
Nearest Keyword Search in XML Documents

Yufei Tao Stavros Papadopoulos Cheng Sheng Kostas Stefanidis
Department of Computer Science and Engineering

Chinese University of Hong Kong
New Territories, Hong Kong

{taoyf, stavros, csheng, kstef}@cse.cuhk.edu.hk

ABSTRACT
This paper studies the nearest keyword(NK) problem on XML doc-
uments. In general, the dataset is a tree where each node is asso-
ciated with one or more keywords. Given a node q and a keyword
w, an NK query returns the node that is nearest to q among all the
nodes associated with w. NK search is not only useful as a stand-
alone operator but also as a building brick for important tasks such
as XPath query evaluation and keyword search. We present an in-
dexing scheme that answers NK queries efficiently, in terms of both
practical and worst-case performance. The query cost is provably
logarithmic to the number of nodes carrying the query keyword.
The proposed scheme occupies space linear to the dataset size, and
can be constructed by a fast algorithm. Extensive experimentation
confirms our theoretical findings, and demonstrates the effective-
ness of NK retrieval as a primitive operator in XML databases.

Categories and Subject Descriptors
H3.1 [Content analysis and indexing]: Indexing methods

General Terms
Theory

Keywords
Nearest keyword, XPath, keyword search, group steiner tree

1. INTRODUCTION
We consider the problem of nearest keyword(NK) search on

XML documents. The dataset is a tree T with undirected edges.
Each node is associated with one or more keywords. Define the
distancebetween two nodes as the number of edges in the (unique)
path linking them. Given a node q in T and a keyword w, an NK
queryfinds the nearestw-neighborof q, namely, the node having
the minimum distance to q among all the nodes associated with w.

To illustrate, Figure 1 shows part of an XML document, where
all nodes have been encoded with the Dewey code [34] for easy
reference. An element nodehas its typedisplayed in brackets, while
the other nodes are value nodes. Given a node q = 012000 and a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11,June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

keyword w = guard, an NK query returns node 012010, whose
distance to q is 4 (edges). It is the nearest guard-neighbor of q.

1.1 Motivation
NK queries can serve as the building brick to tackle some im-

portant problems in XML databases, as elaborated below. For con-
venience, we assign each value node to a type, whose name con-
catenates its parent’s type and the string Val (e.g., node 0100 has
type tnameVal, and so does node 0200). Every node carries its
type as a keyword. In addition, each value node has its value as
another keyword. For example, node 0100 has two keywords: its
type tnameVal, and its value Lakers.

XPath query evaluation. NK search gives a new methodology for
efficiently solving a class of XPath queries. An example is:

Q: Find the names of all players that originated from Mary-
land, but are in a team of the west division.

The XPath statement of Q can be expressed as a twig pattern[4, 15]
shown in Figure 2a, where a single-lined (double-lined) edge rep-
resents parent-child (ancestor-descendent) relationship. The goal is
to find occurrencesof the pattern in the data tree, and for each oc-
currence, output the value at the position of pnameVal (signified
as underlined). Figure 2b demonstrates such an occurrence in Fig-
ure 1, from which the output is the value Blake of node 012000.

There are two interesting facts about the pattern Q in Figure 2a,
with respect to the data of Figure 1:

• Let q be the node in an occurrence corresponding to the node
Maryland of Q. The type of q is fromVal. The nearest
west-neighbor of q must have distance exactly 6 to q. For
example, q is node 012020 in Figure 2b, and its nearest
west-neighbor is node 0110.

• Let q be any fromVal node that carries the word
Maryland, but is not in any occurrence, i.e., the team of q
is in the east division. The nearest west-neighbor of q must
have distance greater than6 to q, noticing that the neighbor
must come from a team different from that of q. For exam-
ple, let q be node 022020 in Figure 1. Its nearest west-
neighbor is node 0110, which has distance 8 to q.

The above facts enable us to process Q via NK search as follows.
We enumerate all the fromVal nodes that contain Maryland.
For each such node q, find its nearest west-neighbor. If the neigh-
bor retrieved has a distance greater than 6 to q, it is ignored. Oth-
erwise, we have found an occurrence, from which the pnameVal
should be output. The pnameVal node can be found with another
NK query, which obtains the nearest pnameVal-neighbor of q.

Group steiner tree retrieval. Keyword searchhas emerged as a
new paradigm of inquiring XML databases. It enables a user to

<league>
0

<team>
03

. . .

. . .

. . .

<position>
01201

<from>
01202

<pname>
01200

Blake
012000

guard
012010

Maryland
012020

<player>
0121

<position>
01211

<from>
01212

<pname>
01210

Walton
012100

guard
012110

Michigan
012120

<player>
0220

<position>
02201

<from>
02202

<pname>
02200

Smith
022000

forward
022010

Maryland
022020

<team>
02

<team>
01

<players>
012

<player>
0120

<tname>
010

<division>
011

<player>
0123

. . .

. . .

<tname>
020

<division>
021

Nets
0200

east
0210

<players>
022

<player>
0221

. . .

Lakers
0100

west
0110

Figure 1: A sample of the NBA dataset
<team>

<from>

Maryland

<division>

west

<player>

<pname>

pnameVal

01

01202

012020

011

0110

0120

01200

012000

(a) Twig pattern for Q (b) An occurrence in Figure 1

Figure 2: An XPath query example

specify only a few keywords as the query, instead of complying
with a rigorous syntax. Its advantage is that the user does not need
to learn any query language like XPath, and neither does s/he need
to be aware of the data schema. The disadvantage, however, is
that what should be the query result becomes heavily dependent
on the application backdrop. This has triggered the propositions of
a variety of result semantics, among which an intuitive one is to
return the group steiner tree(GST) [12, 20, 23, 25].

More specifically, given a set of query keywords {w1, ..., wl}, a
GST is a tree that (i) contains all the query keywords in the texts of
its nodes, and (ii) has the fewest edges among such trees. For ex-
ample, Figure 3 presents the GST for {Lakers,Blake,guard}
on the data of Figure 1. GST computation is known to be NP-hard
(even if the dataset is a tree) [17]. Fortunately, as discussed later,
NK queries provide an elegant way to extract a good approximate
solution, namely, a tree that satisfies requirement (i), and has more
edges than the GST by only a small factor.

1.2 Contributions
This paper presents the first study on the NK problem. We

propose an indexing scheme that can answer any NK query in
O(logNw) time, where Nw is the number of nodes associated with
the query keyword w. The scheme consumes space linear to the
size of the dataset. Somewhat surprising is the fact that, despite
the complication of the underlying theory, our access method can
be implemented as merely a number of binary trees. All the re-
sults also hold in disk-oriented environments, where each binary
tree is simply replaced with a B-tree. Accordingly, the query cost
is O(logB Nw) I/Os, where B is the size of a disk block.

The proposed index also leads to rigorous results on the useful-
ness of the NK operator. Specifically:

• We theoretically establish the fact that a large class of XPath
queries can be reduced to NK search (in a way similar to how
the query of Figure 2a was answered earlier). Our algorithm
for processing this query class enjoys a worst-case time com-
plexity that is irrelevant to the number of elements whose
types appear as an internal node of Q. No previous solution
is known to have this feature (as surveyed in Section 5).

• We give a fast solution to finding an approximate GST with

01

0120

010

0100

012

012010

01201

012000

01200

Figure 3: The group steiner tree of {Lakers, Blake, guard}
in Figure 1

an attractive quality guarantee (which is actually optimal if
the query has only two keywords). We achieve the running
time of O(Nminl logNmax), plus the cost of outputting the
resulting tree, where l is the number of keywords in the
query, Nmin is the number of nodes carrying the rarestquery
keyword (i.e., the one appearing the least times in the XML
document), and Nmax conversely is the number of nodes car-
rying the most frequentquery keyword.

Besides confirming our theoretical findings, our experimenta-
tion also demonstrates the effectiveness of the NK operator on real
XML documents. In particular, we show that XPath queries like
the one in Figure 2a can be processed via NK search with perfor-
mance comparable to or better than that of the existing approaches.
Furthermore, for XML keyword search, our NK-based algorithm
discovers high-quality approximate GSTs in real time.

Roadmap. The rest of the paper is organized as follows. Section 2
clarifies the problem definition and several technical preliminaries.
Section 3 elaborates on the proposed solutions for NK search. Sec-
tion 4 discusses the applications of NK queries in XPath evaluation
and keyword search. Section 5 reviews the previous work related to
ours. Section 6 contains extensive experimentation to evaluate the
effectiveness and efficiency of our techniques. Finally, Section 7
concludes the paper with a summary of our findings.

2. PRELIMINARIES
For each node u in the data tree T , we use W (u) to represent

the set of keywords associated with u. For simplicity, assume that
W (u) has at least one keyword. Define the lengthof a path in T
as the number of edges it contains. Denote by ‖u, v‖ the distance
between two nodes u, v, namely, the length of the path connecting
u and v. Let U(w) be the set of nodes in T that include word w
(hence, Nw = |U(w)|). Given a node q and a keyword w, the
result of an NK query is a node u ∈ U(w) such that

‖u, q‖ ≤ ‖v, q‖ ∀v ∈ U(w).

We denote u, the nearest w-neighbor of q, as NN(q, w).

t t

t

t

1

2

3

4

5 6

7

8 9

10

11

12 13

14

15 16

17

18

19

20 21

22

23 24

25

26

27 28

29

30 31

Figure 4: A running example

Figure 4 shows an example T , where each node is labeled an
integer. Sometimes we may refer to a node by its label directly,
when the meaning is clear. For instance, as node 2 carries a single
keyword t, we write W (2) = {t}. Similarly, as t also appears in
nodes 5, 9 and 23, U(t) = {2, 5, 9, 23}. The keywords of the other
nodes are omitted for clarity. Given q = node 17 and w = t, an
NK query returns node 2, namely, NN(17, t) = 2.

Let N be the number of nodes in T , and K the total number of
keywords in all the nodes (counting a word twice if it appears in
two nodes), i.e., K =

∑
u |W (u)|. Note that T requires Ω(K)

space to store. In other words, linear cost should be interpreted as
O(K), instead of O(N). We label the levels of T in a top-down
manner, setting the root at level 0. Denote by level(u) the level of
a node u, which is also the number of edges on the path from the
root to u. In Figure 4, all the leaf nodes are at level 4. Also, we use
sub(u) to represent the subtree of u.

In the sequel, we review several basic results useful in our tech-
nical discussion.

Interval encoding. For each node u of T , define its rank, denoted
as rank(u), to be the sequence number of u in the pre-ordertraver-
sal of T . We associate u with an interval R(u) = [x, y], where x
is the rank of u, and y is the largest rank of the nodes in sub(u). In
Figure 4, the label of each node indicates its rank directly. As an
example, the interval R(10) associated with node 10 is [10, 16].

The intervals defined this way have several properties commonly
utilized in managing XML data:

• For any two nodes u and v, R(u) contains R(v) if and only if
u is an ancestor of v. In other words, the ancestor-descendent
relationship of u and v can be verified in constant time.

• The intervals of the nodes at the samelevel of T must be
disjoint. In Figure 4, for instance, the nodes at level 2 have
disjoint intervals R(3) = [3, 9], R(10) = [10, 16], R(18) =
[18, 24], and R(25) = [25, 31].

The above properties allow us to solve the so-called level-on-
path queries efficiently. Let u be an ancestor of v; given a level
� ∈ [level(u), level(v)], a level-on-path query finds the level-�
node on the path from u to v. For example, if u (v) is node 1 (15),
a level-on-path query with � = 2 retrieves node 10.

LEMMA 1. T can be pre-processed into a structure that oc-
cupiesO(N) space, such that any level-on-path query can be
answered inO(logN) time. The structure can be built in
O(N logN) time.

PROOF. We manage the nodes of T of each level separately.
Specifically, create a binary tree to index the ranks of the nodes at
the same level (i.e., there are as many trees as the number of levels
in T). As each node appears in only one tree, the overall space is

O(N). Assume that we want to perform a level-on-path operation
to find the level-� node from u to v (which is a descendent of u).
We find in O(logN) time the predecessor of rank(v), among all
the ranks indexed in the level-� binary tree. The node whose rank
equals that predecessor is exactly what we are looking for.

Subtree NK search. NK search is easy if attention is restricted
to the subtree of the query node. Formally, given a node q and a
keyword w, a subtree-NK queryfinds the node u with the smallest
distance to q, among all nodes in sub(q) that are associated with w.
We refer to u as the subtree nearestw-neighborof q. For instance,
let q be node 17 in Figure 4; the subtree-NK query with w = t
returns node 23. Note that the (global) nearest t-neighbor of node
17 is in fact node 2.

LEMMA 2. T can be pre-processed into a structure that occu-
piesO(K) space, such that any subtree-NK query can be answered
in O(logNw) time. The structure can be built inO(K logK) time.

PROOF. Let us first review a related result. Let S be a set of
numbers in the real domain R. Each number x ∈ S is associated
with a weight in R. Given an interval I , a range-minquery finds
the number that has the minimum weight among all the numbers in
S∩I . We can index S with an SB-tree [36] that uses O(|S|) space,
and solve any range-min query in O(log |S|) time. The tree can be
built in O(|S| log |S|) time.

We can convert subtree-NK search to the range-min problem.
Let w be the keyword of concern. Construct S to include the ranks
of the nodes in U(w). Each rank is associated with a weight that
equals the level of the corresponding node. Subtree-NK search
with node q is equivalent to a range-min query on S with inter-
val R(q). We settle the problem with an SB-tree in O(logNw)
query time. The tree occupies O(Nw) space and can be built
in O(Nw logNw) time. The SB-trees of all keywords require
O(

∑
w Nw) = O(K) space in total. The overall construction time

is O(
∑

w(Nw logNw)) = O(K logK).

Both Lemmas 1 and 2 will be needed to analyze the construction
cost of the proposed structure.

Lowest common ancestor (LCA). We use lca(u, v) to denote the
LCA of nodes u, v in T (e.g., lca(20, 26) is node 17 in Figure 4).
In general, the distance of two nodes can be calculated in constant
time, once their LCA has been identified, as can be seen from the
following equation:

‖u, v‖ = (level(u)− level(z)) + (level(v)− level(z))

where z = lca(u, v).
LCA computation has been thoroughly studied. Harel and Tar-

jan [18] were the first to observe that the problem can be settled
optimally in constant time using linear space. Their structure, how-
ever, is rather theoretical and difficult to implement. To remedy the
drawback, several (much) simpler structures [1, 2, 13] have been
developed, keeping the same space and query performance. As a
corollary, we can obtain ‖u, v‖ of any u, v in constant time.

3. NEAREST KEYWORD SEARCH
We pre-process the data tree T by building a separate structure

for each distinct keyword w that appears in T . This is reminiscent
of the inverted index, which also has an inverted listdedicated to
each w. Instead of a simple list, however, our structure for w is a
binary tree constructed in a more sophisticated manner.

3.1 Overview
We concentrate on NK queries with a specific keyword w, as

the structure is identical for all keywords. The term “nearest w-
neighbor” will be abbreviated as nearest neighbor(NN), when no
ambiguity arises. Accordingly, we simplify notation NN(u, w) to
NN(u).

A straightforward solution to answering an NK query is to per-
form a breath first traversal(BFT) starting from q. Namely, the
BFT explores the nodes of T in ascending order of their distances
to q, and stops as soon as it encounters a node associated with w.
This approach is efficient only if the NN of q is close, and may end
up visiting a large number of nodes otherwise.

Alternatively, we can pre-compute the NN of every node in T .
Each query can be answered in constant time, because we can sim-
ply return the (pre-computed) NN of the query node q. This ap-
proach, however, has the severe drawback that, the pre-computation
incurs Ω(N) space for everykeyword appearing in T . The number
of distinct keywords can be easily Ω(N). In this case, the space
complexity of the above approach is Ω(N2), which is prohibitively
large in practice.

The chief observation towards reducing the space is that, many
nodes of T have the same NN, thus raising the hope that we could
capture them collectively with much less information. Recall that
each node can be uniquely identified by its rank, while the ranks of
all nodes come from the rank domainD = [1, N] (e.g., D = [1, 31]
in Figure 4). We can always partition D into a set I of disjoint
intervals such that, for each interval I ∈ I, the nodes with ranks in
I have the same NN, which can be associated with I . Given an NK
query with node q, we can solve it by identifying the (only) interval
I that covers rank(q), and returning the NN associated with I .
This can be easily achieved by indexing I with a binary tree, which
consumes O(|I|) space and has query cost O(log |I|). Figure 5
illustrates the contents of a possible I for the data of Figure 4 when
the keyword w of concern is t.

1

2

3 4 6 7 9 10 17 18 2425 31

2 2235 7

node 2 is the NN for any node in rank interval [1, 3]

ranks

Figure 5: A tree Voronoi partition

We refer to I as a tree Voronoi partition(TVP) of w. An imme-
diate issue is whether a small I alwaysexists. Fortunately, we will
show in Section 3.2 that there is definitely an I with size O(Nw),
where Nw is the size of U(w) (i.e., the number of nodes in T car-
rying w). Furthermore, the size of O(Nw) is asymptotically tight
because |I| needs to be at least Nw – every node in U(w) appar-
ently finds itself as the NN.

Another important issue is how to compute I efficiently.
Naively, one could first compute the NN of every node in T , and
then go over the nodes in ascending order of their ranks, merging
consecutive nodes into an interval if their NNs are the same. This
approach, however, entails Ω(N) time, which would render the to-
tal pre-computation cost (for all keywords) prohibitively expensive
in practice. In Section 3.3, we will give a significantly faster algo-
rithm to produce I in O(Nw logNw) time.

3.2 TVP characteristics
This subsection will establish our first main result:

THEOREM 1 (TVP THEOREM). For any keywordw appear-

t t

1

2

3

5 9

23

tt

t

t

1

2

3

4 7

23

18

5
t t

9

(a) CT (t) (b) ECT (t)

Figure 6: Compact and extended compact trees

ing inT , there is a tree Voronoi partitionI with size less than8Nw ,
whereNw is the number of nodes inT associated withw.

Let us start the proof by introducing the compact treeof w, de-
noted as CT (w). First, all the nodes of U(w) are in CT (w), and
termed the data nodes. Second, a non-data node u belongs to T , if
and only ifthere are at leasttwo child nodes of u whose subtrees
contain a data node. We call u a branching node. Consider w = t
in Figure 4. There are four data nodes 2, 5, 9, 23, and two branching
nodes 1, 3. Node 17, for example, is not a branching node because
only one of its child nodes (i.e., node 18) has a data node in its
subtree. Let S be the set of all data and branching nodes. We form
CT (w) by drawing an edge from each node u ∈ S to its lowest
ancestor in S. Figure 6a shows the CT (t) for the data of Figure 4.
Node 5, for instance, is connected to node 3, because among all the
data and branching nodes, node 3 is the lowest ancestor of node 5.

LEMMA 3. CT (w) has at most2Nw − 1 nodes.

PROOF. Each branching node must have at least two child nodes
in CT (w). As CT (w) has at most Nw leaf nodes, the total number
of branching nodes cannot be more than Nw − 1.

Consider any edge (u, v) in CT (w). Let us walk, in the data tree
T , along the path from u to v. As we go, monitor the NN(z) of the
node z being visited, and count how many changesin NN(z) there
are in total. Call each of those changes an NN-changeon (u, v). As
an example, consider edge (1, 23) in the CT (t) of Figure 6a. Now
we walk from node 1 to node 23 in the T of Figure 4. Along the
path there is only a single NN-change, which happens as we move
from node 17 to node 18 (i.e., NN(17) = 2, but NN(18) = 23).
The next lemma gives an important fact:

LEMMA 4. There can be at most one NN-change on each edge
of CT (w).

PROOF. Let (u, v) be an edge of CT (w). The removal of (u, v)
cuts CT (w) into two connected components. Let Cu (Cv) be the
component including u (v). Denote by P the path from u to v in
T . Suppose that u� (v�) is the data node in Cu (Cv) closest to u
(v). We claim that, for any node z on P , NN(z) must be either u�

or v�. In fact, for any node u′ ∈ Cu, it holds that

‖z, u�‖ = ‖z, u‖+ ‖u, u�‖ ≤ ‖z, u‖+ ‖u, u′‖ = ‖z, u′‖.

Similarly, for any node v′ ∈ Cv , we have ‖z, v�‖ ≤ ‖z, v′‖.
Therefore, except u� and v�, no other data node in Cu ∪Cv can be
the NN of z.

Hence, if there were at least two NN-changes on (u, v), there
would have to be three nodes z1, z2, z3 on P such that z2 was on
the path from z1 to z3, but NN(z1) = NN(z3) �= NN(z2). It is
trivial to show that such a scenario cannot happen.

Next, CT (w) is augmented with the nodes where NN-changes
occur. Consider any edge (u, v) of CT (w) on which there is an

NN-change. Let z be the first node on the u-to-v path in T such
that NN(z) �= NN(u). If z is different from v, we add it to
CT (w), breaking (u, v) into two edges (u, z) and (z, v). Denote
by ECT (w) the resulting tree, after applying such transformation
on all edges of CT (w) with NN-changes. In case root(T) is not
already in ECT (w), we add it as the parent of the current root of
ECT (w). The final ECT (w) is called the extended compact tree
of w. Let us illustrate the transformation with edge (1, 23) in the
CT (t) of Figure 6a (i.e., u = 1, v = 23). As mentioned earlier,
on the path from node 1 to node 23 in Figure 4, there is an NN-
change as we cross from node 17 to node 18. Hence, z = 18, and
accordingly, (1, 23) is broken into two edges (1, 18) and (18, 23)
in the extended compact tree ECT (t), as shown in Figure 6b.

We are ready to generate a tree Voronoi partition I of w. It
suffices to invoke the following algorithm for every node u of
ECT (w) in turn (ordering does not matter):

algorithm voronoiIntv(u)
/* u is a node in ECT (w) */

1. S = {R(u)}
2. for each child node v of u in ECT (w) do
3. I ← the (only) interval in S covering R(v)
4. break I into intervals I1, R(v), I2

/* I1 (I2) is the part of I to the left (right) of R(v) */
5. remove I from S, and add I1, I2
6. add to I the intervals in S, after associating them with NN(u)

For example, let u be node 1 in the ECT (t) of Figure 6b. At
Line 1, voronoiIntv sets S = {R(1)} = {[1, 31]}. Since
node 1 has two child nodes in ECT (t), the for-loop in Lines 2-
5 is executed twice. The first time trims R(2) = [2, 16] away
from [1, 31], after which S = {[1, 1], [17, 31]}. The second
execution cuts R(18) = [18, 24] out of [17, 31], leaving S =
{[1, 1], [17, 17], [25, 31]}. Line 6 adds all three intervals of S to
I, after associating them with NN(1) = 2, indicating that node 2
is the NN of any node (whose rank falls) in those intervals.

LEMMA 5. ApplyingvoronoiIntv to all nodes ofECT (w)
creates a tree Voronoi partitionI with less than8Nw intervals.

PROOF. We start by proving that the intervals of I are disjoint,
and their union covers the rank domain D. Observe that the in-
tervals inserted in I at Line 6 are disjoint with the R(v) of any
child node v of u, where u is the input to the current execution
of voronoiIntv. None of those intervals can overlap with the
intervals added to I by the execution of voronoiIntv invoked
with v (which only adds intervals within R(v)). On the other hand,
every value x ∈ D is covered by an interval in the final I. Such an
interval is inserted in I by running voronoiIntvwith the lowest
node u in ECT (w) whose R(u) covers x.

We proceed to show that, for each interval I ∈ I, the NN asso-
ciated with I is indeed the NN of all nodes in I . Consider any node
u in ECT (w). Denote its child nodes in ECT (w) as v1, ..., vf for
some f ≥ 0. For each 1 ≤ j ≤ f , cutting R(vj) out of R(u) at
Line 4 effectively removes sub(vj) from sub(u) (recall that sub(.)
represents the subtree of a node). Let sub�(u) be the set of nodes in
sub(u), but not in the sub(vj) of any j. It suffices to prove that all
nodes in sub�(u) have the same NN as u. For each edge (u, vj) of
ECT (w), define P (u, vj) as the path in T from node u to vj , but
excludingnode vj . Each node z ∈ sub�(u) is either (i) on P (u, vj)
for some j, or (ii) has an ancestor z′ in T that is on P (u, vj) for
some j. In the former case, NN(z) must be NN(u) by the way
ECT (w) is constructed. In the latter case, NN(z) = NN(z′),
while z′ is a node of case (i), implying NN(z) = NN(u) as well.

It remains to bound the size of I. By Lemma 3, CT (w) has at
most 2Nw − 2 edges. As each of them may generate two edges
in ECT (w), the number of edges in ECT (w) is at most 4Nw −
4 + 1 = 4Nw − 3, including the (potential) extra edge due to
root(T). In voronoiIntv, each edge breaks D into at most 2
more intervals. Therefore, the final |I| is bounded above by 1 +
2(4Nw − 3) = 8Nw − 5.

The proof of Theorem 1 is thus completed.

3.3 Finding the minimum TVP
This subsection completes our discussion of NK search by elab-

orating an algorithm for computing a TVP I of a keyword w with
the minimumsize. In fact, the main idea of the algorithm has been
mentioned in Section 3.2, as summarized below:

algorithm computeTVP(w)

1. build CT (w)
2. build ECT (w) from CT (w)
3. I = ∅
4. for each node u in ECT (w) do
5. voronoiIntv(u)

/* at the end of the for-loop, |I| < 8Nw */
6. merge consecutive intervals in I that are associated with

the same NN
7. return I

Next, we clarify the details of Lines 1 and 2, because
voronoiIntv has been presented in the previous subsection.

Construction of CT (w). We construct CT (w) in two steps: first
collect the set S of nodes in CT (w), and then connect them prop-
erly to meet the definition of CT (w). The first step applies the
algorithm below to compute S:

algorithm collectCTnodes(U(w))

1. S = U(w)
2. sort the nodes of U(w) in ascending order of ranks
3. for each pair of consecutive nodes u, v do
4. S = S ∪ lca(u, v)

We claim that the final S includes all the branching nodes. Let z
be any branching node. By definition, it has at least two child nodes
that have a data node in their subtrees, respectively. Let u1, u2

be the two left-most ones of those child nodes, with u1 being the
left-most one. Denote by v1 (v2) the data node with the largest
(smallest) rank in the subtree of u1 (u2). By the property of pre-
order ranking, v1 and v2 constitute a pair of consecutive data nodes
in the rank domain. Hence, z will be discovered as lca(v1, v2).

Recall that each node in CT (w) should be connected to its low-
est ancestor (if any) among all the nodes in CT (w). We achieve the
purpose using a stack J . Specifically, we process the nodes of S in
ascending order of their ranks, and maintain CT (w) for the nodes
already seen. At each moment, J keeps the right-most root-to-leaf
path of the current CT (w). Nodes of the path are pushed in J in
the same order they are scanned, i.e., with the leaf (root) at the top
(bottom).

algorithm computeCTedges(w)

1. sort the nodes of S in ascending order of ranks
2. J = ∅
3. while S �= ∅ do
4. u← the first node of S; remove u from S

5. keep popping the top node v of J as long as R(v) is
disjoint with R(u)

6. if J is not empty then
7. add an edge between u and the top node of J
8. push u in J

Let us illustrate the algorithm using the set of nodes in the CT (t)
of Figure 6a. Here, S = {1, 2, 3, 5, 9, 23}. Node 1 is the first
scanned, and directly pushed to J . For node 2, Line 5 has no effect,
while Lines 6-7 add an edge between nodes 1 and 2. J = {2, 1} at
this time (with node 2 at the top). Similarly, the scanning of nodes
3 and 5 create edges (2, 3) and (3, 5) respectively, after which J =
{5, 3, 2, 1}. Next, the algorithm comes to node 9. Line 5 pops node
5 out of J because R(5) is found to be disjoint with R(7). Line 6
then spawns another edge (3, 9) in CT (t). Finally, the handling of
node 23 pops nodes 9, 3, 2, and adds one more edge (1, 23). The
CT (t) now becomes final as S has been exhausted.

Construction of ECT (w). Let (u, v) be an edge in CT (w), with
u being an ancestor of v. Lemma 4 states that there can be at most
one NN-change on (u, v). In case no NN-change exists, (u, v) is
kept directly in ECT (w). Otherwise, we should create two edges
(u, z), (z, v) in ECT (w), where z is the first node (on the u-to-v
path in T) such that NN(u) �= NN(z).

Our algorithm for building ECT (w), named computeECT,
processes the edges (u, v) of CT (w) in ascending order of
level(u). It keeps the invariant that, at the time (u, v) is to be
processed, we have already determined NN(u). It is easy to
see that NN(v) can only be either NN(u) or NNsub(v), where
NNsub(v) is the subtree nearest w-neighbor of u (see Section 2).
Another key to the algorithm is that, if NN(v) turns out to be dif-
ferent from NN(v), the node z splitting (u, v) can be identified
by a level-on-path query. This is because the level � of z can be
calculated as:

� =

⌈
δ + level(u) + level(v)

2

⌉
(1)

where δ = ‖v,NN(v)‖ − ‖u,NN(u)‖.

algorithm computeECT(CT (w))

1. sort the edges (u, v) of CT (w) in ascending order of
level(e); E ← the sorted list

2. find the NN of the root of CT (w) with a subtree NK query
3. while E �= ∅ do
4. (u, v)← the first edge of E; remove it from E
5. NNsub(v)← the subtree nearest w-neighbor of v
6. NN(v)← whichever of NN(u) and NNsub(v) that

is closer to v
7. if NN(u) = NN(v) then
8. create edge (u, v) in ECT (w)
9. else
10. z ← the result of a level-on-path query using

(u, v) and � (Equation 1)
11. create edges (u, z) and (z, v) in ECT (w)

We demonstrate the algorithm by explaining how to derive
the ECT (t) in Figure 6b from the CT (t) in Figure 6a. First,
Line 1 arranges the edges of CT (t) in the order of E =
{(1, 2), (1, 23), (2, 3), (3, 5), (3, 9)}. Line 2 obtains NN(1) = 2.
The subsequent execution examines each edge of E in turn. The
first one, (1, 2), is easy to handle because NN(2) = NN(1) = 2.
Hence, (1, 2) is included in ECT (t) directly. Consider the second
edge (1, 23) of E. As NN(23) = 23 is different from NN(1),
Line 10 calculates � = 	(−1 + 0 + 4)/2
 = 2, and issues a level-
on-path query to find the level-2 node z on the path from node 1

to node 23 in the data tree of Figure 4. The z retrieved is node 18.
Line 11 then adds edges (1, 18) and (18, 23) into ECT (t). The
rest of the algorithm proceeds in the same manner.

Analysis. Line 1 of computeTVP invokes collectCTnodes
and computeCTedges, both of which terminate in
O(Nw logNw) time. The same complexity applies to at
Line 2, which executes computeECT. Lines 4-5 essentially spend
constant time on each edge of ECT (w), and hence, incur only
O(Nw) cost. Line 6 apparently requires O(Nw) time. Therefore,
the overall complexity of computeTVP is O(Nw logNw).

THEOREM 2. T can be pre-processed into a structure that oc-
cupiesO(K) space, such that any NK query can be answered in
O(logNw) time, whereNw is the number of nodes inT carrying
the query keyword. The structure can be built inO(K logK) time.

PROOF. The result follows from the discussion in Section 3.1,
Theorem 1, the analysis of this subsection, and the fact that (i)
the total construction cost of the structures of all keywords is
O(

∑
w(Nw logNw)) = O(K logK), and (ii) the space of all

these structures is O(
∑

w Nw) = O(
∑

u |W (u)|) = O(K).

When B-trees, instead of binary trees, are deployed, the space
and query complexities of our structure are O(K/B) disk blocks
and O(logB Nw) I/Os, respectively, where B is the size of a block.

4. NEAREST KEYWORD SEARCH AS AN
OPERATOR

In the introduction, we outlined why NK search can be deployed
as a primitive operator to support other tasks efficiently. Sec-
tions 4.1 and 4.2 elaborate this for XPath query answering and
group steiner tree computation, respectively.

4.1 XPath evaluation
This subsection aims at a theoretical justification that many

XPath queries can be reduced to NK search. We consider queries
that can be represented as a twig pattern Q as follows. Each internal
node of Q gives an element type. A leaf node is designated as the
output, indicating the information solicited (extension to multiple
output nodes is trivial). Every other, non-output, leaf node carries
a keyword, which imposes a predicate that must hold on each oc-
currence of Q in the data tree T . See Figure 2a for an example.
Without loss of generality, we assume that Q is compatible with
the data schema; otherwise, it can be rejected by standard syntax
checking with the DTD.

We will prescribe two conditions whose satisfaction guarantees
the success of reducing Q to a set of NK queries. These conditions
are conservative, in the sense that one may still carry out reduction
even if the conditions do not hold (as shown in the experiments).
We will see that the class of reducible queries can be processed by
a new algorithm with an attractive worst-case performance bound.

Type-sequence condition. Let P be any path of T starting from
root(T). Define the type sequenceof P as the ordering of the
node types encountered as we walk along P . For instance, if P is
the path from node 0 to node 010 in Figure 1, its type sequence is
(league, team, tname).

CONDITION 1. For each nodeu of the same type, the root-to-u
path inT has the same type sequence.

In Figure 1, for example, the path from the root to every player
node has type sequence (league, team, players, player).

from

fromVal

player

pname

pnameVal

team

division

divisionVal

Figure 7: Type pattern of the query in Figure 2a

Anchor condition. As the next condition is more complex, we first
explain the idea using an example. Consider Q to be the pattern in
Figure 2a. Let us examine its type pattern, which is also a tree, and
results from replacing each node of Q with its type, as shown in
Figure 7. Denote the type pattern of Q as type(Q).

Let us fix a leaf node, fromVal, in type(Q) as the anchor, de-
noted as anc. Then, find the LCA, called a critical LCA, of anc
and every other leaf, namely, (i) clca1 = team, which is the LCA
of anc and leaf1 = divisionVal, and (ii) clca2 = player,
which is the LCA of anc and leaf2 = pnameVal. Each pair
(clcai, leafi) decides a critical setrepresented as cseti, which in-
cludes all the types on the path from clcai to leafi. That is, cset1
= {team, division, divisionVal}, and cset2 = {player,
pname, pnameVal}.

In the T of Figure 1, for each type-clcai node u, sub(u) (i.e.,
the subtree of u) has at most onenode of each type in cseti.
To be specific, let us inspect clca1 = team. The subtree of a
team node can have at most one node of type team, division,
and divisionVal, respectively. Similarly, this is also true for
clca2, i.e., every player node can have in its subtree at most one
player, pname, and pnameVal node, respectively. In this case,
we say that Q is unambiguous.

Not all the choices of anc would make Q unambiguous. For
example, it is not hard to see that Q is not unambiguous if
divisionVal is selected as the anchor. The second condition
requires:

CONDITION 2. At least one choice of anchor makesQ unam-
biguous.

To grasp the intuition behind the condition, consider again the
strategy explained in Section 1.1 for processing the query Q of
Figure 2a. Recall that we used the fromVal nodes carrying
Maryland as the query nodes q for NK search. Instead, let us
choose q as the divisionVal nodes associated with west. That
is, for each such q, say node 0100, the algorithm finds its nearest
Maryland-neighbor (i.e., node 012020) in the set of fromVal
nodes, and then checks whether the neighbor has distance 6 to q.
The answer is yes, so the presence of an occurrence has been de-
tected. The problem, however, is that we can no longer find the out-
put value Blake by identifying the nearest pnameVal-neighbor
of q. This is because multiple pnameVal nodes have an iden-
tical (smallest) distance 6 to q and, hence, the NK search with
pnameVal as the query word may happen to return a node (e.g.,
012100) that is not describing the same player as node 012020.

We point out that, although the definitions and notations lead-
ing to Condition 2 were introduced with an example, they can be
generalized in a straightforward manner to arbitrary Q.

Reducibility. The theorem below formally establishes the reduc-
tion from XPath evaluation to NK search.

THEOREM 3. An XPath query can be reduced to NK search un-
der Conditions 1 and 2.

PROOF. As in Section 1.1, we set the type of each node u in T as
a keyword in u. Each value node has its value as an extra keyword.
An XPath query Q is processed with the following algorithm:

algorithm xpath(Q)

1. for each node q in T having type anc do
2. for each non-output leaf node u of Q do
3. w ← the keyword of u
4. v ← the result of NN(q, w) among all nodes in T

of the same type as u
/* This can be done with minor extension to our technique
in Section 3. For example, one simple solution is to prefix
each word with the type of the node containing it. Such a
prefix is added to w, which automatically restricts the
search to the nodes of the designated type. */

5. if ‖q, v‖ �= the correct value as in an occurrence then
6. mark q as pruned
7. break for
8. if q has not been pruned then
9. w ← the type of the output node of Q
10. v ←NN(q, w)
11. if ‖q, v‖ = the correct value as in an occurrence then
12. report the value of v

Let us refer to the type-anc node in an occurrence of Q as an
anchor node. Denote by f be the number of leaf nodes in type(Q)
other than anc. Lines 2-12 of xpath are collectively called an it-
eration. We will prove that (a) the output value in every occurrence
is reported by xpath, and (b) every value reported is indeed the
output value of an occurrence.

Proof of statement (a).Let occ be any occurrence with q as its
anchor node. Denote by ui the type-leafi node in occ (1 ≤ i ≤ f).
Each ui must be retrieved by the NK-query at Line 4 (or 10) in the
iteration for q, and pass the if-condition at Line 5 (or 11). The
iteration reports the output value of occ at Line 12.

Proof of statement (b).Under Condition 1, it suffices to consider
Q with single-lined edges only, because any double-lined edge can
be expanded into a set of single-lined edges without affecting the
query result. Condition 1 also allows us to focus on Q (i) that has
only a single node, or (ii) whose root has at least two child nodes.
If root(Q) has a single child, we can remove the root while still
obtaining the same result.

Assume that xpath reports a value in an iteration with q as the
anchor node. Line 4 or 10 must have fetched a type-leafi node ui

(1 ≤ i ≤ f). Let occ be the tree that (i) is rooted at the LCA of
u1, ..., uf , q, and (ii) includes (only) the edges on the path from the
LCA to each of u1, ..., uf , q. The rest of the proof argues that occ
is an occurrence. Towards this, we consider tree type(occ), which
is obtained by replacing each node of occ with its type. Our goal is
to show that type(occ) and type(Q) are exactly the same.

Condition 1 implies that all nodes of a type must be at the same
level. Given a node type z, we use seq(z) to represent the type
sequence of the path in the data tree T that goes from the root
(of T) to an arbitrary type-z node u (recall that seq(z) is unique
regardless of u). Also, suppose that clca1, ..., clcaf are in the top-
down order.

As clcai ∈ seq(anc) for each i ∈ [1, f], q has a (unique) type-
clcai ancestor in T , which we represent as vi. A key observation is
that ui must be in the subtree of vi. Otherwise, ‖q, ui‖ would have
been at least 2 more than the correct value in an occurrence, notic-
ing that the path from q to ui would need to go outside sub(vi),
and then eventually descend to the level where type-leafi nodes
are. From type(Q), we know that clcai is the last common type in
seq(leafi) and seq(anc), implying that vi must be the LCA of ui

and q, and belong to occ. Hence, the root of occ has type clca1.
Let PQ (or Pocc) be the path in type(Q) (or type(occ)) from

the root to anc. The earlier analysis indicates that PQ is identi-

cal to Pocc. Next we prove that type(occ) and type(Q) are the
same in the other parts as well. Let us walk down PQ and Pocc

synchronously, and stop as soon as encountering a clcai (of any
i ∈ [1, f]) in both paths. Let TQ (or Tocc) be the subtree of clcai in
type(Q) (or type(occ)), removing the subtree rooted at z, where z
is the child node of clcai that is an ancestor of anc.

Define S = {j | clcaj = clcai} (it is possible for several critical
LCAs to coincide on one node). Let z be any type in the csetj of
any j ∈ S. Under Condition 2, there is a unique type-z node in the
subtree of vi in T . Therefore, each type in TQ (Tocc) can appear
only once. For each leafj (j ∈ S), define a type-sequence sj that
equals the suffix of seq(leafj) starting from clcai. Regarding each
type as a symbol, both TQ and Tocc are in fact a trie of the same set
of strings {sj | j ∈ S}.

The above reasoning of TQ and Tocc is independent of i. We thus
have established the equivalence of type(Q) and type(occ).

Remark 1. We outline the main ideas on how to verify Conditions
1 and 2 efficiently, while leaving the complete details to the full
paper. We regard each rule of the DTD as having the form e → s,
where e is an element type and s a string specifying the possible
child element types of e. Combine multiple rules whose left hand
sides are the same type. Denoting by S the set of resulting rules, we
can show that Condition 1 is satisfied if and only if every element
type appears on the right hand side (RHS) of exactly one rule in S.

To check Condition 2, we resort to a schema treeST , where each
node is an element type e, whose child nodes are the element types
in the RHS of rule e → s. Recall that every element type c in s may
carry a star (e.g., e → c∗ means that there can be multiple instances
of c below e directly). In this case, the edge (in ST) from e to c is
a star edge; otherwise, it is a non-star edge. Given a query Q, ST
allows us to verify Condition 2 as follows. First pick a leaf node
of type(Q) as the anchor anc. Perform the following for every
other leaf node u: identify the LCA v of anc and u, and examine
if the path from v to u in ST has a star edge. If the answer is no
for all u, we assert that Q satisfies Condition 2. Otherwise, pick a
different anchor and repeat the above process. If all anchors have
been attempted and Q has not been confirmed to satisfy Condition
2, we conclude that it violates the condition. Clearly, the time of
Condition-2 checking depends only on the schema, is irrelevant to
the size of the XML document, and hence, typically accounts for
only a fraction of the total query cost.

Note that Condition 1 (2) is a constraint on the data (queries). It
is worth mentioning that the two conditions are satisfied by many
real datasets and meaningful queries. In particular, we note that all
the datasets experimented in [4, 6, 10, 34, 35] and at least one in
[7, 15, 16, 20, 27, 28, 29, 30, 32, 37] satisfy Condition 1 (see also
our experiments). We point out that simple aliasing can often be
carried out to make a dataset satisfy Condition 1. For example, in
the well-known DBLP dataset, an author element may be under
an article or inproceedings element. To meet Condition
1, we can rename the author of former type as a-author, and
that of the latter type as i-author.

Remark 2. Denote by leaf1, ..., leaff the leaf nodes of Q that are
not the anchor anc. By Theorem 2, algorithm xpath terminates in
O(Nanc

∑f
i=1 logNleafi) time, where Nx is the number of nodes

in the data tree T fulfilling the predicateimplied by the node x in
type(Q). For example, for the Q of Figure 2a, the execution time
is O(NMaryland(logNwest + logNpnameVal)). In general, the time
complexity of xpath is independent on the number of nodes in T
whose types are internal nodes of type(Q). This is a unique per-
formance characteristic that is not shared by any previous solution.

4.2 Finding approximate group steiner trees
This section discusses the GST problem as motivated in Sec-

tion 1. The dataset is a tree T as described in Section 2. A query
specifies a set of keywords QS = {w1, ..., wl}. Recall that U(wi)
is the set of nodes in T associated with wi (1 ≤ i ≤ l). Any
l nodes u1, ..., ul, where ui ∈ U(wi) for each i, uniquely deter-
mines a minimum connecting tree(MCT) [20] M as follows. M
has the LCA of all u1, ..., ul as its root, and includes (all and only)
the edges on the path in T from the LCA to every ui. Referring to
(u1, ..., ul) as a vector, the GST problem is equivalent to discov-
ering the vector that minimizes the number of edges in M . This
problem is NP-hard [17].

As an example, assume T to be the data tree in Figure 1, and
w1 = Lakers, w2 = Blake, w3 = guard (l = 3). Given u1 =
node 0100, u2 = node 012000, and u3 = node 012010, Figure 3
demonstrates the corresponding MCT M . Notice that the root of
M is the LCA of u1, u2 and u3.

We assume that w1, ..., wm have been arranged in such a way
that |U(w1)| ≤ ... ≤ |U(wl)|. The following algorithm extracts
an MCT with a small number of edges.

algorithm approxGST(w1, ...,wl)

1. dmin ←∞
2. for each node u1 ∈ U(w1) do
3. for i← 2 to l do
4. ui ← NN(u1, wi)

5. d←
∑l

i=2 ‖u1, ui‖
6. if d < dmin then
7. remember (u1, ..., ul) as the best vector
8. dmin = d
9. return the MCT M determined by the best vector

The for-loop in Lines 2-8 enumerates each node u1 ∈ U(w1).
Lines 3-4 find the nearest wi-neighbor of u1 for every other query
keyword wi. The resulting neighbors, together with u1, determine
an MCT. The key of the algorithm is to measure the quality of the
tree as the sum of the distance from u1 to each retrieved neighbor
(see Line 5). The algorithm eventually returns the best tree accord-
ing to this quality metric.

We say that an MCT M is a c-approximate GSTif it has at most
c times more edges than the GST. Formally, if cost(M) represents
the number of edges in M , it holds that cost(M) ≤ c · cost(M�),
where M� is the (optimal) GST.

LEMMA 6. The output of approxGST is an (l − 1)-
approximate GST.

PROOF. For each i ∈ [1, l], let u�
i be a node in M� associated

with keyword wi (if there are several such nodes, u�
i can be any of

them). Define d� =
∑l

i=2 ‖u
�
1 , u

�
i ‖. Since every edge of M� is

included at most once in the path from u�1 to each u�
i (2 ≤ i ≤ l),

it holds that:

d� ≤ (l − 1) · cost(M�). (2)

Let Mapx be the output of approxGST. The dmin in the se-
quel refers to the final dmin of approxGST. Notice that {u�

1 ,
NN(u�

1 , w2), ..., NN(u�
1 , wl)} is a set {u1, ..., ul} that must have

been inspected at Line 5 of approxGST. In other words:

dmin ≤
l∑

i=2

‖u�
1 , NN(u�

1 , wi)‖ ≤ d�. (3)

where the second ≤ is because ‖u�1, NN(u�
1 , wi)‖ ≤ ‖u�

1 , u
�
i ‖.

Let {û1, ..., ûl} be the set {u1, ..., ul} that determines Mapx at
Line 7 of approxGST. Then, dmin =

∑l
i=2 ‖û1, ûi‖. Every

edge of Mapx is used at least once in the union of the paths from
û1 to û2, ..., ûl, respectively. Hence:

cost(Mapx) ≤ dmin. (4)

Combining Inequalities 2-4 gives cost(Mapx) ≤ (l − 1) ·
cost(M�).

By Theorem 2, the execution time of approxGST is bounded
by O(Nminl logNmax), plus the cost of outputting the tree, where
Nmin = |U(w1)| and Nmax = |U(wl)|.
Remark 3. Sometimes it is useful to return k MCTs with small
cost, where k is a user-specified parameter. In this case, we main-
tain the k best vectors currently found, as opposed to only the top-1.
This can be achieved with minor modification to approxGST.

5. RELATED WORK
NK search has not been studied previously. In the sequel, we

review the existing work on other topics related to our discussion.
The first topic is the processing of holistic twig joins, where the

goal is to enumerate all occurrences of a twig pattern. The existing
algorithms can be classified as sequentialor indexed. A sequential
algorithm [4, 5, 8, 7, 15, 21, 30, 32, 37] scans synchronously the
nodes, whose types appear in the query pattern, in ascending or-
der of their ranks. The drawback of these algorithms is that they
must access every such node at least once, even though it does not
participate in any occurrence. Motivated by this, an indexed algo-
rithm [4, 21] utilizes a data structure that can be used to efficiently
retrieve a particular ancestor/descendent of a node. Such an abil-
ity allows the algorithm to skip many nodes not involved in any
occurrence and, therefore, to terminate much earlier.

In this paper, we do not attempt to attack general holistic twig
joins. Instead, our focus is to improve the efficiency of those
XPath queries that can be processed with NK search. As far as
these queries are concerned, our method significantly outperforms
all the solutions in the sequential category because (similar to in-
dexed algorithms) it only needs to access a small number of nodes
that may form an occurrence. Regarding the indexed category, the
comparison is more subtle, mainly because the algorithms of [4,
21] are heuristic in nature, and are not accompanied by any non-
trivial complexity analysis. We will experimentally compare our
technique against the state of the art, TSGeneric+ [21], of that cat-
egory. Noteworthily, an advantage of our algorithm xpath (Sec-
tion 4.1) is that, in practice, its cost can be accurately estimated by
a query optimizer. This is not possible for [4, 21], as their behavior
is sensitive to the data distributions.

We note that no existing algorithm has the performance char-
acteristic pinpointed in Remark 2. The only approach that comes
close to having the characteristic is TJFast [30], which is a sequen-
tial algorithm that needs to scan the nodes matching only the leaves
of the query pattern. Unfortunately, the extended dewey codesthat
TJFast relies on can be as long as the height of the XML tree. The
time of reading a node is proportional to the length of its extended
dewey code. The length, unfortunately, is linear to the number of
ancestors of the node, which can be asymptotically identical to the
total number of nodes in the tree in the worst case. It is also worth
mentioning that there exist some other methods [9, 24], just like
ours, that are designed for certain special classes of XPath queries.

Another related topic is keyword search in XML databases. A
bulk of the existing research [6, 10, 16, 20, 27, 28, 29, 35] explores
various semantics of query results that is suitable for different sce-
narios. In this work, we showed the applicability of NK search to

the GST semantics [12, 20, 23, 25]. This choice does not imply our
preference of GST; in fact, the potential application of the NK oper-
ator to the other semantics is an exciting direction for future work.
As mentioned before, the GST problem on trees is NP-hard, and
remains so even if the goal is changed to finding an O(log2−ε n)-
approximate solution for arbitrarily small ε > 0 [17], where n is the
number of nodes in the data tree. The best known approximation
ratio achievable in polynomial time is O(log n log l) [14], where l
is the number of query keywords (and can be as large as n). The
algorithm of [14], which is based on linear programming, is highly
theoretical and not appropriate for practical implementation.

In the database area, research on GST computation (e.g., [3, 12,
19, 20, 22, 25]) is largely motivated by the observation that the
value of l can often be regarded as a constant in reality. In this case,
the l−1 approximation ratio guaranteed by our solution (Lemma 6)
can be (much) lower than O(log n log l). A small l also consider-
ably shrinks the search space for discovering the GST. This fact
is leveraged in [20] to enumerate all the MCTs (defined in Sec-
tion 4.2), and thereby, eventually come across the GST (which is
also an MCT). While the method of [20] works on trees only, the
approaches reviewed below apply to general graphs1. Algorithms
for computing approximate GSTs (faster than extracting the GST
with [20]) are presented in [3, 22]. Somewhat surprisingly, there is
a dynamic-programming algorithm [12] for finding the exactGST,
in even less time than the approximate methods of [3, 22].

The above approaches do not rely on pre-computation, whereas
the BLINKS system [19] leverages a sophisticated access method
constructed in advance to produce l-approximate GSTs efficiently.
The most serious drawback of BLINKS, however, is that it occu-
pies Ω(n4/3) space2, where n is the number of nodes in the graph.
For n at the order of millions, Ω(n4/3) amounts to duplicating the
database 100 times, which is too expensive in many environments.
Furthermore, the query algorithm of BLINKS is ad-hoc and has no
interesting worst-case performance bound. Note that our result in
Lemma 6 in fact dominates the performance of BLINKS, i.e., we
guarantee a slightly better approximation ratio, with a linear space
access method and worst-case efficient query time. It should be
noted, however, that the improvement is made possible by utilizing
properties of a tree (recall that BLINKS deals with general graphs).
The work of [23, 25] considers the steiner treeproblem, which is a
special case of the GST problem where there can be only a single
node in the data tree associated with each query keyword. Note
that, while the steiner tree problem is NP-hard on graphs, it is not
on trees, as is clear from the way that MCT is built from a vector in
Section 4.2.

Finally, in the special case where only one distinct keyword ex-
ists, NK retrieval is similar to nearest neighbor search on spatial
networks. In that problem, the data consist of a graph G and a set S
of points, each located at a node of G. Given a node q of G, a query
returns the point in S that has the smallest shortest-path distance to
q. This problem has been well studied in various settings with dif-
ferent performance goals (see [11, 26, 31, 33] and the references
therein). The existing solutions (i) perform Dijkstra-like expansion
from the query point (e.g., [11]), (ii) pre-compute the answer for
each node of G (e.g., [31]), or (iii) rely on specialized structures
that leverage properties of spatial data (e.g., [26, 33]). In our con-

1Given a set of keywords, the GST in a graph is the minimum tree
(i) whose nodes and edges come from the underlying graph, and (ii)
that has the minimum number of edges among all trees satisfying
(i). When the graph is a tree, this definition degenerates into the
one in Section 4.2.
2This can be derived from Theorem 3 of [19] by observing that,∑

b N
2
b +BP ≥ n2/B +B2, which is Ω(n4/3).

text, solutions of (i) degenerate into the BFT approach explained in
Section 3.1, those of (ii) incur prohibitive space when the number
of keywords is large, whereas those of (iii) are simply inapplicable
to XML data.

6. EXPERIMENTS
This section empirically evaluates the performance of the pro-

posed techniques. We used two real XML documents:

• NBA, which contains all the teams and players of the leagues
during 1946-2004.

• DBLP, which includes all the conference papers during
1959-2010 collected by the DBLP website.

Figure 8a (8b) shows the part of the NBA (DBLP) schema that is
relevant to the queries in our experiments. An asterisk indicates that
the corresponding node can have an arbitrary number of siblings of
the same type. For example, an NBA node can have multiple child
nodes of type league. Table 1 lists the main statistics about each
dataset.

NBA

league*

year

yearVal
author*year title

titleVal authorValyearVal

booktitle

booktitleVal

DBLP

inproceedings*

division

divisionVal

players

player*

pname

pnameVal

position

positionVal

college

collegeVal

team*

tnameVal

tname

(a) (b)

Figure 8: Schemas of NBA and DBLP relevant to our queries

NBA DBLP
num. of nodes 135,940 17,501,788

num. of keywords 223,500 48,191,004
num. of distinct keywords 8,302 2,893,195

Table 1: Dataset statistics

We will first explore the characteristics of NK search, and then
assess the usefulness of the NK operator in XPath evaluation and
GST computation, respectively. Our experiments were performed
on a computer that was running Linux, and equipped with an Intel
DUO CPU at 3.0Ghz and 4 GB of memory. All the data were
memory resident.

Performance of NK search. In our indexing scheme, named TVP,
we followed the convention mentioned in Section 1.1 to associate
nodes with keywords. Specifically, every node had its type as a
keyword. Furthermore, if u is a value node, each word w in the
value of u was taken as another keyword of u, after w was prefixed
with the type of u (see Remark 1 of Section 4.1). The name of a
person/team was always regarded as a single word. For instance, if
u has type pnameVal and a value Kobe Bryant, then it carries
a (prefixed) keyword pnameVal:Kobe-Bryant. Table 2 shows
the space consumption of TVPand the raw dataset, while Table 3
gives the construction time of TVP.

The next experiment compares the query efficiency of TVPand
the BFT algorithm described in Section 3.1. For this purpose, we
report their performance on the (realistic) queries in Figure 9, each
of which can be handled by a single NK operator. Queries denoted
with a first letter N (D) were designed for NBA(DBLP). For each

NBA DBLP
TVP 3.8 972

raw dataset 2.4 807

Table 2: Space (mega bytes)

NBA DBLP
< 1 second < 2.5 minutes

Table 3: Construction cost of
TVP

NQ1: Find the team of Shaquille O’Neal in 2000.
q = the pnameVal node with value Shaquille-O’Neal in the
league 2000;w = tnameVal

NQ2: Were Shaquiile O’Neal and Kobe Briant in the same team in year
2000?
q = same asNQ1; w = pnameVal:Kobe-Bryant; distance (of
a positive answer) = 6

NQ3: Same as NQ2 but in 2002.
q = same asNQ1 but in 2002;w and distance as inNQ2

DQ1: Find the conference name of “Holistic Twig Joins: Optimal XML
Pattern Matching”.
q = the ptitleVal node of the paper;w = booktitleVal

DQ2: Is Nicolas Bruno an author of the paper in DQ1?
q = same asDQ1; w = authorVal:Nicolas-Bruno;
distance = 4

DQ3: Same as DQ2 but with respect to Jim Gray.
q and distance same asDQ2; w = authorVal:Jim-Gray

Figure 9: Query set for examining NK efficiency

query, Figure 9 clarifies the node q and keyword w of the corre-
sponding NK operator. For a boolean query, the figure also points
out the distance (to q) that the nearest w-neighbor should have in
order to return a positive answer. For instance, the answer for NQ2
is “yes” if and only if the retrieved neighbor has distance 6 to q.

0.01

0.1

1

10

100

1000

10000

100000

1000000

NQ1 NQ2 NQ3 DQ1 DQ2 DQ3

cost (µ sec) TVP BFT

Figure 10: Cost of NK search

Figure 10 illustrates the cost of TVP and BFT for each query.
Note that the vertical axis is in logarithmic scale, and has the unit of
µ-second (= 10−6 second). BFT is especially slow for the boolean
queries NQ3 and DQ3 with answers “no”. This is expected be-
cause, for these queries, the retrieved neighbor has a large distance
to the query node.

XPath evaluation. We proceed to assess the efficiency of the NK
operator in answering XPath queries. Our technique integrated
the proposed access method TVP with the xpath algorithm de-
veloped in Section 4.1. As discussed in Section 5, the existing
algorithms for holistic twig joins can be classified into the sequen-
tial and indexedcategories, with the solutions in the latter cate-
gory significantly faster than those of the former. Therefore, we
chose to compare TVP against the state-of-the-art indexed algo-
rithm TSGeneric+ [21].

Figures 11a and 11b explain the meaning and twig patterns of
the queries examined, respectively. The box in each pattern sig-
nifies the anchor node chosen by xpath. Observe that NQ7 and
DQ7 violatethe anchor condition (i.e., Condition 2) in Section 4.2.
Nevertheless, they are still reducible to NK search and, in fact, can
be answered directly by the xpath algorithm with no modification.

For fairness, our implementation of TSGeneric+ utilizes an in-
verted index to filter all the nodes that do not satisfy the keyword
conditions. For example, for NQ4, only the collegeVal nodes

NQ4: Find the names of all players from Duke University.

NQ5: Find the names of all centers from the west division.

NQ6: Find the names of all players that came from Boston College
but were in a team of the west division in year 1999.

NQ7: Find the teams where Hakeem Olajuwon and Charles Barkley
were teammates.

DQ4: Find the titles of all papers by Jim Gray.

DQ5: Find the titles of the SIGMOD papers by Nick Koudas.

DQ6: Find the conferences of the papers by Divesh Srivastava that
contained “XML” in the titles.

DQ7: Find the titles of the SIGMOD papers co-authored by Hector
Garcia-Molina and Jennifer Widom.

(a) Query description

NQ7

NQ4 NQ5

NQ6

DQ7

DQ4 DQ5

DQ6

team
player division

pname pos

pnameVal center

west

SIGMOD

booktitle authortitle

titleVal

inproceedings

author

Jennifer
Widom

Hector
Garcia-
Molina

XML

booktitle authortitle

booktitleVal

inproceedings

Divesh
Srivastava

inproceedings

title

titleVal

author

Jim Gray SIGMOD

booktitle authortitle

titleVal

inproceedings

Nick Koudas

team

tname

tnameVal

player player

Charles
Barkley

Hakeem
Olajuwon

player

pname college

pnameVal Duke

league
team year

player division

pname college

Boston

1999

west

pnameVal

(b) Twig patterns

Figure 11: Query set for examining XPath efficiency

0
20
40
60
80

100
120
140
160
180
200

NQ4 NQ5 NQ6 DQ4 DQ5 DQ6NQ7 DQ7

~ ~ TVP TSGeneric+

672 1431

cost (µ sec)

Figure 12: Cost of XPath queries

whose values are equal to Duke are considered, as opposed to all
the collegeVal nodes (as proposed in [21]). This optimization
reduces the average overhead of the original TSGeneric+ by at least
an order of magnitude. Figure 12 demonstrates the execution time
of TVPand TSGeneric+ for all queries. TVP lost narrowly in two
out of the eight queries, but was at least twice faster in four queries.

GST computation. The final set of experiments investigate
the efficiency and effectiveness of the NK operator in keyword
search. Our approach combined the TVPindexing scheme with the
approxGST algorithm in Section 4.2. We compared the approach
against the dynamic programming algorithm of [12] (as reviewed
in Section 5), hereafter denoted by DP. Recall that DP returns the
exactGST. We evaluated the two methods only with NBA, as the
excessive memory requirements of DP rendered it infeasible to run
experiments with DBLP on our hardware. As the XML schema is
irrelevant to keyword search, the TVP built here does not require
the keyword prefixing explained earlier. In other words, each el-
ement node (as before) is associated with its type, whereas each

NQ8: {Shaquille-O’Neal, Anfernee-Hardaway}

NQ9: {Shaquille-O’Neal, Anfernee-Hardaway,
Orlando-Magic}

NQ10: {Shaquille-O’Neal, Anfernee-Hardaway,
Orlando-Magic, 2000}

Figure 13: Query set for keyword search evaluation

0

2
4

6

8

10

12

NQ8 NQ9 NQ10

TVP DP# of edges

14

16

1

1

1.07
approx. ratio

0.001

0.01

0.1

1

10

100
1000

NQ8 NQ9 NQ10

TVP DPcost (msec)

10000

100000

(a) Number of edges (b) CPU time

Figure 14: Quality and efficiency of GST computation

value node is simply associated with the words in its value. Fig-
ure 13 illustrates the queries executed.

Figure 14a depicts, for each query, the number of edges in the
trees output by TVPand DP, respectively. It also indicates the ap-
proximation ratio of TVP. Notice that TVP returns the exact GST
for NQ8 and NQ9, whereas its result for NQ10 has one more
edge than the optimal solution. This shows that, in practice, the
actual approximation ratio of TVP is much better than predicted
by theory (Lemma 6). Figure 14b plots the CPU time of the two
methods. TVPoutperforms DP by two to five orders of magnitude.
Moreover, unlike DP whose cost surges with the number of query
words, the overhead of TVPis only slightly affected.

To better capture the usefulness of TVP in keyword search,
Figure 15 presents the trees returned by TVP in the previ-
ous experiment. The result of NQ8 essentially states that
Shaquille-O’Neal and Anfernee-Hardaway played for
the same team at least once in their career. The tree of NQ9 implies
that the above players were once teammates in Orlando-Magic.
Finally, the NQ10 result indicates that Shaquille-O’Neal
and Anfernee-Hardaway belonged to different teams in 2000,
neither of which was Orlando-Magic.

We conclude our experiments by comparing TVP and DP in
searching for the top-k GSTs of NQ9 with k > 1. TVPnow mod-
ifies approxGST as discussed in Remark 3. Note that both TVP
and DP are approximate, namely, DP guarantees returning the top-
1 GST, but such optimality is not ensured for k > 1. Figure 16a
plots the result quality (in the number of tree edges) as a function
of k. The two algorithms output trees with identical sizes when

player

pname

Shaquille-O′Neal

pname

player

Anfernee-Hardaway

players players

team team team

tname

Orlando-Magic

year

league

2000

players

player

pname pname

player

Shaquille-O′Neal Anfernee-Hardaway
players

player

pname pname

player

Shaquille-O′Neal Anfernee-Hardaway

team

tname

Orlando-Magic

NQ8 NQ9

NQ10

Figure 15: MCTs returned by TVP for the queries of Figure 13

0

2
4

6

8

10

12

1 2 3

TVP DP# of edges

14

16

4 5
k

0.001
0.01

0.1
1

10

100

1000

1 2 3

TVP DP

10000
100000

4 5
k

cost (msec)

(a) Number of edges (b) CPU time

Figure 16: Quality and efficiency of top-k GST computation

k ∈ [1, 3], whereas DP offers slightly smaller trees for k ∈ [4, 5].
Figure 16b gives their CPU cost. The overhead for both methods
gradually elevates with k. TVPconstantly outperforms DP by more
than four orders of magnitude.

7. CONCLUSIONS
This paper proposed the problem of NK search on XML docu-

ments. Given a node q and a keyword w, an NK query returns the
node in the XML tree that has the shortest distance to q, among
all nodes associated with w. We solved the problem with a novel
technique called tree Voronoi partition that gives rise to an indexing
scheme with rigorous worst-case performance guarantees. Specif-
ically, our scheme consumes linear space, and answers every NK
query in time logarithmic to how many nodes carry the query key-
word. We also demonstrated, both theoretically and experimen-
tally, the usefulness of the NK operator in supporting several im-
portant tasks in XML databases. In particular, our technique results
in (i) a new methodology for solving a wide class of XPath queries
that is both asymptotically and practically efficient, and (ii) a fast
algorithm for finding an approximate GST with bounded quality.

Acknowledgements
This work was supported by grants GRF 4173/08, GRF 4169/09,
and GRF 4166/10 from HKRGC. We thank the anonymous review-
ers for their constructive suggestions on improving the paper.

8. REFERENCES
[1] S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe. Nearest common

ancestors: a survey and a new distributed algorithm. In SPAA, pages
258–264, 2002.

[2] O. Berkman and U. Vishkin. Recursive star-tree parallel data
structure. SIAM J. of Comp., 22(2):221–242, 1993.

[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan.
Keyword searching and browsing in databases using BANKS. In
ICDE, pages 431–440, 2002.

[4] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: Optimal
XML pattern matching. In SIGMOD, pages 310–321, 2002.

[5] L. Chen, A. Gupta, and M. E. Kurul. Stack-based algorithms for
pattern matching on dags. In VLDB, pages 493–504, 2005.

[6] L. J. Chen and Y. Papakonstantinou. Supporting top-k keyword
search in XML databases. In ICDE, pages 689–700, 2010.

[7] S. Chen, H.-G. Li, J. Tatemura, W.-P. Hsiung, D. Agrawal, and K. S.
Candan. Twig2stack: Bottom-up processing of
generalized-tree-pattern queries over XML documents. In VLDB,
pages 283–294, 2006.

[8] T. Chen, J. Lu, and T. W. Ling. On boosting holism in XML twig
pattern matching using structural indexing techniques. In SIGMOD,
pages 455–466, 2005.

[9] Y. Chen, S. B. Davidson, and Y. Zheng. Blas: An efficient XPath
processing system. In SIGMOD, pages 47–58, 2004.

[10] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. Xsearch: A semantic
search engine for XML. In VLDB, pages 45–56, 2003.

[11] K. Deng, X. Zhou, H. T. Shen, S. W. Sadiq, and X. Li. Instance
optimal query processing in spatial networks. VLDB J.,
18(3):675–693, 2009.

[12] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin. Finding
top-k min-cost connected trees in databases. In ICDE, pages
836–845, 2007.

[13] J. Fischer and V. Heun. Theoretical and practical improvements on
the RMQ-problem, with applications to LCA and LCE. In Annual
Symp. on Combinatorial Pattern Matching, pages 36–48, 2006.

[14] N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic
approximation algorithm for the group steiner tree problem. J.
Algorithms, 37(1):66–84, 2000.

[15] N. Grimsmo, T. A. Bjørklund, and M. L. Hetland. Fast optimal twig
joins. PVLDB, 3(1):894–905, 2010.

[16] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK:
Ranked keyword search over XML documents. In SIGMOD, pages
16–27, 2003.

[17] E. Halperin and R. Krauthgamer. Polylogarithmic inapproximability.
In STOC, pages 585–594, 2003.

[18] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest
common ancestors. SIAM J. of Comp., 13(2):338–355, 1984.

[19] H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: ranked keyword
searches on graphs. In SIGMOD, pages 305–316, 2007.

[20] V. Hristidis, N. Koudas, Y. Papakonstantinou, and D. Srivastava.
Keyword proximity search in XML trees. TKDE, 18(4):525–539,
2006.

[21] H. Jiang, W. Wang, H. Lu, and J. X. Yu. Holistic twig joins on
indexed XML documents. In VLDB, pages 273–284, 2003.

[22] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and
H. Karambelkar. Bidirectional expansion for keyword search on
graph databases. In VLDB, pages 505–516, 2005.

[23] G. Kasneci, M. Ramanath, M. Sozio, F. M. Suchanek, and
G. Weikum. STAR: Steiner-tree approximation in relationship
graphs. In ICDE, pages 868–879, 2009.

[24] R. Kaushik, R. Krishnamurthy, J. F. Naughton, and R. Ramakrishnan.
On the integration of structure indexes and inverted lists. In
SIGMOD, pages 779–790, 2004.

[25] B. Kimelfeld and Y. Sagiv. Finding and approximating top-k answers
in keyword proximity search. In PODS, pages 173–182, 2006.

[26] M. R. Kolahdouzan and C. Shahabi. Voronoi-based k nearest
neighbor search for spatial network databases. In VLDB, pages
840–851, 2004.

[27] Y. Li, C. Yu, and H. V. Jagadish. Enabling schema-free XQuery with
meaningful query focus. VLDB J., 17(3):355–377, 2008.

[28] Z. Liu and Y. Chen. Identifying meaningful return information for
XML keyword search. In SIGMOD, pages 329–340, 2007.

[29] Z. Liu and Y. Chen. Return specification inference and result
clustering for keyword search on xml. TODS, 35(2), 2010.

[30] J. Lu, T. W. Ling, C. Y. Chan, and T. Chen. From region encoding to
extended dewey: On efficient processing of XML twig pattern
matching. In VLDB, pages 193–204, 2005.

[31] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial
Tessellations, Concepts and Applications of Voronoi Diagrams. John
Wiley & Sons Ltd., 2000.

[32] P. Rao and B. Moon. Sequencing XML data and query twigs for fast
pattern matching. TODS, 31(1):299–345, 2006.

[33] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable network
distance browsing in spatial databases. In SIGMOD, pages 43–54,
2008.

[34] I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram, E. J.
Shekita, and C. Zhang. Storing and querying ordered xml using a
relational database system. In SIGMOD, pages 204–215, 2002.

[35] Y. Xu and Y. Papakonstantinou. Efficient keyword search for smallest
LCAs in XML databases. In SIGMOD, pages 537–538, 2005.

[36] J. Yang and J. Widom. Incremental computation and maintenance of
temporal aggregates. VLDB J., 12(3):262–283, 2003.

[37] N. Zhang, V. Kacholia, and M. T. Ozsu. A succinct physical storage
scheme for efficient evaluation of path queries in xml. In ICDE,
pages 54–65, 2004.

