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Abstract. Video games are a relatively new form of entertainment that
has been rapidly gaining popularity in recent years. The number of video
games available to users is huge and constantly growing, and thus it can
be a daunting task to search for new ones to play. Given that some games
are designed to be played together as a group, finding games suitable for
the whole group can be even more challenging. To counter this problem,
we propose a content-based video game recommender system, GameRecs,
which works on open data gathered from Steam, a popular digital dis-
tribution platform. GameRecs is capable of producing both user profiles
based on Steam’s user data, as well as video game recommendations for
those profiles. It generates group recommendations by exploiting lists ag-
gregation methods, and focus on providing suggestions that exhibit some
diversity by using a k-means clustering-based approach. We have eval-
uated the usability of GameRecs in terms of the user profile generation
and the produced video game recommendations, both for single users and
for groups. For group recommendations we compared two recommenda-
tion aggregation methods, Borda Count and Least Misery method. For
diversity evaluation we compared results with and without the proposed
k-means clustering method.

Keywords: Recommendations; Group recommendations; Game recommenda-
tions

1 Introduction

Nowadays, video games are a very popular form of entertainment and new games
are getting released all the time. Since older games are also still playable, the
number of games available to customers is constantly increasing. For this reason,
it is not feasible for a user to manually go through every existing game when
searching for new games to play. Fortunately, recommender systems can be used
to help solve this problem. In general, recommender systems aim at providing
suggestions to users or groups of users by estimating their item preferences and
recommending those items featuring the maximal predicted preference [10, 11,
2.

Clearly, recommender systems can be also useful in the domain of video
games. To our knowledge, the only application for recommender systems to dig-
ital games was proposed in [12], in which two different recommender systems



were proposed based on archetypal analysis. However, this work only generates
recommendations for a single user at a time. For many multi-player games, it is
essential to have a group of friends to play with. Thus, there is need for systems
that can recommend games for groups.

In this work, we target at developing a system that could generate diverse
and fair game recommendations for groups of users. In other words, the resulting
recommendations should contain games that every member of the group would
like, but also games that are dissimilar to each other, so as to increase user
satisfaction. The system should also recommend both popular games and more
obscure games, while prioritizing neither of them.

Specifically, we present a content-based method for recommending games for
groups of people to play together. Our method exploits tags that the commu-
nity has given to games, and using these tags it generates user profiles, and then
game recommendations for these profiles. For demonstrating the effectiveness of
our approach, we exploit user and game data available at the popular digital
distribution platform Steam (http://store.steampowered.com/). We have eval-
uated the usability of our approach in terms of the user profile generation and
the produced video game recommendations, both for single users and groups.

The rest of this paper is structured as follows. Section 2 presents related
work, while Section 3 describes the users and games data in GameRecs. Section
4 introduces our approach for group games recommendations. Section 5 presents
our usability evaluation results, and finally, Section 6 concludes the paper with
a summary of our contributions.

2 Related Work

Recommender systems aim at providing suggestions to users or groups of users
by estimating their item preferences and recommending those items featuring
the maximal predicted preference. Typically, recommendation approaches can be
classified as content-based [10], collaborative filtering [11], and hybrid ones [2]. In
content-based approaches, information about the features/content of the items
is processed, and the system recommends items with features similar to items a
user likes. For example, if a Yelp user is always eating at sushi restaurants, he/she
most likely likes this kind of food, so we can recommend him /her restaurants with
the same cuisine. In collaborative filtering approaches, we produce interesting
suggestions for a user by exploiting the taste of other similar users. For instance,
if many users frequently go to Irish pubs after visiting an Italian restaurant, then
we can recommend an Irish pub to a user that also shows preference for Italian
restaurants. In knowledge-based approaches, users express their requirements,
e.g., in terms of recommendation rules, and the system tries to retrieve items
that are similar to the specified requirements. Finally, the hybrid recommender
systems combine multiple of the aforementioned techniques to identify valuable
suggestions.

Nowadays, recommendations have more broad applications, beyond prod-
ucts, like links (friends) recommendations [17], social-based recommendations



[14], query recommendations [5], health-related recommendations [15, 16], open
source software recommendations [7], diverse venue recommendations [6], or even
recommendations for evolution measures [13]. There is also a lot of work on spe-
cific aspects of recommendations due to challenges beyond accuracy [1], like
the cold start problem, the long tail problem and the evaluation of the rec-
ommended items in terms of a variety of parameters, like surprise, persistence
[3] and serendipity [4]. More recently, many approaches that combine numeri-
cal ratings with textual reviews, have been proposed (e.g., [8]). For achieving
efficiency, there are approaches that build user models for computing recom-
mendations. For example, [9] applies subspace clustering to organize users into
clusters and employs these clusters, instead of a linear scan of the database, for
making predictions.

Clearly, recommender systems can be also useful in the domain of video
games. Due to the large number of game releases every year, gamers can have
hard time finding games fitting their interests. To our knowledge, the only appli-
cation for recommender systems to digital games was proposed in [12]. Two dif-
ferent recommender systems were proposed based on archetypal analysis. Mov-
ing forward, in our work, we focus on group recommendations, and on how to
identify a diverse set of games to propose to the group.

3 Games and Users Data

In our recommender, we pay attention on data regarding games and users. Specif-
ically, we aim to find out the type of a game according to its tags, and the game
type preferences of a user according to the tags of the games that they have
played. For doing so, we employ data available at the popular digital distribu-
tion platform Steam.

3.1 Games Data

Steam’s database contains several types of applications in addition to games, like
media editing software and forms of extension packs for games. For example, they
have media editing software, which we are not interested in. They also have DLCs
(downloadable content), forms of extension packs for games. We are strictly
interested in recommending games that can be acquired and played on their
own, so we only consider the applications that indicate that their application
type is a standalone game.

Each game in Steam has a number of tags. Tags are keywords voted for by
the community, and they aim to describe the game with keywords resembling
genres, categories, and others. The number of tags can vary greatly. Tags only
appear on games if players have voted on them, which leads to popular games
often having a greater number of tags than unpopular games. It’s possible that
a game has no tags at all. A common number of tags for a game would be
from 10 to 20. For each game, we know the number of votes of each tag of the
game. Thus, a game most likely has more votes on certain tags than others. For



example, some game might have considerably more votes for the “Third-Person
Shooter” tag than for the “Crime” tag, in which case we are more interested in
the former.

In our recommender, we use the tags and their votes on a game to describe
the type of the game. In essence, we consider two games similar to each other if
they share many tags with many votes on those tags. From all existing 339 unique
tags, we hand-picked 19 tags we did not see fit for describing the type of the game.
Some examples of these tags are “Co-op”, “Singleplayer” and “Multiplayer”,
which describe how the game is played instead of what the game is like. We
ignore these tags in our recommendation methods.

3.2 Users Data

For users, we are interested in what types of games they prefer. As described
above, we determine the type of a game according to their tags and votes. In
order to define a user’s game preferences, we want to know ratings for tags
measuring how much the player enjoys games with those tags. Essentially, we
build user profiles containing tag ratings resembling the tag votes on games.

4 Recommendations

In this section, we introduce our method for producing group recommendations
for video games. The process is divided into four parts. First, we focus on gen-
erating the user profiles, after which we compute single-user recommendations
for those profiles. These recommendations are then aggregated into a single list
of recommendations and finally, diversified by exploring a clustering method.

4.1 Generating User Profiles

First, our approach generates a user profile for each user. For creating the profile,
we exploit the knowledge of which games the user has played and for how long.
Each game the user has played for longer than a certain threshold is considered,
and for each of these games the user profile’s tag rating for that tag is increased.
The final user profile contains scaled ratings for tags ranging from 0 to 1, higher
value being better. Since some tags are more common than others, we want
to prevent very frequent tags from dominating other, less common ones. For
this purpose, we use inverse document frequency (IDF), which is calculated as:
IDF(t) = log%, where N is the total number of games in the dataset and n(t)
is the number of games that contain the tag t. This means that more frequent
tags get lower IDF values than less common tags. IDF is calculated for every
tag that appears in any game in the dataset.

To generate the actual user profile, we look at every game in the user’s
library that the user has played for more than 2 hours. Some kind of playing
time threshold is necessary because many users own games that they are not
really interested in. It is more safe to assume that users like games they have



actually played for some time. For each of these games, we iterate over every
tag t the game g has, and calculate a strength for the tag with the following
formula:

tagVotes(t, g)

maxTagV otes(g)

strength(t, g) = (1)
where strength(t, g) is the strength value for tag t for game g, tagVotes(t, g) is
the number of votes the current game ¢ has for tag ¢, and mazTagsVotes(g) is
the highest number of votes any tag has for the game g¢. This results in higher
strength for tags that have more votes, with the maximum strength being one
and minimum strength being close to zero. It is not possible for a tag to have
zero votes, since then the game would not have that tag at all.

For each of these tags that exist in any of the games the user has played, we
calculate the strength and add it to the total rating of the tag. The final rating
for a tag, called tag rating, is the sum of the tag strengths, multiplied by their
respective IDF value squared:

tag_rating(t,p) = IDF(t)? x Z strength(t, g) (2)
9€Gy

where ¢ is the tag in question, G, is the set of all games the user with profile
p has played for more than 2 hours. Finally, when the tag ratings have been
calculated, for every tag that exists in any of the games user has played, the
ratings are scaled between 0 and 1 so that the highest tag rating is always 1.
After this we take the top 30 tags per profile and the rest are pruned.

With our method, the tags that have higher strengths and appear more
frequently in the user’s games get higher tag ratings. As some tags are more
frequent and less informative than others, IDF balances the tag ratings between
common and uncommon tags.

Our method is limited in such a way, that we only know which tags the user
likes, and have no way of telling which tags they dislike. Therefore, a low tag
rating does not mean that the user dislikes a tag, but instead the tag is just not
as preferable as other tags that have higher tag ratings.

4.2 Generating Single-user Recommendations

After constructing the user profiles, recommendations are generated for each of
these profiles separately. For each user profile, every game in the dataset is given
a rating, called the game rating. This game rating is determined by the tag
preferences of the profile, described by the tag ratings, and the tags the game
has.

The rating algorithm works in such a way, that it increases game ratings for
games that have multiple preferred tags and penalizes games for tags that the
user has no preference for. Overall, the system aims to give equally good ratings
for games that have few tags, all of which the profile has high tag ratings for,
and games that have a large number of tags but with only moderate tag ratings.



The game rating for a single game is calculated by comparing the tags the
game has, to the user profile. The general idea is that the more tags the game
contains that the user likes, the better the game rating. If there are many tags
but only a few of them are preferred by the user, give a small penalty. This is to
avoid only recommending games that have a lot of tags. The game rating for a
game g is calculated as:

> strength(t, g) x tag_rating(t, p)

teT,
VIl

where g is the game in question and 7} is the set of tags the game g has.

With this formula, games that have multiple tags the user likes, get higher
game ratings, but the number of tags the game has also reduces the game rating.
This means that games that have a large number of tags might not get better
game ratings than games with only few tags. Calculating the game ratings with-
out taking the number of tags into account would have resulted in games with
large number of tags dominating the recommendations. On the other hand, also
dividing by the number of tags without taking the cube root, in other words
taking the average, would result in games with only few tags dominating.

game_rating(g,p) =

3)

4.3 Generating Group Recommendations

Individual recommendation lists are aggregated into a single group recommen-
dation list using two alternative methods: the Borda count and the least misery
method. The main idea of both methods is to take the single user recommenda-
tions of every group member and order the recommendations in such a way that
it takes every group member into consideration. For this purpose, each item is
given a group score, which is then used to rank the items to form the aggregated
recommendations. In our case, users are the generated user profiles and items
are the games.

Borda count is commonly used in political elections, but is also applicable to
recommendations aggregation. It gives somewhat balanced results overall, and
in our case games that have high ratings for every user profile get also high group
scores, while games that only some of the users like get moderate group scores.
Games that none of the group members like get very low group scores. With
Borda count, each item is given a score depending on its position in the ranking.
The last item in the ranking gets a score of 1 and the first item gets a score of
n, where n is the total number of items in the ranking. The group score of an
item is calculated by summing up the individual user scores for that particular
item:

score_borda_count(g,) = Z score(u, i) (4)
ueg

where u is a user in the group g and score(u,i) is the score for the item 4,
calculated from the ranking.



Least misery is an aggregation method that tries to sort the recommendations
in such a way that everyone in the group is satisfied, in other words, causes the
least misery among the group. To achieve this, the group score for an item i
is the minimum rating for that item from the individual recommendations, as
described in: score_least_misery(g,i) = rgleig{score(u,i)}.

The items are sorted by their group score to form the final aggregated rec-
ommendations.

4.4 Diversifying Group Recommendations

Our goal is to provide diverse results for the users, because this way the chance of
finding something interesting is higher. To achieve diverse results, we utilize a k-
means clustering-based method for creating clusters of the recommended games.
This way, we group similar games and separate dissimilar ones, and by showing
results from every one of these clusters evenly, the final result set will be diverse.
Because clustering is quite an expensive operation, it is only performed for some
of the top recommendations that are generated with the previously described
recommendation aggregation. This way, only the games that have good ratings
are considered, and there is no need to check later if the clusters contain good
recommendations. In our experiments, we used top-500 game recommendations
for clustering.
The clustering algorithm works as follows:

1. Get the top-500 recommendations generated with Borda, and prune every-
thing else. These games are hence referred simply as all games.

2. Pick the top-1 recommendation and set it as the first cluster center. This
way, we always get a cluster that initially centers on the best game.

3. Pick the most dissimilar game to all the current cluster centers from the
top-100 recommendations and make it a new cluster center. This step helps
to ensure that the clusters really are dissimilar. This step is repeated until
we have 5 cluster centers.

4. Assign every game to their nearest cluster. Distance to every cluster center
is measured with the Manhattan distance between their tag strengths.

5. Calculate new cluster centers for each cluster by calculating the averages of
tag strengths of each game in that cluster.

6. Steps 4 and 5 are repeated until no more changes happen in the clusters or
the maximum number of iterations is reached. 50 iterations is the limit used
in our experiments.

5 Usability Evaluation

To evaluate the effectiveness of GameRecs, we implemented it as a web applica-
tion and performed usability experiments with a number of real users'. Specifi-
cally, we evaluated the quality of profile generation (Section 5.1), the quality of

1 Our application implementation and the data used in the experiments are publicly
available at https://github.com/Nikkilae/group-game-recommender-test



Table 1: Evaluation of generated user profiles
ul u2 u3 u4 ud u6 u’7 u8 u9 ul0 ull |ul2
PP 93.3%66.7%100.0%[93.3%[100.0%[100.0%|100.0%|100.0%|100.0% |100.0% |80.0%|93.3%
PHPP |40.0%(13.3%66.7% |80.0%(46.7% [86.7% {53.3% |86.7% |46.7% [80.0% |40.0%|46.7%
PQ 7 4 8 8 7 8 9 8 9 9 7 7
ul3 uld |ulb ul6 ul7 ul8 ul9 u20 u2l |u22 |u23 u24
PP 100.0%93.3%(100.0%|100.0%{100.0%|100.0%|100.0%{100.0% [80.0%|93.3%|100.0% |86.7%
PHPP|40.0% [60.0%|73.3% |73.3% |40.0% |26.7% |73.3% |66.7% |46.7%|26.7%(53.3% |46.7%
PQ |7 9 9 7 7 9 8 7 7 8 9 7

PP PHPP|PQ
average|95.0%|54.7% |7.7

single user recommendations (Section 5.2), and the quality of group recommen-
dations (Section 5.3).

5.1 Quality of Profile Generation

We asked users to evaluate the precision and quality of the profiles generated by
GameRecs. We use three measures to evaluate the quality of a generated profile:
Profile Precision, Profile Highly Preferred Precision and Profile Quality.

Users were asked to evaluate the quality of the 30 tags appearing in their
profile. For characterizing the quality of the tags, users were asked to rate each
of the tags with an interest score in the range [1, 5]. According to these ratings,
we calculate Profile Precision PP(u, k) for user u as follows:

relevant_tags(u, k)
k

where relevant_tags(u, k) is the number of tags rated 2 or higher by the user u in
the top k tags of their generated profile. In our experiments, we used k = 15. Fur-
thermore, we reported the number of tags that were rated highly (interest score
>=4), and calculated the Profile Highly Preferred Precision PHPP(u,k):

PP(u,k) = 100% (5)

_ highly_preferred_tags(u, k)
N k

where highly_preferred_tags(u, k) is the number of tags the user u rated highly
(interest score >= 4) in the top k tags of their generated profile. Finally, users
were asked to provide an overall Profile Quality PQ(u) in the range [1, 10] to
indicate their degree of satisfaction of the overall result set including all 15 tags.
A high number indicates an accurate representation of the user’s taste.

The general impression is that having user profiles generated automatically
makes it easier for someone to understand the main idea behind the system, since
tags in the profiles act as examples of user preferences. As seen in Table 1, the
PP is generally high, 95.0% on average, and in most cases even 100%. The PHPP
values are varied, but on average more than half of the tags are highly preferred.
Although a high PP seems to lead to a high PQ, their respective values differ
from user to user. In conclusion, the profile generation seems quite effective.

PHPP(u, k) 100% (6)



5.2 Quality of Single User Recommendations

In addition, to evaluate group recommendations, we study the effectiveness of the
recommender system for single users. First, we asked users to count the number
of games of the top 20 recommendations that they deemed relevant or inter-
esting. Second, we asked for a general recommendations quality rating between
1 and 10. Third, we asked for a rating of diversity among the recommended
games between 1 and 10. We asked for these three ratings twice for different
sets of recommendations: with clustering and without clustering. We use three
different measures for evaluating the quality of single user recommendations:
Recommendations Precision, Recommendations Quality and Recommendations
Diversity.
Recommendations Precision RP(u, k) for a user u is calculated as:

RP(u, k) = Televant,g]jmes(u, k) L00% )

where relevant_games(u, k) is the number of games deemed relevant by the user
u in the top k (20) recommendations. Recommendations Quality RQ(u) rep-
resents the general satisfaction on the generated recommendations given by the
user u as a number between 1 and 10. Finally, Recommendations Diversity
RD(u) represents the general recommendation diversity evaluated by the user
u as a number between 1 and 10. As seen in Table 2, on average, just over half
of the top recommendations were relevant to the user. As expected, applying
clustering reduces RP and increases RD. However, the difference that clustering
made in RD is not very impressive.

Table 2: Evaluation of single user recommendations

ul u2 u3 u4 ub u6 u7 u8 u9 ul0 |ull |ul2
With RP [60.0%45.0%|75.0%|35.0%50.0%[50.0% |25.0%|65.0%|25.0%| 40.0%|90.0%|75.0%
clustering RQ|8 7 9 4 4 6 4 8 5 8 5 7
RD|4 2 7 9 8 9 2 4 3 2 3 7
Without RP |40.0%]65.0%(65.0%|60.0%90.0%|40.0% |45.0%|85.0%|45.0%| 70.0%|90.0%|50.0%
clustering RQI6 8 7 8 9 5 7 8 8 9 4 6
RD|7 1 8 5 8 3 1 2 6 4 5 6
ul3d |ul4d (|ulb |ul6 |ul7 |ul8 |ul9 |u20 |u2l |u22 |u23 |u24
With RP |55.0%(40.0%(60.0%|35.0%55.0%(40.0%|75.0%|65.0%|25.0%| 30.0%65.0%|85.0%
clustering RQI7 4 10 6 5 6 8 8 7 7 8 8
RD|4 4 7 4 5 8 5 3 8 8 7 8
Without RP |70.0%{40.0%(80.0%|75.0%50.0%|60.0% |80.0%90.0%(30.0%| 35.0%55.0%{95.0%
clustering RQI6 9 10 8 5 9 6 9 7 8 7 9
RD|4 5 4 4 3 6 8 2 8 8 8 5

With clustering| Without clustering
RP |RQ|RD |[RP |RQ|RD
average|52.7%(6.6 |5.5 [62.7%(7.4 |5.0




5.3 Quality of Group Recommendations

To evaluate our main focus, the group recommendations, we performed multiple
experiments with groups of two and four members. The evaluation was done
in four setups, with and without clustering, and using Borda count and least
misery aggregation. For each of our four setups, we asked each member of a
group to mark each produced recommendation as either relevant or irrelevant.
These markings were then used to calculate different quality measures, which
are described in more detail below.

Group Recommendations Precision GRP(g,k) for a group g is calcu-
lated with the following formula:

GRP(g, k) = relevant,gamkes,to,all(g, k) 100% (8)

where relevant_games_to_all(g, k) is the number of games in the top k recom-
mendations that were relevant to everyone in the group individually. This means
that a recommendation has to be relevant to every group member to be consid-
ered as relevant recommendation for the whole group. We used a k of 20 in our
experiment.

Partial Group Recommendations Precision is similar to Group Rec-
ommendation Precision, but this time the recommendations have to be relevant
to only part of the group members to be considered as relevant to the whole
group. Partial Group Recommendation Precision PGRP(g, k) for a group g is
calculated with the following formula:

PGRP(g,k) = relevant,gamzs,to,half(g, k) 100% 9)

where relevant_games_to_hal f(g, k) is the number of games relevant to at least
half of the group members from group g from the top k£ recommendations.

To explore a potential correlation between group similarity and recommenda-
tions precision, we measure a group’s similarity with Jaccard similarity of tags
appearing in group members’ profiles. More precisely, it’s the relation of the
number of common tags shared by the group members’ profiles to the number
of unique tags that appear in any of the group members’ profiles.

The results of group recommendations evaluation can be seen in Table 3.
Borda count seems to give slightly better results in both cases. Overall, simi-
larly to single user recommendations, the precision is higher without clustering.
Smaller group size seems to lead to higher similarity and better precision.

6 Summary

In this paper, we focus on group recommendations for video games. We propose
generating diverse game recommendations for groups of people to play together.
We work on open data gathered from Steam, a popular digital distribution plat-
form, and we are capable of producing user profiles based on Steam’s data, as



Table 3: Evaluation of group recommendations

With clustering Without clustering

Borda Count |Least Misery |Borda Count |Least Misery

GRP [PGRP|GRP |PGRP|GRP |[PGRP|GRP [PGRP|Size|Similarity
ul,u2,u3,ud 5.0% |40.0% [5.0% |40.0% [0.0% [40.0% |5.0% [35.0% |4 |5.8%
ub,u6,u7,u8 15.0%55.0% [10.0%45.0% |45.0%|85.0% [30.0%|85.0% |4  [17.2%
u9,ul0,ull,u20] [15.0%](75.0% [10.0%60.0% [10.0%(75.0% [15.0%|70.0% |4 [1.2%
ul2,ul3,ul4,ul5]{0.0% |15.0% [0.0% [10.0% |0.0% [5.0% [0.0% |10.0% |4 |1.2%
ul6,ul? 35.0% 20.0% 30.0% 25.0% 2 [57.9%
ul8,ul9 55.0% 55.0% 75.0% 80.0% 2 136.4%
u21l,u22 20.0% 15.0% 30.0% 35.0% 2 1563.8%
u23,u24 50.0% 45.0% 55.0% 45.0% 2 130.4%
average 24.4%46.3% |20.0%|38.7% |30.6%|51.3% |29.4%]50.0%

well as video game recommendations for those profiles. To generate group rec-
ommendations, we exploit lists aggregation methods, and we target at providing
recommendations that exhibit some diversity by using a k-means clustering-
based approach. For demonstrating the effectiveness of GameRecs, we performed
experiments with real users, and evaluated the usability of the method in terms
of the user profile generation and the produced video game recommendations,
both for single users and for groups.
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