
Fair Sequential Group Recommendations
Maria Stratigi

Tampere University

Tampere, Finland

maria.stratigi@tuni.fi

Jyrki Nummenmaa

Tampere University

Tampere, Finland

jyrki.nummenmaa@tuni.fi

Evaggelia Pitoura

University of Ioannina

Ioannina, Greece

pitoura@cs.uoi.gr

Kostas Stefanidis

Tampere University

Tampere, Finland

konstantinos.stefanidis@tuni.fi

ABSTRACT
Recommender systems have been incorporated in our everyday

life; from music to health recommendations, recommender systems

have enhanced the users’ experience. At the same time, with the

expansion of social media, it is now easier than ever to form groups

of people. As such, group recommenders have become more pop-

ular. Often, we consider the interaction between a group and the

recommender system as a stand-alone process; the group requests

some suggestions from the system and the system answers without

any considerations to past interactions. A more realistic scenario is

for a system to require access to history logs, and take them into

account when recommending items for a group of users. Not only

what items the system previously had recommended, but also, how

well were these items received by the members of the group. In

this work, we propose a sequential group recommender, which is

aware of the past interactions of the group with the system. We

introduce the notion of satisfaction that describes how relevant are

the recommended items to each member of the group. We utilize

satisfaction in a novel aggregation method that achieves to make

our model fair for all members of the group. We show with experi-

mental results that the typical group recommendation approaches

are substandard to our proposed method.

KEYWORDS
Recommender systems, sequential recommendations, group recom-

mendations, fair recommendations.

1 INTRODUCTION
Recommendations have been integrated into many of the services

available to users in recent times. From listening to music to health

information, recommender systems are employed to make the user

experience better and smoother. In most cases, recommender sys-

tems provide users with a list of data items that are most relevant to

them. Two main methods appear to produce such lists of items. The
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content-based method [24] and the collaborative filtering method

[29]. In the content-based case, the system recommends to the user

items that are similar to other items that the user has already con-

sumed in the past. This requires previous knowledge about the

items which is often hard to obtain. In contrast, collaborative fil-

tering (CF) requires data regarding user preferences for specific

items. The main idea behind a CF recommender system is the fol-

lowing: given a target user, the system finds similar enough users

to him/her, often called peers. Then the items that the peers have

shown a preference for (mostly in the form of ratings, but often

other forms of feedback are used, such as textual review and bi-

nary format of like/dislike) are examined and used as input into

a relevance function, which produces the list of relevant items to

the target user. Collaborative filtering is a very powerful tool that

enables recommender systems to provide far more accurate and

specialized recommendations [3].

With the expansion of social media, another form of recommen-

dations has emerged; namely the group recommendations [1, 21, 22].

Instead of a single user requesting recommendations from the sys-

tem, a group can make a query as well. A standard example of group

recommendations is the following: a group of friends wants to see

a movie. Each friend has his/her own likes and dislikes. The system

needs to properly balance them, and offer to the group a list of items

that has a degree of relevance to each member. Recently, there is

some research on the selection process of the items. One approach is

to create a pseudo user by combing the data of each group member,

and then apply a standard recommendation method. The second

and most used approach is to apply a recommendation method to

each member individually, and then aggregate the separate lists

into one for the group. The aggregation phase of the approach is

the object of much research done on group recommendations.

There are many different criteria one can take into account dur-

ing the aggregation stage. One such criterion is fairness [19, 30–32].
A basic definition of fairness is to recommend the item that has the

best relevance to the group. Instinctively, one way to produce such

an item is to calculate the average score across all the group mem-

bers’ preference scores for that item. In such a way, all members of

the group are considered equals. However, this has a big drawback.

Consider, for instance, the following scenario with a group of three

users. Two of them are quite similar to each other, while the third

is not. By using the average method the opinion of the last user is

lost. An alternative approach is to use the minimum function rather

than the average. This way, the user with the minimum preference

https://doi.org/xx.xxx/xxx_x


score will act as a veto to the rest of the group. The least misery

approach, as it is called, has a drawback as well. It only takes the

opinion of one group member under consideration, while ignoring

the others. Subsequently, the system in most cases, recommends an

item that is acceptable for all members, but it will be an item with a

somehow low preference score. The need to combine the equality of

the average method and the inclusivity of the least misery method

is the driving force behind our work in this paper.

The previous approaches for computing recommendations have

a hidden element to them. We imply that each time a group is using

the system is distinct from the previous ones and that the system

has only one state without keeping a history log. But this is not a

realistic scenario. A user, or in our case a group of users, interacts

with the system multiple times. So, the system should recommend

different items at each iteration, while retaining knowledge from

past interactions, so as to keep the output diverse. That is, we do not

want to always recommend the same item or the same set of items.

We want a system that has a memory and can adjust its recom-

mendations accordingly. Continuing with a group movie example,

where the same group of friends requests a movie recommenda-

tion each week, both the average and least misery approaches fail

through all iterations of the system. In the case of average, the

outlier user is never satisfied, while in the case of least misery, the

system recommends movies that are not highly relevant to anyone

in the group.

In this work, we address the problem of unfairness that is gen-

erated by these methods when applied to sequential group recom-

mendations. A simple working scenario is as follows: we have a

group of friends that meets in regular times to watch a movie. We

want to recommend each time a new movie for the group. Figure 1

gives an experimental example of such a scenario. We take a group

of 5 members that ask the system for recommendations 5 different

times. Each time the system reports to the group 10 items. In Figure

1-left, we have formed the group list, by using the average aggre-

gation method, while in Figure 1-right, the least misery one. In

this example, we count the degree of satisfaction for each member,

which is calculated by measuring how relevant are the group list’s

items, over the best items for each member
1
. In both scenarios, User

4 has a very low satisfaction score (for least misery is always 0),

which implies that almost none of the reported items are of interest

to him/her. It is evident that the recommender system is unfair to

him/her, and that unfairness continues throughout the iterations.

Ideally, each new group recommendation should take into account

what has happened in the past. Not only what movies have already

been recommended, but at which degree each member of the group

was satisfied with that recommendation.

The notion of multiple iterations of recommendations allows

us to make a conjecture. If a user is not satisfied with a particular

round of recommendations, then he/she was either satisfied in a

previous or will be satisfied in the next round. We introduce the

notion of satisfaction to estimate the degree of satisfaction in the

recommendations for each group member, after each iteration of

the system. We apply this satisfaction score during the aggregation

phase of the group recommendationmethod as aweighting function

on the individual preference scores of the group members. This way,

1
For more details see Section 4 – Equation 1.

the users that were not satisfied in the previous round will have

more weight in the next iteration. Additionally, a member is not

continuously biased against (as may be the case of simple average),

since the calculation of the satisfaction scores is done dynamically

at each iteration. Finally, we take into account the opinions of the

entire group (something that least misery was lacking).

The contributions of our work are the following:

• We introduce the notion of sequential group recommenda-

tions. We propose that when adding the dimension of multi-

ple iterations to typical group recommendation approaches,

such as the average and least misery aggregation methods,

the results do not ensure user satisfaction for all group mem-

bers.

• We propose the concept of satisfaction. Each member of the

group has a degree of satisfaction for the items recommended

at each iteration, as well as an overall satisfaction, gained by

all the previous iterations of the group.

• We propose a sequential group recommendation model that

takes into account the previous interactions of the group

with the system and alters the influence that a group member

has on the formation of the group recommendation list.

• We experimentally show that our proposed model is superior

to the standard group recommendation approaches.

The rest of the paper is structured as follows: Section 2 describes

the related work. Section 3 presents basic concepts on recommender

systems, and Section 4 introduces our approach for sequential group

recommendations, targeting at ensuring fair results for all group

members. Section 5 presents our experimental setup, and Section

6 presents our evaluation results. Finally, Section 7 concludes the

paper with a summary of our contributions and directions for future

work.

2 RELATEDWORK
A recommender system aims to provide to a user, items that are

relevant to him/her, by exploiting already available user informa-

tion – profile, preferences, etc. One of the most used approaches for

producing recommendations is the collaborative filtering approach.

With more than a decade of research in the area, there are many

different solutions to the problem [3]. Most of them can be divided

into two main categories: memory-based and model-based algo-

rithms. Memory-based algorithms [15, 28], employ a user-ratings

matrix that contains the ratings each user has given to items. They

utilize this matrix to find similar users to a target user, by applying

a similarity function. The final prediction is made by examining the

ratings of similar users, or as they often called neighbors or peers.
Model-based algorithms [7], first construct a model to represent

the behavior of the users and, therefore, to predict their ratings. In

this work, we utilize memory-based collaborative filtering.

2.1 Group Recommendations
Group recommendation is another field with a significant research

background. There are two main approaches to group recommen-

dation: virtual user and recommendation aggregation [13]. In the

former approach, we combine the profiles and ratings of each group

member to form a virtual user so that a standard recommendation

approach can be applied. In the latter approach, we apply a standard



Figure 1: Example for a group with 5 members, and a group recommendation list with 10 items. We consider 5 iterations. We
utilize the average (left) and least misery (right) aggregation methods.

recommendation algorithm to each group member individually and

aggregate their lists into one. In this work, we follow the latter

approach, since it is more flexible [23] and offers opportunities for

improvements in terms of effectiveness.

During the aggregation phase of this approach, many criteria

can be taken into account. [36] proposes a group recommendation

model that takes into account the influence that each member has

on the final choice for the group. They state that a member has

more influence on the group if he/she is more knowledgeable about

the items that are recommended. In our work, we propose that, if

there is a group member that is more dissatisfied than the rest, then

that member will have more influence in the group decision. [4]

learns the aggregation strategy from data, which is based on the

recent developments of attention network and neural collabora-

tive filtering (NCF), while we dynamically change our proposed

aggregation method based on the satisfaction of the group mem-

bers. While we focus on a relatively small group of friends (5 in

our experiments), [25] offers a novel approach to producing recom-

mendations for a large group of people, by dividing the big group

into different interest subgroups. For each subgroup, they find a

potential candidate set of media-user pairs and finally aggregate

the CF produced recommendation lists for each pair. [16] proposes

a two-phase group recommender that, similar to our work, tries

to satisfy all the group members. In the first phase, they try to

satisfy the whole group, while in the second they try to satisfy the

members individually, by filtering out items that are irrelevant to

each member. We incorporate these two phases into our proposed

aggregation method.

2.2 Fairness in Group Recommendations
There are many different approaches to achieving fairness in group

recommendations. One approach is to calculate fairness based on

the game and voting theory. [5] solves conflicts of interest between

members of heterogeneous random groups by utilizing the Non-

Cooperative Game Theory [34]. [20] assumes that the recommender

system has probabilistic knowledge about the distribution of users’

ratings, and utilizing the voting theory recommends to the group a

“winning” item. Finally, [9] proposes a new group recommendation

method by allowing a group member to commend on the choices of

the rest of the group. This allows each user to get new recommen-

dations similar to the proposals made by other group members and

to communicate the rationale behind their own counterproposals.

Another approach to achieving fairness in group recommenda-

tion is presented in [1]. It introduces the consensus function that

similarly to our work takes into account the opinion of the group

as it is given by the average method and the disagreement between

users. They define the disagreement of users as either the aver-

age of pair-wise relevance differences for the item among group

members or a variance disagreement function that computes the

mathematical variance of the relevance scores for the item among

group members. [30] proposes two definition of fairness: fairness
proportionality and envy-freeness. In the former, the user u con-

siders the list of recommended items fair for him/her, if there are

at leastm items that the user likes. In the latter, u considers the

package fair, if there are at leastm items for which the user does

not feel envious. [35] presents yet another definition of fairness.

They define a utility score for each group member based on the

relevance that the recommended items have on them. They model

fairness as a proximity of how balanced the utilities of users are

when group recommendations are given.

All of the works mentioned above in achieving fairness only

consider one instance of group recommendations and do not take

into account the sequential group recommendation problem, as we

do in this work.

2.3 Sequential Recommendations
Sequential recommendations is a relatively new area of research. In

general, there are three categories of sequential recommenders, and

they are divided based on how many past user interactions they

consider: Last-N interactions-based recommendations, Session-based
recommendations and Session-aware recommendations [26]. In the

first approach, only the last N user actions are considered [6, 17, 18].

This is because the system has logged a huge amount of historical

data for the user, with many of them be duplicates, which do not

offer relevant information to the system. Last-N interactions-based

recommendations are typically location-aware recommendations.

In session-based recommendations, only the last interaction of the

user with the system is used. They are typically found in news [8]

and advertisement [12] recommender systems. In the last category



of sequential recommenders – session-aware recommendations, we

have information about both the last interaction of the user with

the system, as well as the history of the user. These recommenders

are often implemented in e-commerce or for app suggestions [10,

14, 27]. In our work, we use the last method to approach sequential

group recommendations. The above classification has been done

for single user recommenders, and to our knowledge, our work is

the first one in sequential group recommendations, that handles

the notion of fairness.

3 BASIC CONCEPTS
In this section, we introduce a simple group recommendation pro-

cess. This is a stand-alone process and does not take into account

any past interactions that the group may have had with the system.

The group recommendation approach we use, is the aggregation of

the individual group members’ preference lists into one group pref-

erence list. We define a preference list to be the list we recommend

either to each member individually or to the group.

Specifically, let U be a set of users and I be a set of items. Each

user ui ∈ U has given a rating from 1 to 5 to an item dz ∈ I
represented as r (ui ,dz ) The subset of users that rated an itemdz ∈ I
is denoted byU (dz ), while the subset of items rated by a userui ∈ U
is denoted by I (ui ). Let’s assume also a fixed group of users G
of size n, G ⊆ U . Having applied a single user recommendation

algorithm to all group members inG and produced their preference

lists Au1
, . . . ,Aun , the next step is to aggregate these lists into one.

After the aggregation phase, each item will have just one group

preference score and the top k will be reported back to the group

as the final recommendations.

Typically, two well established aggregation methods are used [2].

The first aggregation approach we examine is the average method.

The main idea behind this approach is that all members are consid-

ered equals. So, the group preference of an item will be given be

averaging its scores across all group members:

avдG(dz ,G) =
sumui ∈Gp(ui ,dz )

|G |
,

where p(ui ,dz ) gives us the preference score of dz for user ui (com-

puted by a standard single user recommendation algorithm). The

second aggregation method is least misery, where one member can

act as a veto for the rest of the group. In this case, the group pref-

erence score of an item dz is the minimum score assigned to that

item in all group members preference lists:

minG(dz ,G) =minui ∈Gp(ui ,dz ).

4 SEQUENTIAL GROUP
RECOMMENDATIONS

In this section, we introduce the notion of multiple rounds to the

previous group recommendation process. Consequently, we do not

consider each group query to the system as a stand alone process,

but as a sequence of queries submitted to the system by the same

group. We call each group query to the system an iteration, and
each iteration has the main components of a standard group rec-

ommendation method: single user recommendations followed by

the aggregation phase.

Formally, let GR be a sequence of µ group recommendations

(Gr1, . . . ,Grµ ). We use pj (ui ,dz ) for the preference score of userui
for item dz at iteration j , 1 ≤ j ≤ µ. These scores are estimated by a

single user recommendation algorithm. After the aggregation phase

of the group recommender system, we use дpj (G,dz ) to denote the

preference score of item dz for the groupG as a whole, as estimated

by the group recommender at iteration j.
This new model, in contrast to the previous one, introduces

the notion of multiple iterations or sequence of recommendations.

We use these interactions, to alter the output of the recommender

system, in such a way that if a user was not satisfied in a previous

iteration, potentially, he/she will be satisfied during the current

one.

4.1 Satisfaction Measure
To examine the effectiveness of our group recommender algorithm

through a series of iterations, we need to define a measure that

will help us elevate the problem from examining each iteration

independently, to examining a series of iterations. We introduce

the notion of satisfaction that represents the gratification of each

group member for the recommended items after each iteration of

the system. We define two variations of satisfaction: single user
satisfaction and group satisfaction.

4.1.1 Single User Satisfaction. First, we want to provide a formal

measure of the degree of the satisfaction of each user ui in G to

the group recommendation Gr j received at step j. We do so, by

comparing the quality of recommendations that the user receives

as a member of the group with the quality of the recommendations

that the user would have received as an individual.

Assume that Gr j involves items i j,1, i j,2, . . . i j,k . Furthermore,

let Aui , j be the list with the top-k items aj,1,aj,2, . . . aj,k for user

ui , that is, the k items with the highest prediction scores for user

ui . Our goal is to directly compare the user’s satisfaction from the

group recommendation list with the ideal case for that user. This

gives us a more clear view of the satisfaction of the user than the

average method since we take into account the top items for each

user, and not only the top items for the group. Formally:

sat(ui ,Gr j ) =
GroupListSat(ui ,Gr j )

UserListSat(ui ,Aui , j )
(1)

GroupListSat(ui ,Gr j ) =
∑

dz ∈Gr j

pj (ui ,dz ) (2)

UserListSat(ui ,Aui , j ) =
∑

dz ∈Aui , j

pj (ui ,dz ) (3)

With the function GroupListSat (Equation 2), we calculate the

user’s satisfaction based on the group recommendation list. For

every item in Gr j , we sum the score as they appear in each user’s

Aui , j . The function UserListSat (Equation 3), calculates the ideal

case for the user, by simply sum the scores of the k top items in

the user’s Aui , j . This way, we are able to normalize the user’s

satisfaction score. For example, if a user gives mainly low scores to

items, then Equation 1 is able to compensate for it.

Note that in both Equations 2 and 3, we do not use the scores as

they appear in the group list, but as they appear in the individual

preference list of the user. Since the aggregation phase of the group



recommendation process, rather distorts the individual opinions

of the group members, we opt to take into consideration only the

personal preference scores of each group member.

Still, Equation 1 remains static, in the sense that we calculate the

satisfaction of a user for one iteration only. As stated before, what

we want is to define a measure that takes into consideration the

satisfaction scores from previous iterations of the system. Such a

score will represent the overall satisfaction of each group member

with the entirety of the µ group recommendations.

Definition 4.1 (Overall Satisfaction). The overall satisfaction of

user ui with respect to a sequence GR of µ iterations is the average

of the satisfaction scores after each iteration:

satO(ui ,GR) =

∑µ
j=1

sat(ui ,Gr j )

µ
(4)

4.1.2 Group Satisfaction. Having defined the satisfaction score

of each group member we can now define the satisfaction score

of the entire group. Specifically, the satisfaction of the group G
with respect to a group recommendation list Gr j is defined as the

average of the satisfaction of the users in the group:

дroupSat(G,Gr j ) =

∑
ui ∈G sat(ui ,Gr j )

|G |
(5)

Subsequently, we define the overall group satisfaction of a group

G for a recommendation sequence GR of µ group recommendations

(Gr1, . . . , Grµ ), as:

дroupSatO(G,GR) =

∑
ui ∈G satO(ui ,GR)

|G |
(6)

This measure indicates if the items we report to the group, are

acceptable to its members. Higher group satisfaction means that the

group members are satisfied with the recommendations. However,

since we average the members satisfaction scores a dissatisfaction

of a user can probably be lost in the computations. To counter this

problem, we focus as well on the potential disagreements between

the users in the group. For representing such disagreement, we
define the groupDis measure:

дroupDis(G,GR) =

maxui ∈GsatO(ui ,GR) −minui ∈GsatO(ui ,GR) (7)

Intuitively, we define the disagreement of the group, to be the

difference in the overall satisfaction scores between the most satis-

fied and the least satisfied member in the group. Ideally, we want

this measure to take low values, as that will indicate that the group

members are all satisfied to the same degree. Higher дroupDis val-
ues will demonstrate that at least one member of the group is biased

against.

4.2 Problem Definition
Our sequential group recommender system needs to achieve two

independent objectives that are nonetheless critical to the success

of our model. The first objective considers the group as an entity:

we want to offer to the group the best possible results. The second

objective considers the group members independently: we want to

behave as fairly as possible towards all members.

Definition 4.2 (Fair Sequential Group Recommendation). Given
a group G, the sequential group recommender produces at the µ
iteration a list of k items Grµ , Grµ ∈ GR that:

(1) Maximizes the overall group satisfaction,дroupSatO(G,GR),
and

(2) Minimizes the variance between users satisfaction scores:

дroupDis(G,GR).

To achieve the first objective, we target atmaximizingдroupSatO .

This means that we require the items with the highest preference

scores for the group as a whole. Since дroupSatO expresses the

average satisfaction of the group members, and the dissatisfaction

of just one member is easily lost, we also need to achieve the second

objective, to minimize дroupDis , which is the representation of the

degree of dissatisfaction between the members of the group.

Depending on the similarity between the group members, these

two objectivesmay be conflictingwith each other. A simple example,

is a group of three members, two that are highly similar to each

other, and one that is very dissimilar to them. To achieve high

дroupSatO values, we need to recommend items that are relevant

to the two similar users, so as to increase the average satisfaction of

the group. On the other hand, by doing so, дroupDis will take high
values as well since we do not address the needs of the third member.

Overall, we need to recommend items that are not just good enough

for all members – since that still returns low дroupSatO values, but

items that have high relevance to the group, without sacrificing the

opinions of the minority.

4.3 Sequential Hybrid Aggregation Method
As explained above, both the average and the least misery aggre-

gation methods have drawbacks, when we consider them for se-

quential recommendations. At the same time, both have advantages

(namely, equality for average, and inclusion of all opinions for least

misery) that are an asset for a recommender system. Furthermore,

it has been proven that to compute the best suggestions for a group

that minimizes the gap between the least and highest satisfied

group members is an NP-Hard problem [35]. That is something we

want to achieve throughout the multiple iterations of the system,

to be equally fair to all members of the group. To circumvent the

problem and to capitalize on the advantages of the average and the

least misery aggregation methods, we propose a novel aggregation

method that is a weighted combination of them. We call the method

sequential hybrid aggregation method.

score(G,dz , j) =

(1 − α j ) ∗ avдScore(G,dz , j) + α j ∗ leastScore(G,dz , j) (8)

The function avдScore(G,dz , j) returns the score of the item dz
as it is computed by the average aggregation method during iter-

ation j, and function leastScore(G,dz , j) returns the least satisfied
user’s score of dz at iteration j. The variable α takes values from

0 to 1. If α = 0, then the sequential hybrid aggregation method

becomes average aggregation, while when α = 1, it transforms to a

modified least misery aggregation, where we only take into account

the preferences of the least satisfied member.

Intuitively, when α = 0, our method satisfies the first part of

the fair sequential group recommendation problem (Definition 4.2)

since the average aggregation considers the best options for the



group as a whole. The benefits of α = 1 can be seen for higher

values of µ, since at the first iterations the group disagreement may

remain high since it considers the overall satisfaction of the users

(Equation 4).

Given that our goal is to fulfill both objectives of the problem def-

inition, we need to set the value of α between 0 and 1. Furthermore,

we want this value to self-regulate, to more effectively describe the

consensus of the group. Thus, we set the value of α dynamically in

each iteration by subtracting the minimum satisfaction score of the

group members in the previous iteration, from the maximum score.

α j =maxu ∈Gsat(u,Gr j−1) −minu ∈Gsat(u,Gr j−1) (9)

When j = 1 (the first iteration of the system), then α = 0, and the

aggregation method reverts to that of a classic average aggregation.

By having this dynamically calculated α , we counteract the in-
dividual drawbacks of average and least misery. Intuitively, if the

group members are equally satisfied at the last round, then α takes

low values, and the aggregation will closely follow that of an aver-

age, where everyone is treated as an equal. On the other hand, if

one group member is extremely unsatisfied in a specific iteration,

then α takes a high value and promotes that member’s preferences

on the next iteration. Formally:

Proposition 1. Letu be a user in a groupG , such that, sat(u,Gr j−1)

< sat(ui ,Gr j−1), ∀ui ∈ G\{u}. Then, ∃uy ∈ G\{u}, such that,
sat(uy ,Gr j ) < sat(u,Gr j ).

Proof. For the purpose of contradiction, assume that sat(u,Gr j )
< sat(uy ,Gr j ), ∀uy ∈ G\{u}. Then, this means that u is the least

satisfied user at iteration j, which in turn means that α takes val-

ues not leading towards a least misery approach at this iteration,

meaning that u was not the least satisfied user at iteration j − 1,

which is a contradiction. □

To exemplify this, we run the same experiment as in Figure 1, for

the same group, but now we utilize the sequential hybrid aggrega-

tion method. The results appear in Figure 2. Here, we can observe

that a group member that was not satisfied in the previous iteration

of the system, is satisfied in the next. A good example of this is

User 4 where in the first iteration has a very low satisfaction score,

and in the second has a higher one. This is a clear improvement

over the results shown in Figure 1, where User 4 was always the

least satisfied member of the group.

4.4 Algorithm
Our sequential hybrid group aggregation method is described in

Algorithm 1. The input to the algorithm is the group G, the iteration

j, and the size k of the group recommendation list Gr j , which
we report to the group after each iteration is finished. In Line 1,

we apply a single user recommendation algorithm to each group

member and save their preference lists into the variable A. In Line

2, we define a set that contains all the items that appear in the

members’ preference listsGl and, in Lines 3–5, we populate the set.

In Lines 6–10, we calculate the α ; if it is the first iteration meaning

j = 1 (Line 7), then α = 0, otherwise, we use Equation 9 (Line 9)

to calculate it. In Lines 11–24, we perform the sequential hybrid

aggregation method. For all the items in Gl , we calculate the item
score using Equation 8 (Line 12) and insert them in the group list

Figure 2: Example for the same group as in Figure 1. We con-
sider 5 rounds. We utilize the Sequential Hybrid Aggrega-
tion method.

Gr j (Line 13). After we have examined all the items in Gl , we sort
the items in the group list (Line 15), and finally, we report the top-k
of them to the group (Line 16). The complexity of our algorithm

is O(n logn) due to the time complexity of the sorting function,

where n = |Gl |.

Data: Group G, j top k
Result: Group Recommendation List: Gr j

1 A← RS(G);

2 Gl ← ∅;

3 for ui ∈ G do
4 Gl ← Gl ∪Aui ;

5 end
6 if j=1 then
7 α j = 0;

8 else
9 α j =maxSat(G, j − 1) −minSat(G, j − 1);

10 end
11 for item dz in Gl do
12 score(G,dz , j) =

(1 − α j ) ∗ avдScore(G,dz , j) + α j ∗ leastScore(G,dz , j);

13 Gr j ← Gr j ∪ score(G,dz , j);

14 end
15 sort(Gr j );

16 report(top(Gr j ,k));
Algorithm 1: Sequential Group Recommendation Algorithm

5 EXPERIMENTAL SETUP
In this section, we describe the two pre-processing tasks needed for

the experimental evaluation of our sequential group recommender

system: the dataset splitting and the group formation.

5.1 Dataset
For the experimental evaluation of our sequential group recom-

mender system, we use the 20MMovieLens Dataset [11]. It contains

20.000.263 ratings across 27.278 movies. These data were created by

138.493 users between January 09, 1995, and March 31, 2015. The



dataset was generated on March 31, 2015. To simulate multiple iter-

ations of suggestions, we split the dataset into chunks. Each chunk

is added to the system, representing new information, and along

with the already existing data in the system, is used for locating

the suggestions for the next iteration.

Initially, we divide the dataset into two parts of roughly the same

size. The first part that contains the ratings given between January

1994 and December 2003, is the starting dataset of our recommender.

This gives us an initial dataset that consists of 8.381.255 ratings,

73.519 users and 6.382 movies. We initiate the system with this

starting dataset to avoid any issues emanating from the cold start

problem
2
. The second part of the dataset is further split into chunks

based on timestamps.We create 22 chunks, where each one includes

information for a period of six months. During the first iteration,

the system will have access only to the initial dataset. When that

iteration ends, the system will be enhanced with one additional

chunk (first semester of 2004), and after each subsequent iteration,

the system will be given access to the next chunk (second semester

of 2004, fist semester of 2005, etc.).

Figure 3 shows the detailed information on the contents of each

chunk. With the last two columns, we report the number of users

and movies respectively that appear for the first time during the

specific semester. As we can see, the ratings are not evenly split

between the semesters. There is a higher number of ratings in the

years 2004 to 2010, in some cases even triple the amount. As it is

expected, the number of movies that appear in each chunk increases

as the time passes, since the users can rate old movies as well. At

the same time, the number of users is relatively the same across all

chunks. The disinterested of the users to give ratings as time passes

is not a complication in our evaluations since the total number of

available ratings is enough for our needs.

5.2 Group Formation
We will evaluate our sequential group recommender on stable

groups. This means that the members of the group do not change

between iterations, and all the members are present for each rec-

ommendation. We will examine our recommender on four types of

groups, based on the similarity shared between the members. We

target at covering groups with different semantics, starting from

groups with similar users to groups with dissimilar ones. We calcu-

late the similarity between the members of the group using only

the starting dataset and not the entirety of it since we want the

relationship between the users to be present from the first iteration.

The similarity between the group members is calculated using

the Pearson Correlation similarity measure [28], which takes values

from −1 to 1. Higher values imply a higher similarity between the

users, while negative values indicate dissimilarity.

s(ui , ul ) =

∑
dz ∈X

(r (ui , dz ) − r̄ui )(r (ul , dz ) − r̄ul )√ ∑
dz ∈X

(r (ui , dz ) − r̄ui )
2

√ ∑
dz ∈X

(r (ul , dz ) − r̄ul )
2

(10)

2
The cold start problem in collaborative filtering appears when there is not enough

information about a user and we are unable to find similar other users to him/her.

This problem is beyond the scope of this research, and to overcome it, we initialize

our system with a large enough dataset.

Figure 3: Divided by semester: Ratings, unique users and
movies, as well as the number of new users and movies that
appear in each chunk

where X = I (ui ) ∩ I (ul ) and r̄ui is the mean of the ratings in I (ui ),
i.e., the mean of the ratings of user ui .

We consider two users to be highly similar to each other, if

they share above 0.5 similarity score, while dissimilar when they

have -0.5 or lower similarity score. The types of groups, we are

considering are the following:

• 4 similar – 1 dissimilar: The four members of the group

share a high similarity score, while the dissimilar one shares

a low similarity score with the rest of the group members.

• 3 similar – 2 similar: We divide the group into two sub-

groups. The members of each subgroup are similar to each

other, while at the same time, the subgroups are dissimilar to

one another, i.e., all members of one subgroup are dissimilar

to all members of the other subgroup.

• 3 similar – 1 dissimilar – 1 dissimilar: We divide the

group into three separate subgroups: one that contains three

members and two subgroups that each contain just one user.

All subgroups are dissimilar to each other, while the three

members belonging in the same subgroup are similar to each

other.

• 5 dissimilar: All members of the group are dissimilar with

each other.

For each group type, we generate 100 groups, and each user

can only participate in one group per category. We consider only

groups of five members since that is a realistic scenario.

6 EVALUATION
In this section, we go over our experimental procedure and the

variables we took into consideration during the evaluation of the

sequential group recommender. We present the results of this eval-

uation that showcase the advantages of our sequential hybrid ag-

gregation method.



6.1 Experimental Procedure
In our experiments, we will examine the behavior of four types

of groups, considering 100 different groups per type. For each

group in a set, we perform sequential group recommendations

for various values of µ, as described in Algorithm 1. For all the

groups in the set, we calculate the average of дroupSatO(G,GR)
and дroupDis(G,GR). Additionally, we utilize an F-score measure

(Equation 11), namely the harmonic mean of the дroupSatO and

дroupDis measures, that provides a good indication of the users’

satisfaction and the agreements between the users in the group.

Taking into account the input functions that F-score needs, we use

1 − дroupDis to simulate the group agreement.

F -score = 2

дroupSatO ∗ (1 − дroupDis)

дroupSatO + (1 − дroupDis)
(11)

We find similarities between users, by utilizing the Pearson Cor-

relation. We consider two users as similar if the similarity is greater

than 0.7, and if they have rated more than five identical items.

To predict preference scores for a user, we use the Weighted

Sum of Others Ratings [33], and we take into account only the top

100 most similar users to him/her. We recommend to the group the

10 items with the highest group preference score. In our case, we

assume that the system does not recommend items to the group

that it has previously recommended.

p(ui ,dz ) = r̄ui +

∑
ul ∈(Pui ∩U (dz ))

s(ui ,ul )(r (ul ,dz ) − r̄ul )∑
ul ∈(Pui ∩U (dz ))

|s(ui ,ul )|
(12)

6.2 α Experiments
To examine the behavior of the sequential hybrid aggregation

method, we first examine the values that the variable α (Equa-

tion 9) takes during the iterations of the system. We examine the

performance of α through 15 iterations. In Figure 4, we report the

average α values of the 100 groups per type, per iteration. At the

first iteration, the α takes the default value 0. During the next itera-

tions, the α values increase in a close to linear form. This is expected

since by design the groups have at least one outlier member that

is dissimilar to the rest of the group. This guarantees that at least

one member is not satisfied during an iteration of the system. The

high values of α in the later iterations are also the result of the

dataset splitting. At the later iterations, the majority of the dataset

has already been given as input to the system, and statistically,

the best items for the group as well as for the individual members

have already been recommended. Since per our scenario our system

cannot suggest items that have already been recommended, the

remaining items are less preferable to the group as a whole and

each member individually.

An additional observation is the different behaviors of the four

group types. As already stated, the groups are formed in such a

way, as to always have at least one member being a minority. The

α values offer a first impression of the implications these types

of groups have on sequential recommendations. Remember that

α is different than the group disagreement (Equation 7) since it

only takes into account the members’ satisfaction for the previous

iteration of the system. During the first iterations of the system,

there is a little variation in the values of α . The clear distinction
becomes obvious in the later iterations, where we can observe that

Figure 4: Average α values over 100 groups per group type,
at each iteration.

the more diverse the group becomes, the more higher the values

of α get. This is expected since the more distinct opinions in the

group are, the higher the disagreement between the user becomes,

and thus the values of α become higher.

6.3 Group Type Experiments
To examine the effectiveness of the sequential group recommender,

we consider the group satisfaction, дroupSatO (Equation 6) and

the disagreement between the users, дroupDis (Equation 7), after a

number of iterations µ. For each type of group, we perform the ex-

periments for different number of iterations, µ ∈ [5, 10, 15]. Figures

5, 6, 7 and 8, show the average of the group satisfaction and group

disagreement scores for the 100 groups per group type, respectively.

We perform the tests for different values of α , α ∈ [0, 0.4, 1,
dynamic α], as well as the pure Least Misery approach (LM). For

α = 0, we have a standard average aggregation method. For α = 1,

we have a slightly altered least misery aggregation method, where

instead of assigning the lowest score among the individual group

members’ preference scores to the item as a group preference score,

we assign to the item the score as it appears on the preference

list of the least satisfied user. We also consider a static value for α ,
which is 0.4, selected as the one with the best results, after extensive

experimentation on different α values.

When considering the overall group satisfaction, we observe that

for all group types it decreases by the same degree. This is because

in the later iterations of the system the best items for the group

have already been reported, and as stated we do not recommend

items that have already been recommended in previous iterations.

When comparing the group satisfaction for the different values of

α , we observe that the average method slightly outperforms the

dynamic α . For 15 iterations, the average method offers a better

overall group satisfaction by a slight factor, since it tries to offer the

best results to the group as a whole. The dynamic α , also clearly

outperform the LM method, especially the more diverse the groups

become. By far the worst performance is for α = 1, since in each

iteration of the system, we consider only one user, without taking

into account the opinions of the rest of the group.

Regarding the group disagreement, LM has the worst results

followed by the average method (α = 0), while the dynamic α has

the best. This is because, the average method ignores the minority



Figure 5: 4 similar – 1 dissimilar: Overall group satisfaction
and group disagreement for 100 groups for different µ.

opinion in the group, which is reflected in the high group disagree-

ment values. LM does not work well for diverse groups since the

preferences of the members greatly differ from each other. This

becomes more apparent the more dissimilar the group members

are, as shown in Figure 8. The benefits and drawbacks of α = 1 are

apparent in our evaluations. We can observe high disagreement in

the first iterations of the system, but later, we have better results.

This is more clear in more diverse groups, such as the ones in Fig-

ure 8, where during the later iterations it achieves the second best

disagreement.

Overall, the sequential group recommendations problem is not

one dimensional. We need to examine the overall group satisfaction

and the group disagreement in conjuncture with each other. Even

though the average method (α = 0) and the static value of α = 0.4,

offers slightly better group satisfaction than the dynamic α , they
both have far higher group disagreement values. We argue that

this is an acceptable loss of group satisfaction, when we consider

the advantage that the dynamic α has over the average and static

α aggregation methods on the disagreement between the group

members.

To better demonstrate this, we also calculate the F-score of the

дroupSatO and дroupDis values. We present these results in Table

1. For all group types and all number of iterations, the method

using dynamic α offers better results, than the rest of the methods.

This better demonstrates the point we made previously. Even if

the average method offers better group satisfaction, our proposed

dynamic hybrid sequential method, more than makes up for it, with

the far lower group disagreement.

7 CONCLUSION
In this work, we introduce the notion of sequential group rec-

ommendation. We show that the standard group recommendation

approaches are not favorable for sequential recommendations. Such

methods suffer from particular drawbacks – a minority opinion

may be lost by the average method, and the preference of the group

is determined by just one voice in the least misery – that are only

exacerbated when they are applied to sequential recommendations.

We propose a sequential group recommendation model that takes

into account the satisfaction of the members during the previous

Figure 6: 3 similar – 2 similar: Overall group satisfaction
and group disagreement for 100 groups for different µ.

Figure 7: 3 similar – 1 dissimilar – 1 dissimilar: Overall group
satisfaction and group disagreement for 100 groups for dif-
ferent µ.

Figure 8: 5 dissimilar: Overall group satisfaction and group
disagreement for 100 groups for different µ.

interactions of the group with the system. The influence that each

member has on determining the group score for an item, is defined

by the degree of the satisfaction that member has, for the recom-

mended items in the previous iteration of the system. In the future,



Group 4+1 3+2 3+1+1 5Diss
Iterations 5 10 15 5 10 15 5 10 15 5 10 15

α = 0 0.784 0.720 0.672 0.819 0.741 0.682 0.801 0.719 0.662 0.805 0.726 0.668

α = 0.4 0.808 0.754 0.713 0.823 0.767 0.724 0.814 0.753 0.706 0.806 0.753 0.705

α = 1 0.675 0.673 0.648 0.676 0.676 0.655 0.662 0.663 0.640 0.658 0.667 0.649

LM 0.756 0.677 0.617 0.789 0.695 0.633 0.760 0.664 0.590 0.771 0.645 0.560

Dynamic α 0.821 0.765 0.725 0.839 0.775 0.730 0.824 0.760 0.712 0.823 0.762 0.712
Table 1: F-score values for all group categories per α value, per iteration.

we want to further evaluate our work with a user study, to better

examine the effectiveness of our method and how users respond

to it. Additionally, we want to study the effect of sequential group

recommendations on ephemeral groups and the subsequent conse-

quence of them on the individual members. That is, how we can

satisfy a user if at each iteration is a member of a different group,

without sacrificing the overall satisfaction of the temporally formed

group.
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