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Abstract. The user reviews of mobile apps are important assets that reflect the
users’ needs and complaints about particular apps regarding features, usability, and
designs. From investigating the content of such reviews, the app developers can ac-
quire useful information guiding the future maintenance and evolution work. Pre-
vious studies on opinion mining in mobile app reviews have provided various ap-
proaches to eliciting such critical information. A particular update of an app can
provide changes to the app that result in users’ reversed opinions, as well as, spe-
cific new complaints or praises. However, limited studies focus on eliciting the user
opinions regarding a particular mobile app update, or the impact the update im-
poses. In this paper, we propose a method for systematically studying and analyz-
ing the evolution of the users’ opinions taking into consideration a set of mobile
app updates. For doing so, we compare the topics appearing in the users’ reviews
before and after the updates. We also validate the method with an experiment on an
existing mobile app.

1. Introduction

The increasing number of smartphone users has led to a continuous increase in the num-
ber of mobile apps and their overall usage. Users browse and download apps via differ-
ent digital distribution platforms, and these platforms also provide an important channel
for users to provide feedback to the app developers. Users can rate a release and express
their opinions on the release they are using at the time of submitting a review, as in tra-
ditional recommender systems [13,16]. Along with frequent release updates through the
distribution platforms, the reviews accumulate the bugs, desired features, the comparison
and users’ attitude toward the app informally, and form a useful resource for analyzing
change requests in the app maintenance phase.

Existing studies have proposed different approaches to identifying changes [22,26].
One particular example is to identify change requests from user reviews for mobile
app maintenance. With various opinion mining techniques, such as natural language
processing (NLP), sentiment analysis (SA) and supervised learning, many studies have
been conducted regarding the classification of reviews towards different issue perspec-
tives [19, 21]. Other perspectives, such as user preferences, entities analysis, app evalu-
ation, user satisfaction, the relation between download and rating, feature extraction and
review prioritization, have also been widely studied [5,7,8,12,14,15,18]. However, lim-
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ited studies focus on the use of such methods in opinion mining on particular updates
of a mobile app and the impact on the app’s updates in the following releases, despite
the importance of such information. It is unclear how bugs and requests in user reviews
are addressed in the follow-up releases and how users’ attitude towards a particular issue
changes when new updates are released.

In this paper, we investigate the correlation between users’ positive and negative
reviews before and after a sequence of apps’ releases. We consider two dimensions: time
and sentiment. Specifically, we divide user reviews based on a set of major updates and
distinguish them between those precede and follow the particular updates. Each group
of reviews is further divided into positive and negative ones using sentiment analysis.
We propose a way to measure the similarity of each group of reviews. The measurement
reveals the similarity and changes between different groups of reviews and helps to gain
insight into the app’s change requests in the maintenance phase. Besides understanding
the main issues in user reviews, it helps developers be aware of the users’ opinions on
particular updates and guides them proactively to address the most important issues early.

2. Method Description

2.1. Preliminaries

This method aims to detect the evolving topic trend regarding a particular app by in-
vestigating the correlation between its users’ positive and negative reviews before and
after each major update within a sequence of updates through the app maintenance life
cycle. Such correlation shall show the degree to which the users’ comments are reflected
in the sequence of updates and such updates are accepted by the users. The factors that
influence and reflect such correlation include the main topics of the reviews between ev-
ery two updates, the sentiment of those reviews, and the topics similarities before and
after each update. Next, we illustrate how to detect the correlation via investigating these
factors.

Let R be a collection of user reviews for a particular mobile app A, covering the
time period Ttime = [tis, tie] (where tis, tie are two different time points with tis < tie).
Therein, each review ri ∈ R is associated with a particular time when ri is published.
Let U be the set of updates released by the app developers within the time period Ttime.
Meanwhile, each update is also associated with a time point ti, reflecting the time ui is
announced and delivered. Furthermore, we consider the review set Ri, of which each ri
is published within [ti, ti+1], as the collection of reviews regarding the update ui. Hence,
for the n updates {ui|i ∈ N,k ≤ i < k+ n} where k ≥ 1 and n > 0 for the app A within
period T, the review set R can be divided into n+1 subset where each Ri ⊆ R is the set
of reviews commenting on the according ui. R0 is the review set given before the first
update of A. For each review sentence r j ∈ Ri, a sentiment score shall be calculated and
assigned to r j, whose sentiment is either positive or negative. In this way, by identifying
the sentiment of each individual review in Ri, we can divide Ri into a positive review set
R+

i and a negative one R+
i , where R+

i ∪R−i = Ri and R+
i ∩R−i = /0.

When modeling topics of each review set, we assign T+
i and T−i as the topic set for

the positive and negative reviews. Therefore, we investigate the merits and issues of a
particular update ui by compare the similarities and changes between T+

i−1, T−i−1, T+
i , and
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Figure 1. Hypotheses for the updates and the topic change of user reviews.
T−i . Furthermore, by investigating such topic similarity and changes regarding each ui,
we shall be able to observe the users’ opinion change on the merits and issues within a
given period of time. Therefore, given a set of updates U = {u1, u2, ... un} with the ac-
cording review sets R+

1 , R−1 , R+
2 , R−2 , ... R+

n , R−n , finding the topic similarity correlations
throughout T+

1 , T−1 , T+
2 , T−2 , ... T+

n , T−n shall reflect the evolving user opinions concern-
ing various aspects of the app within a particular period of time. Therefore, provided a
set of topic {t1, t2, ... ti ... tn|ti ∈ Ti}, where each ti is similar to ti+1 (1≤ i < n), then such
topic set is defined as a similar topic chain. We furthermore propose three hypotheses as
follows.

• H1. The similar topic chains through T+
i , T+

i+1, ... T+
n reflect the merits and users’

praise regarding a sequence of app A’s updates ui, ui+1, ... un.
• H2. The similar topic chains through T−i , T−i+1, ... T−n reflect the issues and users’

complaints regarding a sequence of app A’s updates ui, ui+1, ... un.
• H3. The similar topic chains containing topics from both T+

i , T+
i+1, ... T+

n and T−i ,
T−i+1, ... T−n reflect the changing user opinions (positive to negative, or negative to
positive) regarding particular aspects of app A.

Thus, the results obtained from these hypotheses for a certain period of updates ui, ui+1,
... un provide the following information: 1) the merits and users’ praise for the app A,
2) the issues and users’ complaints for the app A, and 3) the evolving of users opinions
regarding particular aspects of the app A.

2.2. Sentiment Classification

The aim of sentiment classification in this method is to classify each review set Ri into
two subsets, i.e., R+

i and R−i . Herein, R+
i denotes the set of positive reviews from Ri,

and R−i denotes the set of negative reviews. Therefore, each r j in Ri shall be determined
whether it is positive or negative.

To do so, we assign a sentiment score to each review by exploiting a robust tool for
sentiment strength detection on social web data. As each r j can be seen as a list of words
Wj, we first select a lexicon that will determine the sentiment score of each word wz in Wj.
The lexicon for sentiment analysis is a list of words used in the English language, each of
which is assigned with a sentiment value in terms of its sentiment valence (intensity) and
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polarity (positive/negative). To determine the sentiment of words, we assign a rational
value within a range to a word. For example, if the word “okay” has a positive valence
value of 0.9, the word “good” must have a higher positive value, e.g., 1.9, and the word
“great” has even higher value, e.g., 3.1.

Furthermore, the lexicon set shall include social media terms, such as Western-style
emoticons (e.g., :-)), sentiment-related acronyms and initialisms (e.g., LOL, WTF), and
commonly used slang with sentiment value (e.g., nah, meh).

With the well-established lexicon and a selected set of proper grammatical and syn-
tactical heuristics, we shall then be able to determine the overall sentiment score of a
review. Namely, the sentiment score of a review r j is equal to S j, where S j ∈ (−1,1).
The grammatical and syntactical heuristics are seen as the cues to change the sentiment
of word sets. Therein, punctuation, capitalization, degree modifier, and contrastive con-
junctions are all taken into account. For example, the sentiment of “The book is EX-
TREMELY AWESOME!!!” is stronger than “The book is extremely awesome”, which
is stronger than “The book is very good.”.

With both the lexicon value for each word of the review and the calculation based on
the grammatical and syntactical heuristics, we can then assign unique sentiment values
to each review. That is, each review r j is classified into positive, neutral or negative, as
follows:

r j is

positive, if 0 < S j < 1,
neutral, if S j = 0,
negative, if −1 < S j < 0.

Overall, each review set Ri is divided into R+
i , R0

i , and R−i , denoting the positive,
neutral and negative review sets. By experimentally observing, R0

i contains a large num-
ber of reviews with also useful information. Therefore, we further classify R0

i into pos-
itive and negative using the Naive Bayes Classifier with the training data from R+

i and
R−i . R0

i is classified into R0+
i and R0−

i , which in turn, are added to R+
i and R−i , respec-

tively. The reason to perform supervised classification after sentiment analysis instead
of directly applying classification is twofold. Firstly, manually creating training data is
time-consuming and less accurate than using existing sentiment analysis methods. Sec-
ondly, training the sentiment classified reviews will provide domain specific and reliable
results.

2.3. Topic Analysis

After dividing the review sets Ri into R+
i and R−i , we elicit the main topics from each of

the classified review sets by exploiting the Latent Dirichlet Allocation (LDA) method [3].
First, we consider each review sentence r j in a particular set of reviews as a list of
words Wj, where the sequence of the words is not recorded. The number of topics in
this review set is set as t. Presumably, there is a distribution for the probability of a
particular word appears in a particular topic, when there is also one for that of a par-
ticular review of a topic. We build the set of Review− Topic, where each word of
each review is assigned with a topic out of the t topics. As preparation, we define
Review−topic−numbers, Topic−words−numbers, and Topic−numbers denoting the
number of occurrence of each topic in each review, the number of occurrence of each
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word in each topic, and the number of words in each topic, respectively. For example,
Review− topic−numbers(r j,k) denotes the number of occurrences of topic k in review
r j. Then, we randomly assign each word wz of each review r j with a topic tk. Accord-
ingly, the Review− topic− numbers, Topic−words− numbers, and Topic− numbers
will be updated as the referencing weight of the distribution of the words for each topic.
Then iteratively, for each word, we assign a new topic based on such weight of distribu-
tion and adjust the weight with the Review−topic−numbers, Topic−words−numbers,
and Topic− numbers for the next iteration. After a given number of iteration, t topics
will be determined by the Topic−words−numbers, which is the number of occurrences
of the words in each topic. Each tk is then denoted by the most common keywords used
in this topic. Then, the set of topics T is returned as a result. For the review sets R+

i , R−i ,
R+

i−1 and R−i−1, we will have the topics sets T+
i , T−i , T+

i−1 and T−i−1 accordingly.

2.4. Calculating Topics Similarities

Based on the topic sets T+
i and T−i elicited from the review sets R+

i and R−i ,we further
analyze the similarities between the individual topics between each pair of the topic sets.
As the result from the previous topic analysis, each topic set T encompasses k topics,
each of which is represented by the list of the most possible appearing keywords. Thus,
each topic set T with k topics each of which is represented by w keywords, can be denoted
as:

T =

kw1,1 kw1,2 ... kw1,w
... ... ... ...

kwk,1 kwk,2 ... kwk,w


with each ti ∈ T can be denoted as [kwi,1,kwi,2, ...kwi,k]. To compare the similarity be-
tween two topic sets, each consisting of k topics, we compare all pairs of topics. Due to
the fact that each topic is represented as a set of keywords, the similarity of two topics
shall be denoted by the common keywords of these topics. Hence, an easy way for cal-
culating the similarity between any two topics ti and t j is by using the Jaccard similarity.
This similarity function reflects the percentage of the common keywords of the two sets
in the whole keywords set of the two: J(ti, t j) =

|ti∩t j |
|ti∪t j | .

On the other hand, the probability (pi j) of each keyword kwi j appearing in topic ti
is different. Hence, despite J(ti, t j) = J(ti, tk), when the probability value of the common
keywords varies, the topic similarities for t j, tk towards ti can still differ. Therefore, we
propose a modification of the previously described Jaccard similarity calculation taking
into account the probability of the keywords, named as the Jaccard Extended Similarity.
The c common keywords of ti and t j include [kwi j,1,kwi j,2, ...kwi j,c], when the according
probability list in ti and t j is [pi,1, pi,2, ...pi,c] and [p j,1, p j,2, ...p j,c]. The Jaccard Extended
Similarity is then calculated as follows:

JE(ti, t j) =
∑

c
x=1

pi,x+p j,x
2

∑
c
x=1

pi,x+p j,x
2 +∑

k
x=c+1 pi,x +∑

k
x=c+1 p j,x

.

The probability for each keyword of any topic belongs to (0,1). Hence, for this for-
mula, when ti and t j contain more common keywords, the numerator increases mono-
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tonically, and the denominator decreases monotonically. Therefore, JE(ti, t j) increases
when ti and t j have more keywords in common. In addition, when the probability of the
common keywords increases, ∑

c
x=1

pi,x+p j,x
2 increases. Because the denominator is greater

than the numerator, and both are greater than 0, JE(ti, t j) increases when the probabilities
of the common keywords of ti and t j increase. In this way, JE takes into account both the
number of common keywords and the probabilities of such keywords.

2.5. Identifying Matching Topics

After computing similarities between pairs of review topics, we shall also identify which
are the matching topics when cross-comparing the topics of the topics sets T+

i , T−i , T+
i−1

and T−i−1. Hence, to identify the matching topics between two review topic sets Ta and Tb,
the aim is to identify all the topic pairs (tai, tb j), tai ∈ Ta and tb j ∈ Tb, that have the highest
similarity, and contain the unique tai and tb j which are both different from those of the
other selected pairs. We set a threshold similarity value, so that only the topic pairs that
have a similarity value greater than it can be considered as similar. Given that several
topics are similar to multiple other topics, we apply an algorithm to select the unique
similar topic pairs when comparing two review topic sets, Ta and Tb.

Algorithm 1 Matching Topics Identification

1: procedure MATCHING TOPICS IDENTIFICATION
2: k← number of topics
3: Ta←{ta1, ta2, ..., tai, ..., tak}
4: Tb←{tb1, tb2, ..., tb j, ..., tbk}
5: si j ← Similarity(tai, tb j)
6: For i, j ∈ {1,2, ...,k}
7: if si j ≥ threshold value then
8: S← si j

9: While len(S)> 0
10: if Only 1 Max(S) in S then
11: P.append((tax, tby)) where Similarity(tax, tby) = Max(S)
12: S - (S ∩ ({sx1,sx2, ...,sxk} ∪ {s1y,s2y, ...,sky}))
13: if More than 1 Max(S) in S then
14: P.append ((tax, tby)) where Similarity(tax, tby) = Max(S) &

Sum({sx1, ...,sxk,s1y, ...,sky})is the minimum

15: Return P

The aim of Algorithm 1 is to select only the similar topic pairs with the highest
similarity value. When a particular topic pair is selected, the other pairs which either
of these two selected topics is also pairing with will be ignored. With this pair and the
ignored ones deducted from the original selected similar topic pairs, we continuously
select the one with highest similarity value, until all selected pairs are unique without
any selected topic being simultaneously similar to more than one topic. Especially, if at
a certain selecting iteration, there is a tie on the highest similarity value, we select the
pair of topics that are the least similar to the rest of the topics, by calculating the sum of
all the similarity values with either topic and selecting the one with the minimum sum
value.
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3. Case Study

3.1. Preprocessing

Before starting the experiment with the proposed method, preprocessing on the raw re-
view data is required. The whole preprocessing work can be divided into four individual
steps as follows.
Filtering non-English reviews. The raw review data may contain a number of review
items that are not written in English, which needs to be filtered out. Also, similar to
social media text, user reviews usually contain many commonly used slurs that are not
regular English vocabularies. Our goal is to not filter out these words, as they likely con-
tain sentiment related information, without which shall influence our experiment results.
Overall, we screen out the non-English review sentences using Langdetect2, a convenient
language detecting package for Python language. Compared with PyEnchant3, another
language detecting package, Langdetect enables determining the language of text on sen-
tence level. It shall remain the review data containing such English slurs.
Focusing on sentence-level granularity. Because each user review can contain more
than one sentence, a multi-sentence review can contain multiple meanings, one for each
sentence. Thus, we divide each review from a review set Ri into individual sentences.
Hereafter, we use r j to denote a review sentence in Ri. We use the sentence tokenizer
feature from the NLTK4 python package, with a further checking on the legitimacy of
the sentences.
Sentiment Classification with VADER. To perform sentiment analysis on the collected
app reviews, we select the Valence Aware Dictionary for sEntiment Reasoning (VADER)
approach [10]. Compared with other sentiment analysis tools, VADER has a number of
advantages regarding this study. Firstly, the classification accuracy of VADER on sen-
timent towards positive, negative and neutral classes is even higher than individual hu-
man raters in social media domain. In addition, its overall classification accuracies on
product reviews from Amazon, movie reviews, and editorials from NYTimes also out-
perform other sentiment analysis approaches, such as SenticNet [6], SentiWordNet [1],
Affective Norms for English Words [4], and Word-Sense Disambiguation [25], and run
closely with the accuracy of an individual human. On the other hand, VADER approach
is integrated into the NLTK package, which can be easily imported and performed using
Python.
Filtering stop-words and non-verb-or-nouns and Stemming. In addition, the col-
lected English review sentences are also transformed into lower cases, screened with
stop-words, and stemmed before topic modeling. In order to obtain more meaningful
topic modeling results, we add the words that connect to only general information but
have a significant appearing rate in the reviews to the list of stop words. For example, the
name of the app and the word app are of neither help towards topic modeling nor towards
sentiment analysis. Furthermore, because the sentiment analysis is done previously, we
select only the nouns and verbs in the review sentence sets to enhance the analysis result.

2https://pypi.python.org/pypi/langdetect
3https://pypi.python.org/pypi/pyenchant/
4http://www.nltk.org
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3.2. Datasets

In this case study, we use the reviews submitted between 2016-09-13 and 2017-08-31
on the mobile app Whatsapp5 on Android platform. We collected 1,148,032 reviews,
which are then tokenized into 1,327,504 individual sentences. After eliminating the non-
English review sentences, we have 1,012,088 English review sentences as experiment
data.

We investigate the merits and issues concerning the major updates of Whatsapp re-
leased on Android platform. Within this period, 46 updates were released. On average,
the app has been updated nearly every 7 - 8 days with one major update in every 50 days.
By observing the content of each update from the given information on Google Play, we
find that some consecutive updates contain the same content based on their descriptions.
Therefore, we consider the first update of a set of updates which contain same descrip-
tions as a major update, with the rest of the updates as minor updates. Accordingly, seven
major updates are identified during the given period. They divided the review dataset into
seven parts. Each sub review set is seen as the reviews regarding one particular update.
Amongst the major updates of Whatsapp during this period, each update {u1, u2 ... u7}
provides unique changes in UI design and user experiences. By classifying all selected
review sentences into positive and negative using sentiment analysis and supervised clas-
sification with Naive Bayes Classifier, the number of review sentences in each segment
is listed in Table 1. Accordingly, the number of reviews for each review sets of R+

1 ∼ R+
7

and R−1 ∼ R−7 , are shown in the figure below. Overall, the total number of positive reviews
around the particular update is bigger than the number of negative reviews. Meanwhile,
the monthly review number increased sharply after this particular major update.

Table 1. The number of Positive and Negative reviews after each Update

u1 u2 u3 u4 u5 u6 u7

Release Date 16.9.13 16.10.11 16.12.1 17.3.14 17.4.18 17.5.17 17.7.13

Positive 39241 92222 246384 99889 50205 89766 72960 690667

Negative 15238 31674 165723 38174 18254 27646 24712 321421

Sum 54479 123896 412107 138063 68459 117412 97672 1012088

After sentiment analysis and classification, we perform the LDA topic analysis to
identify the topics of the review set R+

1 ∼ R+
7 and R−1 ∼ R−7 , in order to investigate

the users’ opinions concerning the update and further verify the previously proposed
hypothesis. To train the LDA topic models, we need to set the number of topics k. Based
on an experimentally study regarding the quality of the topics produced for different
k values, and select k = 10. Overall, for the collected 1,012,088 review sentences on
Whatsapp, we perform an LDA topic analysis on the review set. For each of the 14 sets
of review data, we use the Gensim6 topic modeling toolbox to train the 10-topic LDA
models. For the 14 LDA models, each individual topic is represented by 20 keywords.
Then, we assign each review sentence in the LDA models to the topic to which it has the
highest probability to belong.

5https://www.whatsapp.com/
6https://radimrehurek.com/gensim/
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3.3. Topic Evolution Analysis with Similar Topic Chains

Each topic contains 20 keywords. For every major update ui, there are four sets of as-
sociated reviews which results in four sets of topics, i.e., T+

i−1, T−i−1, T+
i , and T−i . We

assess the similarity of topics after the update ui, which provides 400 topics pairs. The
number of common keywords for those 400 pairs range from 0 - 14. Since it is difficult
to identify the topic content based on less than five keywords, we set an initial threshold
equal to 0.143 for the Jaccard Extended similarity value, meaning that we consider two
topics as similar only when they have five or more common keywords with the probabil-
ity of these keywords above average. Based on this threshold, we apply Algorithm 1 to
select the unique similar topic pairs in each of the four comparison sets (before and after
each update, positive and negative reviews). Part of the results are shown in Figure 2. In
Figure 2, positive topics are illustrated as blue circle while negative topic as red square.
For example, t+1,7 is denoted as a blue circle marked ”7” in column ”T1” when t−2,10 is
denoted as a red square marked ”10” in column ”T2”.

Figure 2. A Segment of the Topic Similarity Graph

We can firstly analyze the topic similarity between two sets of reviews. Based on
the common keywords of each identified similar topic pairs, we could extract the users’
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opinions regarding the particular update. For example, in Figure 2, we can identify that
t+1,7, t+1,9, and t+1,8 ∈ T+

1 are similar to t+2,2, t+2,1, and t+2,7 ∈ T+
2 respectively. The common

keywords for these three topic pairs are listed in Table 2. Therefore, these similar topic
pairs suggest that the users reflect positively regarding the four topics both before and
after Update 2 (Version 16.10.11), including the quality of video and voice call, asking
for fixing and updating themes and emoji feature, and, contacts and social group option
with picture sending feature. Similarly, by identifying the similar topic pairs (t−1,10, t−2,10),
(t−1,8, t−2,5), and (t−1,7, t−2,1), we can also conclude that the users are still not happy regarding
the function of contact group and its options, message sending and receiving, and the
quality of video calls after Update 2. Similarity, by analyzing the common keywords
between positive topics and negative topics, such as, (t+1,9, t−2,10) and (t−1,7, t+2,7) in Figure 2,
we can also identify the users’ opinion changes after Update 2. The common keywords
of topic pair (t+1,9, t−2,10) reflect that the users start to complain negatively concerning
the feature of sending image and picture in chat group after the update. The common
keywords of (t−1,7, t+2,7) then reflects users become more satisfied with the general call
feature as well as the video and voice quality.

Table 2. Common keywords of Similar Topic Pairs Regarding Update 2

Topic Pairs Common Keywords

(t+1,7, t+2,2) [’chang’, ’emoji’, ’fix’, ’plea’, ’pls’, ’theme’, ’updat’, ’want’]

(t+1,9, t+2,1) [’contact’, ’group’, ’option’, ’photo’, ’pic’, ’pictur’, ’send’, ’share’, ’want’]

(t+1,8, t+2,7) [’ad’, ’add’, ’call’, ’facil’, ’featur’, ’make’, ’need’, ’option’, ’qualiti’, ’video’, ’voic’]

(t−1,10, t−2,10) [’add’, ’contact’, ’group’, ’list’, ’option’, ’want’]

(t−1,8, t−2,5) [’come’, ’get’, ’messag’, ’open’, ’phone’, ’read’, ’receiv’, ’see’, ’seen’]

(t−1,7, t−2,1) [’call’, ’featur’, ’option’, ’qualiti’, ’video’, ’work’]

(t+1,9, t−2,10) [’contact’, ’group’, ’imag’, ’list’, ’option’, ’pictur’, ’send’, ’status’, ’want’]

(t−1,7, t+2,7) [’call’, ’featur’, ’make’, ’need’, ’option’, ’qualiti’, ’video’, ’voic’, ’work’]

Furthermore, by investigating the similar topic pairs throughout the evolution time-
line of a particular app, we can detect the evolution trend of the app. For example, from
Update 1 to Update 7, the positive opinion regarding each update can be reflected by
the common keywords of T+

1 and T+
2 to T+

6 and T+
7 . Therefore, the merit of the app

throughout these updates can be reflected by the similar topic chain shown in Table 3.

Table 3. Common keywords in a Positive Similar Topic Chain

Topic Pairs Common Keywords

(t+1,8, t+2,7) [’ad’, ’add’, ’call’, ’facil’, ’featur’, ’make’, ’need’, ’option’, ’qualiti’, ’video’, ’voic’]

(t+2,7, t+3,1) [’call’, ’facil’, ’make’, ’need’, ’qualiti’, ’vedio’, ’video’, ’voic’]

(t+3,1, t+4,3) [’call’, ’improv’, ’make’, ’need’, ’qualiti’, ’video’, ’voic’]

(t+4,3, t+5,10) [’call’, ’data’, ’improv’, ’make’, ’qualiti’, ’send’, ’video’, ’voic’]

(t+5,10, t+6,2) [’call’, ’group’, ’improv’, ’make’, ’qualiti’, ’send’, ’video’, ’voic’]

(t+6,2, t+7,3) [’call’, ’featur’, ’group’, ’make’, ’send’, ’video’, ’voic’]

From the similar topic pairs identified in Figure 2, we could claim that topic t+1,8, t+2,7,
t+3,1, t+4,3, t+5,10, t+6,2, and t+7,3 are all identified as similar to one another. The similarity is also
reflected by the common keywords listed in Table 3, based on which we could conclude
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from Update 2 to Update 7, the users constantly share positive opinions regarding the
video and voice call quality of the app, which verifies Similarly, the constant negative
opinions can be reflected by the common keywords of the similar negative topic chains
throughout updates. For example, topic t−1,10, t−2,10, t−3,8, t−4,8, t−5,7, t−6,1, and t−7,9 are identified
as similar (shown in Table 4). Such negative topic similarity chain reflects the users’
request for features regarding options of contact and status.

Table 4. Common keywords in a Negative Similar Topic Chain

Topic Pairs Common Keywords

(t−1,10, t−2,10) [’add’, ’contact’, ’group’, ’list’, ’option’, ’want’]

(t−2,10, t−3,8) [’add’, ’contact’, ’list’, ’option’, ’pictur’, ’remov’, ’see’, ’status’, ’want’]

(t−3,8, t−4,8) [’add’, ’featur’, ’need’, ’option’, ’photo’, ’put’, ’remov’, ’status’, ’stori’, ’text’]

(t−4,8, t−5,7) [’add’, ’featur’, ’option’, ’plea’, ’remov’, ’status’, ’stori’, ’text’]

(t−5,7, t−6,1) [’featur’, ’option’, ’peopl’, ’status’, ’want’]

(t−6,1, t−7,9) [’contact’, ’featur’, ’list’, ’peopl’, ’see’, ’seen’, ’status’, ’view’]

By investigating the update history of Whatsapp, we we can observe that the ”video
calling” feature was added to Whatsapp at Update 3 (Version 16.12.1). This can explain
why the common keyword ’call’ became the highest probable common keyword from
(t+2,7, t+3,1). On the other hand, Whatsappp added one update on ”WhatsApp Status: Post
photos, videos, and GIFs to your status and share with your contacts what’s going on
throughout your day. Status updates from your contacts appear in the Status tab, and
they’ll disappear after 24 hours. Long press on a contact’s name in the Status tab to mute
their updates.” in Update 4 (Version 17.3.14) and another update ”You can now send
multiple contact cards at once” in Update 5 (Version 17.4.18). This partially proves the
developers noticed the constant negative opinions of users shown from Table 4

Moreover, in Figure 2, we can also identify particular topics are considered similar
to one positive topic and one negative topic from the next review set simultaneously. For
example, t+3,10 is similar to both t+4,9 and t−4,5. From the common keywords of topic pair
(t+2,1, t+3,10), we can observe that the users share positive opinion regarding the feature
of contacting and chat groups. Then topic pair (t+3,10, t+4,9) contains common keywords
of [’add’, ’featur’, ’group’, ’make’, ’option’, ’person’, ’provid’, ’show’], when (t+3,10,
t−4,5) contains common keywords of [’ad’, ’contact’, ’group’, ’list’, ’peopl’, ’see’, ’seen’,
’show’]. These keywords suggest that after Update 4, a number of users are satisfied with
the chat group feature and options, when some users are not happy with the contact and
chat list. After Update 5, topic pair (t−4,5, t−5,2) suggests that the complaints regarding con-
tact and chat list continues until Update 6 where (t−5,2, t+6,3) suggests that the complaints
regarding contact and chat list is not significant any more. By investigating the update
history of Whatsapp, we can observe that in Update 6 (Version 17.5.17) the developers
added a feature ”Pin chats to the top of your chat list, so you can quickly find them. Just
tap and hold on a chat and tap the pin icon at the top of your screen”, which results in the
reduce in negative opinions regarding the chat list feature. It also verifies the existence
of the significant complaints before this update regarding this matter.
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4. Related Work

The spontaneous feedback from the users, i.e., the user reviews, helps effectively the
evolution of the target system, where a key to enable such feedback is to ease the users’
effort in composing and uploading it [23]. For the contemporary mobile apps, the app
distribution platforms, e.g., Apple AppStore, and Google Play, enable such spontaneous
reviews of the users and facilitate the developers in terms of maintaining and evolving
mobile apps [20]. Such feedback and reviews contain helpful information for developers
in terms of identifying missing features and improving software quality [9]. From those
review information, user requirements can be elicited continuously and, in a crowd-based
fashion [11, 24].

The reviews of the mobile app users reflect a variety of topics, which majorly cover
the perspectives of bug reports, feature requests, user experiences, solution proposal, in-
formation seeking and giving, and general ratings [17, 19, 21]. For such purpose, nat-
ural language processing (NLP), sentiment analysis (SA), and supervised learning are
the common techniques used to classify user reviews [19, 21]. According to recent stud-
ies, the combination of NLP and SA techniques has high accuracy in detecting useful
sentences [21]. These techniques are also used in many other studies in terms of review
opinion mining [7, 9, 15].

Many studies have contributed to the user opinion mining of mobile apps. Fu et
al. [8] proposes WisCom, which can detect why the users like or dislike a particular app
based on the users’ reviews throughout time and provide insights regarding the users’
concerns and preferences in the app market. Similar studies regarding mining informa-
tion from app stores data focus on different perspectives of the issues, e.g., the correla-
tions between ratings and download rank [14], ratings and API use [2], review classifi-
cation and useful sentences detection [21]. On the other hand, Chen et al. [7] provides
the AR-miner framework, which facilitates the informative reviews extraction, review
grouping based on topics, review prioritization and informative reviews presentation with
visualization. Guzman and Maalej [12] proposes an approach focusing on feature extrac-
tion and sentiment analysis, which facilitates the evaluation of individual app features.
Similarly, Iacob and Harrison [15] also focuses on the feature requests extraction but via
means of linguistic rules and LDA topic modeling.

Compared to the previously mentioned approaches in user review opinion mining,
our method aims towards the similar topic detection and analysis concerning not only
the trend in users’ opinions in general but also the specific users’ opinion changes at par-
ticular updates. Furthermore, we focus on the topic similarity of data segments, classi-
fied by sentiment analysis and supervised learning, which is different from the methods
mentioned above. It enables the developers to acquire the overall perspective regarding
the users’ opinions throughout the mobile app evolution phase, but also the information
regarding each individual update providing insights on the future updates.

5. Conclusion

In this paper7, we propose a method for analyzing the mobile apps user reviews for a
series of updates. After classifying the reviews before and after a particular update by

7The work was partially supported by the TEKES Finnish project Virpa D.
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positive and negative sentiment, we extract the topics of each segment. By comparing the
similarities of these extracted topics, we identify not only the positive and negative issues
reflected by these reviews regarding particular updates, but also the overall trend in users’
opinions regarding the app in general as well as regarding specific aspects. Overall, this
study is an exploratory investigation on using user review opinion mining techniques
in detecting update-specific issues and user opinion evolution. The future studies shall
extend the use of this method by taking into account other factors, e.g., the different app
categories, different platforms, etc. And different mining and analysis techniques will
also be taken into account. Furthermore, a mobile app evolution recommend system can
be developed based on this method to provided maintenance and evolution suggestions
to the developers regarding the continuous user opinion mining result.
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