Introduction

Recommender systems have become indispensable for several systems and Web
sites, such as Amazon, Netflix, Yelp and Google News, helping users navigate
through the abundance of available data items (e.g., [4,1,3,2,6]. In this paper3,
we introduce a recommender system for suggesting open source software using
the Github API. Getting these recommendations requires users to have, in addi-
tion to a Github account, at least one of the following: (i) starred repositories, (ii)
repositories followed, or (iii) users own repositories. As this information is public
and available through Github’s public API, recommendations can be generated
to any user by any user. For generating recommendations, we exploit a hybrid
method that combines three different similarity measures on three different fea-
ture sets. Specifically, we consider separately the languages found in a user’s
repositories, the topics present in the user’s repositories, and the README doc-
uments of the user’s repositories. To demonstrate our approach, we implement
a proof of concept prototype for providing software recommendations.

2 Dataset

The dataset contains information on approximately 1000 software repositories
and consists of languages, topics and README-files retrieved via Github’s API.
In order to recommend repositories some information on the users skills and
interests is needed. We call this user information user profile. Specifically, the
user profile consists of a combination of information from repositories the user
3 The work was partially supported by the TEKES Finnish project Virpa D.

has somehow been associated with in the past. We consider the following as proof
of an association between the user and a repository: (i) the user has starred the
repository, (ii) the user has followed the repository, or (iii) the user has forked4

the repository. For simplicity, we refer to these collectively as users repositories.
For example, assume that user mkoske has starred the repository php-ai/php-ml,
and has mkoske/scatter-r as his own repository. To construct a profile for this
user, we collect the following pieces of information on these two repositories: (i)
topics assigned to a repository by its owner, (ii) programming languages used in
a repository, and (iii) README document of a repository. Next we will take a
look at these pieces of information separately.
Topics: As an example, consider the php-ai/php-ml-repository, which is starred
by user mkoske, and contains, among other topics, the following: php, machine-
learning, classification, and data-science. Topics are specified manually by the
repository owner or someone with proper permissions and is therefore a sparse
source of information. In our sample dataset of 1000 items, almost half of the
repositories (47,30%) are missing topics entirely.
Programming Languages: In the previous example, the php-ai/php-ml-
repository contains two different languages: PHP and Shell. The latter seems
to be used, e.g., to generate PHPUnit tests coverage reports and is therefore
listed among the languages of the repository. The repository programming lan-
guage is detected automatically5 and no user interaction is required for that. In
contrast, topics have to be input manually by the repository owner and are not
detected automatically. In our sample dataset, over 95% of the repositories have
a language or languages specified.
README: README-files are the third source of information on a repository.
When accessing the repository at Github via web browser, the README is one
of the first things that user encounters. It contains a free-form description of
the repository in plain-text format and can be considered a front page for the
repository. Table 1 shows some statistics on the lengths of the README files
in our data set. The standard deviation is quite high, indicating that there is
much variation in the lengths of the descriptions repository owners are assigning
to their projects.

Statistic Value
Min 115.00
Max 505 402.00
Mean 13 257.88
Median 6 891.00
Std 25 287.51

4 https://help.github.com/articles/fork-a-repo/
5 https://help.github.com/articles/about-repository-languages/

3 Method

We follow a hybrid method to produce open source software recommendations.
Specifically, we combine three different similarity measures on three different
feature sets to make a single list of recommendations. The final similarity score
is a linear combination of three similarity scores: (i) all the languages found in
a user’s repositories are compared to the languages present in a given non-user
repository, (ii) all the topics present in the user’s repositories are compared to
the topics present in a given non-user repository, and (iii) an averaged vector
representation of the README documents of the user’s repositories is compared
to the vector representation of the README document of a given non-user
repository.

We construct a language vector, a topic vector and a README vector for
each repository. For the sake of practicality, all user repository vectors are col-
lapsed together per type to form 3 different user vectors per user: a user language
vector, a user topic vector and a user README-vector. Each of these vectors is
then compared against the respective language, topic and README vector of
each repository not associated with the user for whom a recommendation is to be
generated. A linear combination of the resulting language, topic and README
similarity scores is then calculated to obtain the final repository ranking.
Languages: The repository metadata contains information on the programming
languages6 used to write the software in question. Continuing with the example
we had earlier, repository php-ai/php-ml is mainly written in PHP, but also
contains some shell scripts. This is a small number of languages compared to,
e.g., Visual Studio Code by Microsoft, which contains numerous languages.

In our dataset, languages detected in a repository were first transformed into
binary vectors. If the repository contained a language, e.g., aforementioned PHP,
the feature was assigned a value of 1, and 0 otherwise. The length of a repository
language vector is the number of all programming languages found in the entire
dataset, including the user repositories. Below is an example of a transformed
binary language vector.

assembly awk c … typescript vim_script vb
1 0 1 … 0 1 0

The union of languages present in a user’s repositories was used to form the
user language vector. The mean of the user language vector was then subtracted
from the user language vector, ensuring that cases where the user language
vector lacks a language present in a repository language vector get a lower score
than cases where neither user nor repository language vector contain a given
language. This reflects the author’s assumption that a user is most versed in
languages present in his or her own repositories and not much else.

6 Languages are automatically detected.

Ordinary cosine similarity does not differentiate between the aforementioned
cases, and would give them equal language rankings. Adjusted cosine similarity,
on the other hand, would needlessly penalize cases where the repository lan-
guage vector lacks a language present in the user language vector. However, a
repository does not have to contain all the user vector languages in order to be
recommendable to the user. Hence, the mean was only subtracted from the user
language vector and not the repository language vectors. For calculating the sim-
ilarity between a user language vector and each repository language vector, we
used a hybrid cosine similarity measure defined as: simcos(a, b) = (a−ā)·b

||(a−ā)||×||b|| .
After subtracting the mean from the user language vector, our hybrid cosine

similarity was calculated between the user language vector and each non-user
repository language vector.
Topics: Repository topics resemble the commonly used tags: they contain at
most a few words of free-form text that the author of the repository has chosen
to describe the repository. Topics can also contain names of the programming
languages used in writing the software. We did not filter out these potential
overlaps and used the topics as they were. The length of a topic vector is the
number of topics found in the entire dataset. Below is an example of a binary
topic vector.

d ad-blocker admin … youtube zeit zsh
1 0 0 … 1 0 0

The union of topics present in a user’s repositories was used to form the user
topic vector. Jaccard similarity was then calculated between the user topic vector
and each repository’s topic vector. The Jaccard similarity measure, sometimes
also called the intersection over union similarity, was used to compute similar-
ities related to the topic component of the dataset. If a user vector contains
(i.e., has values of 1 for) topics a0, a1, . . . , ai and a repository vector contains
topics b0, b1, . . . , bj , the Jaccard similarity between vectors a and b becomes:
simjac(a, b) = |{a0,a1,...ai}∩{b0,b1,...bj}|

|{a0,a1,...ai}∪{b0,b1,...bj}| .
README: In our current dataset, all repositories have a README docu-
ment. The READMEs were also retrieved using the Github API. Each repository
README document was subjected to the following preprocessing operations: (i)
tokenization, i.e., splitting the long string of text to tokens, (ii) removal of words
with less than 3 characters, (iii) removal of content between any kind of brackets,
(iv) removal of content matching certain frequently observed patterns (e.g., url,
email address), (v) removal of English stopwords (e.g., ‘and’, ‘when’), and (vi)
part-of-speech tagging and removal of words that are not nouns in singular form.

A vector representation was then generated for each preprocessed README
using TF-IDF as implemented in the TF-IDF-Vectorizer function of Scikit-learn:

– For each word appearing in the corpus, the documents containing the word
are counted.

– Words appearing in just one or more than 95% of the documents of the
corpus are removed.

– The inverse document frequency for each preserved word (~3000 words) is
calculated.

– IDFi = log total # documents
of documents containing word i .

– For each README, the normalized term frequency for each preserved word
is calculated.

– The TF-IDF score (term_frequency x IDF score) is calculated for each pre-
served word in each README document, yielding a vectorized representa-
tion for each README document.

Below is an example of README-vector.

abilities abort … zeros zones zookeeper
0.0 0.001 … 0.0 0.002 0.0

README vectors from the user’s repositories were averaged to obtain a user
README vector. Oridnary cosine similarity between the user README vector
and each non-user-owned repository README vector was then calculated. It is
possible for a repository README to not contain any of the words preserved
by the TF-IDF transformation. In these cases, the cosine similarity between the
user and repository README vectors is zero.

4 Recommendations

After feature extraction was completed, a linear combination of the language,
topic and README similarities was calculated using weights wl, wt and wr

for language, topic and README respectively. For the time being and in the
absence of user feedback, all weights were initialized to 0.33. The maximum and
minimum scores thus assigned to the most and least recommended repositories
respectively, were denoted max_score and min_score. The final scores were then
obtained by normalizing the results using the following formula:

final_scorea,b = wl ∗ lang_sima,b + wt ∗ topic_sima,b + wr ∗ readme_sima,b

max_score − min_score
.

Figure 1 shows the first five recommendations given to user inkasimola based
on the public repositories on her Github account and 1000 retrieved repositories.

The project is public and located at: https://github.com/mkoske/recommender/.
The software implementation was written in Python, while the requests and Pan-
das libraries were used for data retrieval from Github. As preprocessing - and es-
pecially part-of-speech tagging - entire README documents is time-consuming,
it was done beforehand using Python scripts. Finally, the web application was
written using Flask, and the Bootstrap CSS-framework.

https://github.com/mkoske/recommender/

Fig. 1. Recommendations for user inkasimola.

5 Summary

In this paper, we propose a hybrid method that considers the programming lan-
guages, topics and README documents present in Github users’ repositories,
to generate open source software recommendations. The future work could eval-
uate the system by performing experiments with real users. Moreover, we could
implement a model that takes into account the popularity of repositories and
involves a feedback loop to allow for learning of user-specific feature weighting
and further context-aware personalization of recommendations [7,5].

References

1. G. Adomavicius and Y. Kwon. Multi-criteria recommender systems. In Recom-
mender Systems Handbook, pages 847–880. 2015.

2. M. Kyriakidi, K. Stefanidis, and Y. E. Ioannidis. On achieving diversity in recom-
mender systems. In ExploreDB, 2017.

3. E. Ntoutsi, K. Stefanidis, K. Rausch, and H. Kriegel. Strength lies in differences:
Diversifying friends for recommendations through subspace clustering. In CIKM,
2014.

4. J. J. Sandvig, B. Mobasher, and R. D. Burke. A survey of collaborative recom-
mendation and the robustness of model-based algorithms. IEEE Data Eng. Bull.,
31(2):3–13, 2008.

5. K. Stefanidis, G. Koutrika, and E. Pitoura. A survey on representation, composition
and application of preferences in database systems. ACM Trans. Database Syst.,
36(3):19:1–19:45, 2011.

6. K. Stefanidis and E. Ntoutsi. Cluster-based contextual recommendations. In EDBT,
2016.

7. K. Stefanidis, E. Pitoura, and P. Vassiliadis. Managing contextual preferences. Inf.
Syst., 36(8):1158–1180, 2011.

	Open Source Software Recommendations Using Github

