GQA: Grammatical Question Answering for RDF
Data

Elizaveta Zimina, Jyrki Nummenmaa, Kalervo Jarvelin,
Jaakko Peltonen, Kostas Stefanidis, and Heikki Hyyro

University of Tampere, Finland
firstname.lastnameQuta.fi

Abstract. Nowadays, we observe a rapid increase in the volume of RDF
knowledge bases (KBs) and a need for functionalities that will help users
access them in natural language without knowing the features of the KBs
and structured query languages, such as SPARQL. This paper introduces
Grammatical Question Answering (GQA), a system for answering ques-
tions in the English language over DBpedia, which involves parsing of
questions by means of Grammatical Framework and further analysis of
grammar components. We built an abstract conceptual grammar and a
concrete English grammar, so that the system can handle complex syn-
tactic constructions that are in the focus of the SQA2018 challenge. The
parses are further analysed and transformed into SPARQL queries that
can be used to retrieve the answers for the users’ questions.

Keywords: Grammatical Framework - DBpedia - question answering -

SQA.

1 Introduction

Retrieving information from knowledge bases is a commonplace task, which is
becoming further widespread due to digitalisation of society; this has also in-
creased the need for systems that support natural language interaction.

Typically, data in knowledge bases are represented using the RDF model.
In RDF, everything we wish to describe is a resource that may be a person,
an institution, a thing, a concept, or a relation between other resources. The
building block of RDF is a triple of the form (subject, predicate, object). The
flexibility of the RDF data model allows representation of both schema and
instance information in the form of RDF triples.

The traditional way to retrieve RDF data is through SPARQL [26], the W3C
recommendation language for querying RDF datasets. SPARQL queries are built
from triple patterns and determine the pattern to seek for; the answer is the
part(s) of the set of RDF triples that match(es) this pattern. The correctness
and completeness of answers of SPARQL queries are key challenges. SPARQL is
a structured query language that allows users to submit queries that precisely
identify their information needs, but requires them to be familiar with the syntax,
and the complex semantics of the language, as well as with the underlying schema

2 E. Zimina et al.

or ontology. Moreover, this interaction mode assumes that users are familiar
with the content of the knowledge base and also have a clear understanding of
their information needs. As databases become larger and accessible to a more
diverse and less technically oriented audience, new forms of data exploration
and interaction become increasingly attractive to aid users navigate through the
information space and overcome the challenges of information overload [24, 25].

In this work, we present the Grammatical Question Answering (GQA) sys-
tem for answering questions in the English language over DBpedia 2016-04 [§].
The GQA system’s key technology is Grammatical Framework (GF) [23], which
provides parsing of questions and extraction of conceptual categories, the main
types of which are Entity, Property, Verb Phrase, Class, and Relative Clause.
The system “unfolds” the parse layer by layer and matches its components with
the KB schema and contents to formulate SPARQL queries corresponding to the
English questions. The GQA was tested on the SQA2018 training set [15] and
showed high precision in answering both simple and complex questions.

The rest of the paper is structured as follows. Section 2 presents an overview
of the GQA system and resources used, while Section 3 describes the GQA
grammar. Section 4 provides the details of the parse interpretation module, and
Section 5 analyses the system’s testing results. The related work is surveyed
in Section 6, and conclusions and perspectives for improvement are stated in
Section 7.

2 GQA Modules and Resources

2.1 General Architecture of GQA

The keys to successful question answering over knowledge bases are correct in-
terpretation of questions and proper retrieval of information. In the GQA system
(Fig. 1), this is realised by means of the two main modules:

e the Conceptual Parsing module, which obtains all possible parses of a question
according to the GQA grammar and selects the most suitable one, and

e the Parse Interpretation module, which analyses the question parse, gradually
“unfolding” its elements and making requests to the knowledge base in order to
control the process of parse interpretation and finally arrive at the most probable
answer(s).

Conceptual best parse Parse best candidates | SPARQL /
parsing selection interpretation selection answers

jzal

I

Fig. 1. General Architecture of GQA

Question —>

GQA: Grammatical Question Answering for RDF Data 3

The parsing module exploits the technology of Grammatical Framework, and
the GQA grammar is built on top of the existing GF Resource Grammar Library.
The parse analysis is performed in Python, and the KB is indexed by means of
Apache Lucene.

2.2 Grammatical Framework

Grammatical Framework (GF) [22, 23] is a functional programming language and
a platform for multilingual grammar-based applications. A GF grammar consists
of an abstract syntax, which declares the grammar’s meanings and their corre-
lation in the form of abstract syntax trees, and one or more concrete syntaxes,
which determine the mapping of abstract syntax trees onto strings and vice versa.

The analysis of natural language strings is realised through parsing, that
is, deriving an abstract syntax tree (or several) from a string. Conversely,
strings can be generated by means of linearisation of parse trees.

Natural language grammars implemented in GF are collected in the GF
Resource Grammar Library (RGL) [5]. The concrete grammars for all (cur-
rently 40) languages in the RGL comply with the common abstract syntax,
which aims to reflect the universal linguistic categories and relations.

Thus, in most cases the RGL categories correspond to parts of speech (noun,
verb, etc.) and textual units (sentence, question, text, etc.). These categories
can act as arguments to functions forming other categories. For example, we can
define (in a simplified way) an abstract syntax rule that takes an pronoun (PN)
and a verb (V') and forms a sentence (5) as follows:

mkS : PN -> V -> S.

Let us write the linearisation definition of this rule for an English concrete
syntax, taking only the present simple tense. To make the correct agreement
possible, we first need to specify the Person and Number parameters:

Person = Fisrt | Second | Third ;
Number = Sg | P1 ;

and then can define the linearisation types for NP, V and S:

PN = {s : Str ; p : Person ; n : Number} ;
V = {s : Person => Number => Str} ;
S {s : Str}.

Any PN has a permanent string value s as well as inherent values p and
n, standing for Person and Number. The string value s of V is represented
by an inflectional table, so that it can change depending on the Person and
Number values. S has only a simple string value s.

Finally, the linearisation definition for the rule mkS can be written as:

mkS pron verb = {s = pron.s ++ verb.s ! pron.p ! pron.n}.

The string value s of S is obtained by joining the generated string values of
PN and V so that the verb agrees with the pronoun in Person and Number.
We can now add some vocabulary rules to the abstract syntax:

4 E. Zimina et al.

we_PN, you_PN, she_PN : PN ;
sleep_V : V

and their linearisation definitions to the concrete syntax:

we PN = {s = "we" ; p = First ; n = P1l} ;
you PN = {s = "you" ; p = Second ; n = P1} ;
she PN = {s = "she" ; p = Third ; n = Sg} ;
sleep_V = {s = table {

First => table {Sg => "sleep" ; Pl => "sleep"} ;
Second => table {Sg => "sleep" ; Pl => "sleep"} ;
Third => table {Sg => "sleeps" ; Pl => "sleep"}}} ;

So the parse trees of the strings we sleep, you sleep and she sleeps will look
like:

mkS we_PN sleep_V ;
mkS you_PN sleep_V ;
mkS she_PN sleep_V.

2.3 DBpedia

The GQA system exploits the English DBpedia version 2016-04 [8] that in-
volves: entity labels (6.0M), redirect pages having alternative labels of entities
and leading to pages with “canonical” labels (7.3M), disambiguation pages
containing entities with multiple meanings (260K), infobox statements (triples
where properties are extracted from infoboxes of Wikipedia articles, often
noisy and unsystematic; 30.0M), mapping-based statements (triples taken from
the hand-generated DBpedia ontology, cleaner and better structured than the
infobox dataset; 37.5M), and instance type statements attributing an entity to
one or several DBpedia ontology types, e.g. person, country, book, etc. (36.7M).

To be able to access this large volume of information quickly, we built an
index of all necessary data components by means of Apache Lucene [2]. For
infobox and mapping-based statements, we also make inverse indexes, so that
the search can be done either by subjects or by values of RDF' triples.

3 The GQA Grammar

3.1 Overview

The GQA grammar complies with the morphological principles underlying the
RGL and at the same time operates with new conceptual categories that make
it possible to classify questions and to reveal their components and relations
between them. The main conceptual categories in the GQA grammar include:
— Entity: usually a proper name, e.g. In which country does the Nile' start?
— Property: a noun phrase that coincides with the label of some property in
DBpedia, e.g. What is the area code of Berlin?

! Words belonging to the category/rule under consideration are given in bold.

GQA: Grammatical Question Answering for RDF Data 5

— VPChunk: corresponds to all possible morphological forms of VP (verb
phrase) and usually represents a reformulation of some property (e.g. the
verb dissolve in the when-question When did the Ming dynasty dissolve?
indicates the dissolution date property),

— Class: a noun phrase that corresponds to an ontology class in DBpedia,
e.g. List all the musicals with music by Elton John.

— RelCl: a relative clause, e.g. Who owns the company that made the Edsel
Villager?

— @Q: the starting category comprising all kinds of questions learnt through
the analysis of the training sets. For example, the question When did Oper-
ation Overlord commence? will be recognised by the function WhenDidX VP
with the definition Entity — VPChunk — Q.

3.2 Simple Entity

So-called simple entities in the GQA grammar are the only elements that are
not actually coded, but are rather regarded as symbols, that is, lists of words
separated by whitespaces in natural language questions. Thus, simple entities
are formed by means of functions:

oneWordEnt : String — FEntity ;
twoWordEnt : String — String — Entity ;
up to tenWordEnt.

The English DBpedia 2016-04 comprises 13.3M labels, i.e. names of entities
and their redirects (names of pages redirecting to the main pages, e.g. Houses
of Parliament — Palace of Westminster). Indexing the inverse properties (de-
scribed in Section 3.3) reveals even more entities without separate pages in
DBpedia. It was impossible and in fact not necessary to code such a number
of entities in the grammar, since it would dramatically slow the parsing down.
Instead, we built an index of all DBpedia labels and use it for finding entity
links. In many cases the input phrase needs some modification before looking
for it in the index. These modifications include:

— removal of the article in the beginning of the phrase (the Isar — http://
dbpedia.org/resource/Isar),

— capitalisation of all words, excluding auxiliary parts of speech (maritime
museum of San Diego — hittp://dbpedia.org/resource/Maritime_ Museum_ of
San_ Diego),

— rearrangement of components separated by the in preposition (lighthouse
in Colombo — hitp://dbpedia.org/resource/Colombo__ Lighthouse).

Quite often the label found in the index leads us to the disambiguation
page containing links of several possible entities. For example, the entity Sher-
lock in the question What company involved in the development of Sherlock did
Arthur Levinson work for? is highly polysemous (20 readings in DBpedia),
and we should check all of them to find the one that matches all properties
expressed in the question (http://dbpedia.org/resource/Sherlock (software)).

6 E. Zimina et al.

3.3 Property

Infobox and Ontology Properties. We collected the labels of all properties
in the 2016-04 version of DBpedia. This yielded almost 17,000 grammar rules,
most of which are due to DBpedia’s noisiness (e.g. properties ¢j, ci, or ch)
and are of no use for question answering. This set still contains “valid” prop-
erties (e.g. height or spouse) and is not large enough to slow down parsing
significantly.

Search is performed among property links that start either with http://
dbpedia.org/property/ (Wikipedia infobox properties) or http://dbpedia.org/
ontology/ (better structured ontology based on the most commonly used in-
foboxes). In the GQA grammar property name endings correspond to the
function names with suffixes O (e.g. owner O in the above example) or P
showing whether ontology or property is used in the full link. As a result, prop-
erties often duplicate each other, and the correct answer can be obtained with
any of them (e.g. hittp://dbpedia.org/ontology/birthPlace or http://dbpedia.org/
property/birthPlace). Thus, the best parse of the question What is the birth-
place of Louis Couperin? will contain the function birthPlace O, since _ O
functions are given higher priority in selecting the best parse, but the http://
dbpedia.org/property/birthPlace property will be also checked if no answer is
found with the ontology property.

At the same time, some infobox properties do not have corresponding on-
tology properties (e.g. hitp://dbpedia.org/property/placeOfBirth), but are iden-
tical in meaning with other properties and in some cases can be the only key to
the answer. Analysing the training datasets, we develop a separate database
Functions with groups of identical properties, each group stored under the
name of the rule that would be most likely selected in the best parse.

Inverse Properties. The question type What is the [property] of [entity]?
assumes that after the resolution of the entity we need to look for the value
of the corresponding property that should be present in this page. A number
of syntactic and semantic constructions require so-called inverse search, when
we look for a subject, not a value in a triple. For example, the SPARQL query
for the question Whose deputy is Neil Brown? looks like

SELECT DISTINCT ?uri WHERE {?uri <http://dbpedia.org/property/
deputy> <http://dbpedia.org/resource/Neil_Brown_(Australian_
politician)>}.

Since the genitive construction is used, the target variable ?uri is in the position
of the triple subject.

We built a separate “inverse” index, which makes this kind of search possible.
In our Functions database we assign a Boolean value to each property, depending
on the function that calls it and showing whether the direct (False) or inverse
(True) search is needed. The value True is mostly assigned to properties assumed
in participle clauses with past participles constructions and some verb phrases,
described in Section 3.5.

GQA: Grammatical Question Answering for RDF Data 7

3.4 Class

A DBpedia ontology class can be considered as a generic term that an en-
tity belongs to (e.g. written work, beverage, holiday, etc). As well as ontol-
ogy property URIs, class URIs have the prefix http://dbpedia.org/ontology/.
Classes in questions can have various syntactic roles and forms, e.g. in En-
glish they can be inflected for case and number. For example, the parses of
the questions Which magazine’s editor is married to Crystal Harris? and Give
me all magazines whose editors live in Chicago both should contain the func-
tion Magazine_ Class, so that the parse analysis module will “know” that the
search should be done among the entities belonging to the class with the URI
http://dbpedia.org/ontology/Magazine.

This morphological flexibility of classes is obtained by means of the RGL
paradigms. We collected 764 classes currently existing in the DBpedia ontology
and parsed them as common noun chunks, which can take any morphological
form. For example, in the GQA grammar the Magazine Class function is
linearised as

Magazine_Class = UseN magazine_N.

The linearisation of magazine_ N is taken from the RGL English wide-coverage
dictionary. This noun type complies with the inflection table

Sg => table {Nom => magazine ; Gen => magazine + "’s"} ;
Pl => table {Nom => magazine + "s" ; Gen => magazine + "s’"},

building the singular and plural noun forms in the nominative and genitive
cases.

The function UseN creates a common noun out of a noun (UseN : N —
CN), which has the same type definition as Class. Finally, any grammatical
form of Class is detected as a class chunk :

Class_Chunk : Class -> ClassChunk
Class_Chunk cl = {s = variants {cl.s ! Sg ! Nom; cl.s ! P1 ! Nom;
cl.s ! Sg ! Gen; cl.s ! P1 ! Gen}},

so that magazine, magazine’s, magazines and magazines’ in a question parse
will be represented by the branch Class_Chunk Magazine_Class. In this way,
the RGL makes it simpler to focus on the semantic structure of a question,
without a great effort in grammar analysis.

Studying the training sets, we revealed a number of reformulations of class
names. For example, the television show class can be meant if a question contains
words like program, series, show, sitcom, television program, television series,
etc. At the same time, the word program can also refer to another class — radio
program. As with the Functions database for ambiguous properties, we built the
Classes database containing groups of related classes and their textual expres-
sions. The largest groups are gathered under the words league (sports league,
American football league, Australian football league, etc. — 27 options) and player
(soccer player, basketball player, ice hockey player, etc. — 26 options). Currently,
the system checks all the classes of the group and selects the largest set of answers

8 E. Zimina et al.

belonging to the same class. Those class linearisations that are highly ambiguous
significantly decrease the speed of finding the answer.

3.5 Verb Phrase and Participle

Questions can refer to a property in several ways, one of which is question
predicates expressed by verbs and verb phrases. For example, in the question
Who owns Torrey Pines Gliderport? the verb owns should be attributed to the
property owner. To enable our system to do this, the GQA grammar should
contain the verb own and the parse interpretation module should “know” how
to map certain verbs with corresponding properties.

Analysing the training set, we extracted verbs and verb phrases from ques-
tions and correlated them with corresponding properties in SPARQL queries.
These correlations are recorded in the Functions database, which is used at
the parse interpretation step.

In the GQA grammar, verbs and verb phrases often act as verb phrase
chunks (VPChunk), so that they can be used in any morphological form, in a
similar way as class chunks described in Section 3.4. Thus, own, owns, owned,
etc. will be recognised by the grammar under the rule own_ V22, due to the
verb paradigms inherited from the RGL grammar.

In many cases one and the same verb can refer to different properties. For
example, judging by the SPARQL query for the question Which company owns
FEvraz?, we should attribute the verb own also to the property owningCom-
pany. All alternative readings are stored in the Functions database under the
corresponding rule, e.g.

"own_V2": [("http://dbpedia.org/ontology/owner", False),
("http://dbpedia.org/ontology/owningOrganisation", False),
("http://dbpedia.org/ontology/owningCompany", False),
("http://dbpedia.org/property/owners", False),
("http://dbpedia.org/ontology/parentCompany", False)...]

The False value means that the corresponding property does not involve
inverse search (see Section 3.3). At the parse interpretation step the system
checks all properties that the function refers to.

Examples of more complex verb phrases include: originate in, work for, lead
to the demise of, do PhD under, etc. In the GQA grammar they are referred
as idiomatic VPSlashChunks (IVPS).

Similarly to verb phrases, participial constructions (e.g. located at, followed by,
starring in, etc.), are also learnt from the training sets and stored in the Functions
database. An exception is the most common model past participle + by, when the

2 Following the logic of the RGL grammar, in order to form a VPChunk, a
V2 (two-place verb) is turned into the intermediate category VPSlashChunk
(V2_to_VPSlash : V2 — VPSlashChunk) and then is complemented by a noun
phrase, in our case — Entity (VPSlash_to VPChunk : VPSlashChunk — Entity —
VPChunk). A VPSlashChunk can be also formed by a participial construction (e.g.
BeDoneBy VPslash : Participle2 — VPSlashChunk).

GQA: Grammatical Question Answering for RDF Data 9

verb that the participle is derived from already exists in Functions, e.g. written by
in the question What are the movies written by Nick Castle? The properties that
written by refers to are the same as those of the verb write, except that we need
to carry out the inverse search, since now the author is known and the objects in
question are subjects of RDF triples, not values, as with the verb.

3.6 Relative Clause

Below are examples of common rules building relative clauses in the GQA gram-
mar. Words belonging to elements of relative clauses are in square brackets:
— who/that/which + verb phrase
WhoVP_relcl : VPChunk -> RelCl
Who are the people who [influenced the writers of Evenor|?
— whose + property + is/are + entity
WhosePropIsX_relcl : Property -> Entity -> RelCl
What is the city whose [mayor] is [Giorgos Kaminis|?
— whose + property + verb phrase
WhosePropVP_relcl : Property -> VPChunk -> RelCl
List the movies whose [editors] [are born in London|.
— where + entity + verb phrase
WhereXVP_relcl : Entity -> VPChunk -> RelCl
Where was the battle fought where [2nd Foreign Infantry Regiment]
[participated]?

3.7 Complex Entity

Some complex constructions can perform the grammatical functions of entities.
The most important of them in the GQA grammar are:

— homogeneous simple entities connected with the conjunction and. They are
built through the rule:
EntityAndEntity : Entity -> Entity -> Entity ;
so that the corresponding branch of the tree for the question In which team
did Dave Bing and Ron Reed started their basketball career? looks like:
EntityAndEntity (twoWordEnt "Dave" "Bing") (twoWordEnt "Ron"
"Reed"),

— a property of an entity:
PropOfEnt_to_Entity : Property -> Entity -> Entity
What is the alma mater of the successor of F. A. Little, Jr.?
PropOfEnt_to_Entity successor_0 (fourWordEnt "F." "A."
"Little," "Jr.")

— a simple entity followed by some property:
EntProp_to_Entity : Entity -> Property -> Entity
Name Ivanpah Solar power facility owner.
EntProp_to_Entity (fourWordEnt "Ivanpah" "Solar" "power"
"facility") owner_0.

— a class with a relative clause:
Class_to_Ent : ClassChunk -> RelCl -> Entity

10 E. Zimina et al.

What are the notable works of the person who produced Queer as Folk?
Class_to_Ent (Class_Chunk Person_Class) (WhoVP_relcl
(VPSlash_to_VPChunk (V2_to_VPSlash produce_V2) (threeWordEnt
"Queer" "as" "Folk")))

3.8 Question

A question’s type is determined by the topmost rule in its parse, constructing the
category Q. Currently the GQA grammar has 53 question-building rules, such as:

WhoVP : VPChunk -> Q ;
Who [developed Google Videos]?

WhereIsXDone : Entity -> V2 -> Q ;
Where was [WiZeefa] [founded]?

WhatPropOfEntIsPropOfEnt : Property -> Entity -> Property ->
Entity -> Q ;
Which [home town] of [Pavel Moroz| is the [death location] of [Yakov Estrin]?

WhatIsClassRelCl : ClassChunk -> RelCl -> Q ;
What are the [schools] [whose city is Reading, Berkshire|?

WhatClassVPAndVP : ClassChunk -> VPChunk -> VPChunk -> Q ;
Which [royalty] [was married to ptolemy XIII Theos Philopator] and [had mother
named Cleopatra V]?

Note that structural words (who, that, is, the, an, etc.) are included only in
the linearisation definitions of the rules and are not “visible” in parse trees, which
is one of the main distinctions of our conceptual grammar from the “linguistic”
RGL grammar. Certain words are made optional, for example, different in Count
the different types of Flatbread.

One could also notice that the GQA grammar involves chunks, i.e. grammati-
cally independent elements, which leave a possibility for ungrammatical construc-
tions, e.g. Which are the television show which have been created by Donald
Wilson? This example would have the same parse tree as a question Which is an
television shows which was created by Donald Wilson?

4 Parse Analysis and Answer Extraction

4.1 Finding the Best Parse

The GQA grammar is ambiguous, i.e. a question can have several parses. One
reason is that the grammar can consider a row of up to 10 tokens as an entity.
For example, the phrase the designer of REP Parasol can be interpreted as

PropOfEnt_to_Entity designer_0 (twoWordEnt "REP" "Parasol"),

meaning that the system detected the entity REP Parasol and its property de-
signer. At the same time, the system can output an alternative reading

GQA: Grammatical Question Answering for RDF Data 11

fiveWordEnt "the" "designer" "of" "REP" "Parasol",

which would not allow us to resolve the reference correctly. Thus, in choosing the
parse that is further passed for interpretation we prioritise the one that has the
least quoted strings in it. If this selection still gives us two or more parses with
an equal number of “unresolved” strings (that is, components of entity names),
we apply other prioritisation rules, e.g. preference of idiomatic constructions,
class names over property names (which can sometimes coincide), and ontology
property names over infobox property names (ontology properties are used in the
Functions database as keys).

4.2 Unfolding the Parse and Querying the Index

The analysis of a selected parse starts from detecting the top function, determin-
ing the question type, and its arguments. Each argument is analysed separately,
going from the outer function to the innermost one. For example, the best parse of
the question What are the awards won by the producer of Elizabeth: The Golden
Age? looks like:

WhatIsX (Class_to_Ent (Class_Chunk Award_Class) (WhoVP_relcl
(VPSlash_to_VPChunk (BeDoneBy_VPslash (DoneBy_PP win_V2)
(PropOfEnt_to_Entity producer_0 (fourWordEnt "Elizabeth:" "The"
"Golden" "Age")))))).

The innermost components of the parse are the property producer and entity
Elizabeth: The Golden Age. The system looks for the entity’s link, then checks
that it contains the producer property. If not, the system tries to check if the
entity is ambiguous and look through other readings. If the property is found, its
value (another entity link(s)) is passed to the next level, where we look for the
property award or awards. Thus, we “unfold” the parse layer by layer, starting
from the inner components and making queries to DBpedia, so that we can be
sure that the search is conducted in the right direction.

4.3 Spell Checking

GQA employs a string matching algorithm to tackle spelling errors in input ques-
tions. If the system cannot find a DBpedia page for a phrase that it considers as an
entity name, it uses closest match by an approximate string matching method? to
find the most likely entity page. In future we are planning to improve entity res-
olution by employing entity linking systems, such as DBpediaSpotlight [7] and
FOX [14] (for a survey on entity linking and resolution, see [20]).

If the answer is still not found, the system tries to match question words
against the GQA grammar’s vocabulary (about 2500 words). For question words
not found in the vocabulary, the system takes the one having the closest match to
a vocabulary word by the string matching method, and corrects it to that match.

3 get_close_matches in Python’s difflib finds matches, ratio computes distances.

12 E. Zimina et al.

5 Testing

The GQA system was tested on the Scalable Question Answering Challenge
(SQA) over Linked Data training set [15]. Participants of the SQA challenge
are provided with an RDF dataset (DBpedia 2016-04) and a large training set
(5000 questions) of questions with corresponding correct answers and SPARQL
queries retrieving those answers. The evaluation of performance is based both on
the number of correct answers and time needed.

The GQA system’s performance results are presented in Table 1.

Table 1. Performance of GQA over the SQA training test set

Number Questions |Questions Answered
of Questions| Answered Correctly Precision
5000 1384 (27.68%) 1327 (26.54%) 95.88%

Table 2. The correlation of simple and complex questions answered by GQA

Simple | Complex

Simple
Questions
Answered

Complex
Questions
Answered

Questions
Answered
Correctly

Questions
Answered
Correctly

Simple
Questions
Precision

Complex
Questions
Precision

520

864

484

843

93.08%

97.57%

The majority of questions in the SQA task (about 68%) can be considered
as complex questions, i.e. those questions whose SPARQL answers involve more
than one RDF triple. The GQA system managed to correctly answer 484 simple
questions (36.47% of the number of correctly answered questions) and 843 com-
plex questions (63.53% of the number of correctly answered questions) (Table 2).
Complex questions sometimes can seem confusing even for a human:

— How many other architect are there of the historic places whose architect is
also Stanford White?

— How many TV shows were made by someone who was associated with Lewis
Hamilton?

— Which siler medalist of the Tennis at the 2012 Summer Olympics Men’s sin-
gles was also the flagbearer of the Switzerland at the 2008 Summer Olympics?
(sic)

The reason for the relatively modest score for simple question answering is the
system’s current inability to analyse previously unseen formulations. However, if
the system managed to output some answer, it was almost always correct, thus
gaining the precision of 95.88%. The rare mistakes in the output queries were
mostly related to incorrect entity resolution.

Further analysis of the output revealed that the GQA system often has a
stricter approach to answer selection than the one used in the ground truth answer
SPARQL queries. This is mostly related to class checking: whenever the GQA
system detects some class in the parse, it outputs only those entities that belong
to this class, whereas it is not always true in the SQA training set. For example,

GQA: Grammatical Question Answering for RDF Data 13

the question Which politician is currently ruling over Rishkiesh? (sic) has the
answer hitp://dbpedia.org/resource/Indian_ National Congress, which does not
belong to the Politician class. Another example is the question What are the
beverages whose origin is England? having the SPARQL query

SELECT DISTINCT ?uri WHERE {?uri <http://dbpedia.org/ontology/
origin> <http://dbpedia.org/resource/England>},

which outputs everything that originated in England, not only beverages. We
did not check all 5000 questions of the training set, but at least found 3 similar
mistakes in the first 100 questions.

Correctly answered questions took 0.2-1 seconds in general. Answering ques-
tions with highly ambiguous elements could take up to 45 seconds. About 10
seconds was needed each time when the system failed to produce an answer.

On the whole, testing proved our assumption that the main shortcoming of
the GQA system is its focus on the controlled language, which could be improved
by some methods that tolerate broader variation of question wording, e.g. lexical
matching of DBpedia properties and question tokens excluding entity names,
which was implemented in [21]. At the same time, the grammatical approach
can be quite reliable in defining the structure of a question, especially if it is
syntactically complex.

6 Related Work

Numerous attempts have been made to develop question-answering systems in-
volving various KBs and techniques: learning subgraph embeddings over Free-
base, WikiAnswers, ClueWeb and WebQuestions [4], viewing a KB as a collec-
tion of topic graphs [29], learning question paraphrases over ReVerb [12], using
domain-specific lexicon and grammar [27], automated utterance-query template
generation [1], using multi-column convolutional neural networks [10], etc. A num-
ber of efforts were made to develop semantic parsing-based QA systems [3, 11].

Our idea of employing GF in question answering was inspired by the systems
squall2sparql [13] and CANaLI [18], which got the highest scores in answering
English language questions in the multilingual tasks of QALD-3 and QALD-6 [19]
respectively. These systems accept questions formulated in a controlled natural
language, which reduces ambiguity and increases the accuracy of answers. How-
ever, this approach requires manual reformulation of questions into the format
acceptable for the systems. We develop a more extensive controlled language,
which tolerates various question formulations, making the question answering
process totally automatic.

GF was successfully applied in the QALD-4 question answering challenge for
Biomedical interlinked data [17]. Van Grondelle and Unger [28] exploited GF in
their paradigm for conceptually scoped language technology, reusing technology
components and lexical resources on the web and facilitating their low impact
adoption. GF was also used to convert natural language questions to SPARQL
in the English [6] and Romanian cultural heritage domain [16].

14 E. Zimina et al.

7 Conclusion

GQA is an attempt to use the grammatical approach in resolving mostly com-
plex, syntactically rich questions and converting them into conceptual parses,
which then can be mapped on to DBpedia components. The approach involving
controlled natural language, on the one hand, increases the probability of un-
derstanding questions accurately and retrieving correct answers. On the other
hand, one would never foresee all possible formulations of natural language ques-
tions, even having large training sets at one’s disposal. Nevertheless, our approach
requires no manual reformulation of individual questions, unlike some other con-
trolled language systems. In the future we plan to develop additional methods to
provide better semantic analysis. Moreover, the system needs more sophisticated
entity linking methods, spell checking techniques, and the implementation needs
to be improved to utilise parallel computing in a multi-server, multi-processor en-
vironment. In addition, we are planning to exploit GF’s multilinguality facilities
and extend the system by adding new languages.

References

1. Abujabal, A., Yahya, M., Riedewald, M., Weikum, G.: Automated template gener-
ation for question answering over knowledge graphs. In: WWW?’17, pp. 1191-1200.
New York (2017).

2. Apache Lucene, http://lucene.apache.org/. Last accessed 15 Jun 2018.

3. Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on Freebase from
question-answer pairs. In: EMNLP 2013, pp. 1533-1544 (2013).

4. Bordes, A., Chopra, S., Weston, J.: Question answering with subgraph embeddings.
In: Computer Science, pp. 615-620 (2014).

5. Bringert, B., Hallgren, T., Ranta, A.: GF Resource Grammar Library: Synop-
sis, http:/ /www.grammaticalframework.org/lib/doc/synopsis.html. Last accessed 15
Jun 2018.

6. Damova, M., Dannells, D., Enache, R., Mateva, M., Ranta, A.: Natural Language
Interaction with Semantic Web Knowledge Bases and LOD. In: Towards the Multi-
lingual Semantic Web, Paul Buitelaar and Philip Cimiano, eds. Springer (2013).

7. DBpediaSpotlight, https://www.dbpedia-spotlight.org/. Last accessed 15 Jun 2018.

8. DBpedia version 2016-04, http://wiki.dbpedia.org/dbpedia-version-2016-04. Last
accessed 15 Jun 2018.

9. Diefenbach, D., Singh, K., Maret, P.: WDAqua-core0: A Question Answering Compo-
nent for the Research Community. In: Semantic Web Challenges, pp. 84-89. Springer
International Publishing (2017).

10. Dong, L., Wei, F., Zhou, M., Xu, K.: Question answering over Freebase with multi-
column convolutional neural networks. In: Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing, pp. 260-269 (2015).

11. Dubey, M., Dasgupta, S., Sharma, A., Héffner, K., Lehmann, J.: AskNow: A Frame-
work for Natural Language Query Formalization in SPARQL. In: The Semantic Web.
Latest Advances and New Domains, pp. 300-316 (2016).

12. Fader, A., Zettlemoyer, L., Etzioni, O. Paraphrase-driven learning for open ques-
tion answering. In: Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics, pp. 1608-1618 (2013).

GQA: Grammatical Question Answering for RDF Data 15

13. Ferré, S.: squall2sparql: a translator from controlled English to full SPARQL 1.1.
In: Work. Multilingual Question Answering over Linked Data (QALD-3). Valencia,
Spain (2013).

14. FOX: Federated knOwledge eXtraction Framework, http://fox-demo.aksw.org/.
Last accessed 15 Jun 2018.

15. LC-QuAD: A Corpus for Complex Question Answering over Knowledge Graphs,
ISWC 2017, https://project-hobbit.eu/challenges/sqa-challenge-eswc-2018/. Last
accessed 15 Jun 2018.

16. Marginean, A., Groza, A., Slavescu, R.R., Letia, I.A.: Romanian2SPARQL: A
Grammatical Framework approach for querying Linked Data in Romanian language.
In: International Conference on Development and Application Systems (2014).

17. Marginean, A.: Question answering over biomedical linked data with Grammatical
Framework. Semantic Web, 8(4):565-580, 2017.

18. Mazzeo, G. M., Zaniolo, C.: Question Answering on RDF KBs using controlled
natural language and semantic autocompletion. In: Semantic Web 1, pp. 1-5. IOS
Press (2016).

19. Question Answering over Linked Data (QALD), https://qald.sebastianwalter.org/.
Last accessed 15 Jun 2018.

20. Christophides, V., Efthymiou, V., Stefanidis, K.: Entity Resolution in the Web of
Data, Synthesis Lectures on the Semantic Web: Theory and Technology, Morgan &
Claypool Publishers, 2015.

21. Radoev, N., Tremblay, M., Gagnon, M., Zouaq, A.: AMAL: Answering French Nat-
ural Language Questions Using DBpedia. In: Semantic Web Challenges, pp. 90-105.
Springer International Publishing (2017).

22. Ranta, A.: Grammatical Framework Tutorial, http://www.grammaticalframework.
org/doc/tutorial /gf-tutorial.html. Last accessed 15 Jun 2018.

23. Ranta, A.: Grammatical Framework: Programming with Multilingual Grammars.
CSLI Publications, Stanford (2011).

24. Roy, S. B., Stefanidis, K., Koutrika, G., Lakshmanan, L. V. S.; Riedewald, M.:
Report on the Third International Workshop on Exploratory Search in Databases
and the Web (ExploreDB 2016). SIGMOD Record, 45(3), pp. 35-38 (2016).

25. Stefanidis, K., Fundulaki, I.: Keyword Search on RDF Graphs: It Is More Than Just
Searching for Keywords. In: ESWC, 2015.

26. SPARQL 1.1 Overview — W3C, http://www.w3.org/TR/sparqll1l-overview/. Last
accessed 15 Jun 2018.

27. Unger, C., Cimiano, P.: Pythia: compositional meaning construction for ontology-
based question answering on the Semantic Web. In: Natural Language Processing
and Information Systems, pp. 153-160. Springer Berlin Heidelberg (2011).

28. Van Grondelle, J., Unger, C. A three-dimensional paradigm for conceptually scoped
language technology. In: Towards the Multilingual Semantic Web, pp. 67-82. Springer
Berlin Heidelberg (2014).

29. Yao, X., Van Durme, B.: Information extraction over structured data: Question an-
swering with Freebase. In: Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics, pp. 956-966 (2014).

