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Abstract

The increasing availability of a wide variety of digital li-
braries provides a heterogeneous population of users with
access to a heterogeneous collection of data. To help users
find interesting items from this huge volume of available in-
formation, personalization systems allow users to directly or
indirectly indicate preferences. Such preferences may de-
pend on context, for instance, on the device used to access
information. In this paper, we consider a preference model
that allows users to assign interest scores to pieces of data
based on context. We address the problem of locating inter-
esting data items efficiently by exploiting some form of pre-
computation. To this end, instead of computing scores for
all data items in all potential context states, we exploit the
hierarchical nature of context attributes to identify represen-
tative context states and compute scores for them. This pro-
vides users with fast but potentially approximate results. We
discuss this issue and report some preliminary results.

1 Introduction
Nowadays, a rapidly increasing number of organizations,

such as libraries, museums and galleries, organize their col-
lections electronically for making them available to the large
number of Web users. Such collections have varying themes
and may be represented in different ways. The work in [9]
offers a detailed view on how to proceed from the current to
the next generation of digital libraries. Integrating person-
alization and recommendation systems with digital libraries
would greatly assist users in finding items of interest in this
huge and diverse volume of information [16]. In such sys-
tems, users indicate preferences either directly or indirectly.

Various preference models have been proposed, most of
which follow either a quantitative or a qualitative approach.
With the quantitative approach (e.g., [2, 11]), users employ
scoring functions that associate a numerical score with spe-
cific pieces of data to indicate their interest on them. With
the qualitative approach (such as the work in [3, 10]), pref-
erences are specified between two pieces of data, typically
using binary preference relations. The work in [12] consid-
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ers personalized query results in digital libraries focusing on
posing queries without complete knowledge of the database
schema. The answers of such queries contain not only items
explicitly defined in the queries, but also items implicitly re-
lated to them. A recommender system based on user prefer-
ences is proposed in [15], where a framework is introduced
for measuring similarity of qualitative preferences.

Motivated by the fact that preferences may depend on
context, contextual preferences have been recently intro-
duced for the quantitative [17, 18] and the qualitative [1, 8]
approach. Knowledge-based contextual preferences have
also been proposed [19]. Context is a general term used to
express the situation of the user at the time of the submis-
sion of a query [4]. We use context in a broad sense to indi-
cate any attribute that is not part of the database schema. To
allow more flexibility in expressing preferences, we assume
that context attributes take values from hierarchical domains.

We address the problem of ranking database tuples based
on contextual preferences by using precomputed scores. As-
suming that the database is large and only a few tuples are
of interest at any given context state, precomputing a score
for all database tuples for each potential context state would
result in both wasting resources and slow query responses.
Thus, instead, we precompute scores only for interesting tu-
ples and for representative context states. Our method for
computing representative context states exploits the hierar-
chical nature of context attributes for defining similarity be-
tween context states.

2 Contextual Preference Ranking
As a running example, we consider a single database re-

lation with information about the contents of libraries, such
as books and magazines with schema: Content(isbn, name,
category, author, publisher, publication date).

Contextual Preference Model. Context is modeled
through a finite set of special-purpose attributes, called
context parameters (Ci). Each context parameter Ci is
characterized by a context domain dom(Ci), that is, an
infinitely countable set of values. In our running exam-
ple, we consider three context parameters as relevant:
accompanying people, work environment and time
period.
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Figure 1. Context Hierarchies.

Similar to [18], we model context parameters using multi-
dimensional hierarchical attributes. In particular, we assume
that each parameter participates in an associated hierarchy of
levels of aggregated data, i.e., it can be viewed from different
levels of detail. We use the notation domLj

(Ci) for the do-
main of level Lj of parameter Ci. A function ancLk

Lj
assigns

a value of the domain of Lj to a value of the domain of Lk.
For instance, ancL2

L1
(summer) = holidays. Furthermore,

we use the notation Lj ¹ Lk between two levels to mean
Lj ≺ Lk or Lj = Lk. For n context parameters, a context
state cs is a n–tuple of the form (c1, c2, . . . , cn), where ci ∈
dom(Ci). Fig. 1 depicts the hierarchies of context param-
eters of our example. Such hierarchies may be constructed
using for example the WordNet [14].

We use a simple quantitative preference model similar to
the ones in [2, 18]. In particular, users express their prefer-
ences for sets of tuples specified using selection conditions
on some of their attributes by providing a numerical score,
which is a real number between 0 and 1. This score expresses
a degree of interest. Value 1 indicates extreme interest, while
value 0 indicates no interest.

Definition 1 (Contextual Preference) Given a database
schema R(A1, A2, . . . , Ad), a contextual preference p on R
is a triple (cs, Pred, score), where cs is a context state,
Pred is a predicate of the form Ai1θ1ai1 ∧ Ai2 θ2 ai2 . . . ∧
Aik

θk aik
that specifies conditions θi ∈ {=, <,>,≤,≥, 6=}

on the values aij ∈ dom(Aij ) of attributes Aij , 1 ≤ ij ≤ d
and score is a real number between 0 and 1.

The meaning of a contextual preference is that in context
state cs, all database tuples t for which Pred holds are as-
signed the indicated score. We use the notation Pred[t] to
denote that predicate Pred holds for tuple t. We call the set
of contextual preferences a profile P . By CSP , we denote
the set of context states cs that appear in at least one prefer-
ence in P . Finally, we shall use the notation r to denote a
database (instance) with schema R.

In a given profile, there may be no related preference for a
tuple ti ∈ r in a context state cs. These tuples are assigned a
default score of 0. This is because, we consider preferences
expressed by users to be indicators of positive interest. Con-
sequently, we assume that an unrated tuple is less important
than any other tuple for which the user has expressed some
interest.

In some cases, there may be more than one preference ap-
plicable to a specific database tuple, in the same context. As-
suming two predicates Pred1 and Pred2, we say that Pred1

subsumes Pred2, iff ∀ t ∈ r, Pred1[t] ⇒ Pred2[t], i.e., we
say that Pred1 is more specific than Pred2. To compute the
score of each tuple at a given context state, we consider only
the most specific predicates.
Definition 2 (Tuple Score) Let P be a profile, cs a context
state and t ∈ r a tuple. Let P ′ ⊆ P be the set of preferences
pi = (cs, Predi, scorei), such that, Predi[t] holds and ¬ ∃
pj , pj = (cs, Predj , scorej) ∈ P ′, such that, Predj sub-
sumes any Predi. The score of t in cs is:

score(t, cs) = maxpi∈P ′scorei.
For example, assume the library relation of Table 1 and

a profile with the following preferences: p1 = (family, cate-
gory = graphic novel, 0.8), p2 = (family, author = Orwell,
0.7), p3 = (alone, category=fiction, 0.5), p4 = (alone, cate-
gory = fiction ∧ author = Miller, 0.8). In context family,
for t1 both preferences p1 and p2 are applicable. Similarly,
both preferences p3, p4 are applicable to tuple t2 in context
alone. In the first case, no predicate subsumes the other and
the score for t1 is the maximum of the two scores, namely
0.8. Under context alone, the predicate of p4 subsumes the
predicate of p3, and so, t2 has score 0.8.

Assume a profile P and a database instance r. In general,
when a query q is submitted, we would like to provide the
user with those tuples t in r that have the largest scores for
the context of q. Implicitly, the context of a query is the cur-
rent context, that is, the context surrounding the user at the
time of the submission of the query. Context may be also
specified explicitly as part of the query. Many times, there
are no preferences whose context state matches that of the
query context. In this case, we would like to use preferences
that refer to similar context states. We extend first the def-
inition of a tuple score to include scores applicable to more
than one context state.
Definition 3 (Aggregate Tuple Score) Let P be a profile,
CS ⊆ CSP be a set of context states, and t ∈ r a tuple,
score(t, CS) = maxcs∈CSscore(t, cs).

Now, given that the distance between two context states,
distS , is defined (see Section 3 for our definition), the prob-
lem is the following:

Problem Definition. Assume a database instance r, a profile
P and a query q with context state csq . Let CSq ⊆ CSP be
the set of context states cs with the minimum distS(csq, cs),
that is the context states that are the most similar to the con-
text state of the query. The contextual scoring problem is to
find the top-k tuples t ∈ r with the highest scores, computed
as: ag score(t, csq) = score(t, CSq).

A solution that involves no pre-computation is to first find
the set of context states CSq , compute the aggregate scores
of all tuples t ∈ r and return the top-k of them. Performance
can be improved by performing preprocessing steps offline.
One approach would be to compute the scores of each tuple



Table 1. Database Instance
ISBN Name Category Author Publisher PublicationDate

t1 0451526341 Animal Farm Graphic Novel George Orwell Signet Classics 1996
t2 1569714029 300 Fiction Frank Miller Dark Horse 2000

for each potential context state. Assuming a large database
and that only a few tuples are of interest at any given con-
text, finding the top-k tuples for all database tuples for each
context state will result in both wasting resources and slow
query responses. Since, the number of possible context states
grows exponentially with the number of context variables,
we could instead compute the scores for all states that appear
in the profile and then combine the scores of the most similar
ones online.

Since the number of context states that appear in a pro-
file can still be large, in this paper we consider an approach
for finding representative scores to precompute. Our ap-
proach constructs clusters of preferences, considering as sim-
ilar the preferences that have either the same or similar con-
text states. After constructing the clusters of preferences, we
compute for each of them an interest score for each database
tuple that is applicable to at least one preference of the clus-
ter, using the relative to the cluster preferences. Furthermore,
instead of storing scores for all tuples for each cluster, we just
store the scores that are larger than 0. Then, for a submitted
query, we search for the most similar to the query cluster
and provide quickly the top-k results, that is, the k database
tuples with the highest scores.

3 Similarity between Context States
To define the distance between two context states, we de-

fine first the distance between two context values. One direct
method to compute such a distance is to find the length of
the minimum path that connects them in their associated hi-
erarchy. However, this method may not be accurate, when
applied to attributes with large domains and many hierarchy
levels (e.g., smaller path lengths for less similar values). For
instance, in our simple example of Time period hierarchy,
taking into account only the path length, we observe that the
pair of values Christmas, Easter has the same distance
with the pair Christmas, All, while it would probably make
sense for Easter to be more similar to Christmas than All.
Motivated by related research on defining semantic similarity
between terms (e.g., [13]), to compute the distance, we also
take into account the depth of the hierarchy levels that the
two values belong to. We define first the path distance. Let
lca(c1, c2) be the least common ancestor of context values
c1 and c2.

Definition 4 (Path distance) The path distance distP (c1,
c2) between two context values c1 ∈ domLj (Ci) and c2 ∈
domLk

(Ci):
• is equal to 0, if c1 = c2,

• is equal to 1, if c1, c2 are values of the lowest hierar-
chy level and lca(c1, c2) is the root value of their corre-
sponding hierarchy,

• or is computed through the fp function (1 − e−α×ρ),
where α > 0 is a constant and ρ is the minimum path
length connecting them in the associated hierarchy.

The fp function is a monotonically increasing function
that increases as the path length becomes larger. Further-
more, the above definition of path distance ensures that the
distance is normalized in [0, 1].

Definition 5 (Depth distance) The depth distance
distD(c1, c2) between two context values c1 ∈ domLj

(Ci)
and c2 ∈ domLk

(Ci):
• is equal to 0, if c1 = c2,
• is equal to 1, if lca(c1, c2) is the root value of their cor-

responding hierarchy,
• or is computed through the fd function (1 − e−β/γ),

where β > 0 is a constant and γ is the minimum path
length between the lca(c1, c2) value and the root value
of the corresponding hierarchy.

The fd function is a monotonically increasing function of
the depth of the least common ancestor. Again, the definition
of depth distance ensures distances within the range [0, 1].
Having defined the path and the depth distances between two
context values, we define next their overall distance.

Definition 6 (Value distance) The value distance between
two context values c1 and c2 is computed as distV (c1, c2)
= distP (c1, c2)× distD(c1, c2).

For example, assuming the values working days and
summer, their path distance is 1 − e−3 ' 0.95, their depth
distance is 1, and so, their distance value is 1× 0.95 = 0.95.
Given now, the values holidays and summer their dis-
tance is (1 − e−1×1) × (1 − e−1/1) ' 0.39, that means
that the value summer is more closely related to holidays
than to working days. In both examples, we assume that
α = β = 1.

Note that to compute the value distance distV , we use the
independent distP and distD distances. This independency
enables us to combine them in different ways by giving dif-
ferent weights of interest. To do this, we may assign different
values to the constants α, β. In particular, for constant val-
ues greater than 1, distance increases, while values within the
range (0, 1) result in smaller distances.

Having defined the distance between two context values,
we can now define the distance between two context states.



Definition 7 (State distance) Given two context states
cs1 = (c1

1, c
1
2, . . . , c

1
n) and cs2 = (c2

1, c
2
2, . . . , c

2
n), the state

distance is defined as:
distS(cs1, cs2) =

∑n
i=1 wi × distV (c1

i , c
2
i ),

where each wi is a context parameter specific weight.
The above weights are normalized, such that,

∑n
i=1 wi =

1. Each weight takes a value according to the cardinality
of its related context parameter domain. In particular, we
assign larger weights to parameters with smaller domains,
considering a higher degree of similarity among values that
belong to a large domain.

It is easy to show that the distance relationship between
context states is reflexive (distS(cs1, cs1) = 0), and sym-
metric (distS(cs1, cs2) = distS(cs2, cs1)). However, it
does not satisfy the triangle inequality (distS(cs1, cs2) ≤
distS(cs1, cs3) + distS(cs3, cs2)), because of the semantic
way of defining distances among context values.

4 Contextual Clustering
To group preferences with similar context states, we use

the d-max algorithm (shown in Algorithm 1). The d-max
algorithm is a hierarchical clustering method that follows a
bottom-up strategy. Initially, each context state is placed in
its own cluster. At each step, the algorithm merges the two
clusters with the smallest distance. The distance between two
clusters is defined as the maximum distance between any two
context states that belong to these clusters. The algorithm ter-
minates when the closest two clusters, i.e., the clusters with
the minimum distance, have distance greater than dcl, where
dcl is an input parameter. Finally, for each produced cluster,
we select as representative context state, the state in the clus-
ter that has the smallest total distance from all the states of
its cluster. Formally:
Definition 8 (Representative context state ) Let cli be a
cluster produced by the d-max algorithm that consists of a
set Wcli of m context states, csij . The representative of cli
is the context state cs ∈ Wcli , with the minimum distance∑m

j=1 distS(cs, csij ).
Using the d-max algorithm, any two context states

cs1, cs2 that belong to the same cluster have distance
distS(cs1, cs2) ≤ dcl.

Having created the clusters of preferences, we compute
for each of them an aggregate score for each tuple specified
in any of its preferences (using the definition of the aggregate
tuple score). For each produced cluster cli, we maintain a
relation table cliScores(tuple id, score), in which we store in
decreasing order only the scores of tuples that satisfy at least
one of the predicates in the preferences of the cluster. That
is, we do not maintain scores for all tuples, but only for those
having nonzero scores, keeping in mind, that the remaining
ones have score equal to 0. Each time a query is submitted,
we search for the most similar cluster or clusters, that means,
for the clusters whose representative context state is the most
similar to the query context state. Then, using the relative to

the clusters table of scores, we retrieve the k tuples with the
highest scores.

Algorithm 1 d-max Algorithm
Input: A set of preferences with context states csi, a dis-
tance value dcl.
Output: A set of clusters.

Begin
1. Create a cluster for each context state csi.
2. Repeat.

2.1 If the minimum distance among any pair of clusters
is smaller than dcl.

2.1.1 Merge these two clusters.
2.2 Else, end loop.

3. Compute the representative context state of each pro-
duced cluster.
End

It is straightforward (by Definition 3) that:
Property 1 Let a context state cs and a set of context states
CS. If cs ∈ CS, then for any t ∈ r, score(t, CS) ≥
score(t, cs).

This means that the score of a tuple computed using the
representative context state is no less than the score of the tu-
ple computed using any of the context states belonging to the
cluster. In other words, if the context state that is the most
similar to the query context belongs to the cluster whose rep-
resentative context state is the most similar to the query, then
the score that our approximation approach computes for a
tuple cannot be lower than the exact one. That is, we may
overate a tuple, but never underrate it.

To guarantee that the most similar context states belong
to the selected cluster, we may need to check more than one
cluster (not just the ones whose representative context state is
the most similar to the query state). The following property
indicates how (proof omitted due to space limitations).

Property 2 Assume a query q with context state csq. Let
csp be the most similar to csq context state and let
distS(csq, csp) = d. To guarantee that csp belongs to the
clusters selected for computing the answers of q, we need to
return all clusters with representative context state, say csr,
such that, distS(csq, csr) ≤ d + dcl, where dcl is the input
distance parameter of the d-max algorithm.

When more than one cluster are used to compute the top−
k results of a query, we can apply a top− k algorithm (such
as, FA, TA or their variations [6, 5, 7]) to the relation tables
cliScores of the related to the query clusters.

5 Performance Evaluation
Clearly there is a trade-off between the number of clus-

ters and the quality of the produced scores. To evaluate our
approach, we run a set of preliminary experiments using a
database with 10000 tuples and 1000 contextual preferences.



0

200

400

600

800

1000

0 0.05 0.1 0.15 0.2 0.25 0.3

N
um

 o
f c

lu
st

er
s

Distance in cluster construction (dcl)

3 parameters
4 parameters

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3

Ja
cc

ar
d 

co
ef

fic
ie

nt

Distance in cluster construction (dcl)

3 parameters-1 cluster used
4 parameters-1 cluster used
3 parameters-more clusters
4 parameters-more clusters

Figure 2. (Left) number of clusters and (right) result quality for different dcl values

Context values are selected using a zipf data distribution with
a = 1.5, from context domains with 100 values and 4 hierar-
chy levels.

In Fig. 2 (left), we present the number of produced clus-
ters with regards to the parameter dcl of the d-max algorithm,
when preferences are expressed with 3 or 4 context parame-
ters. As expected, a large dcl value results in a small number
of clusters. Since we keep tuple scores only for the produced
clusters, this is an indication of the amount of precomputed
information that we maintain.

We also test the quality of the top-k results. In particu-
lar, assume that Results(d-max) is the set of the top-k tu-
ples computed using the d-max algorithm and Results(opt)
is the set of top-k tuples computed using the context
states that are most similar to the query. We compare
these two sets using the Jaccard coefficient defined as:
|Results(d−max)∩Results(opt)|
|Results(d−max)∪Results(opt)| . We consider the following
two cases: (i) we use only the most similar clusters, and (ii)
we use all the clusters that are necessary to guarantee that
the most similar to the query states belong to one of them,
according to Property 2. The Jaccard coefficient takes values
between 0 and 1: the higher its value, the more similar the
two top-k tuple sets. We report the results for k = 20 (Fig.
2, (right)). Finally, note that if the set of preferences used to
compute the top-k results is selected randomly, the Jaccard
coefficient is nearly 0.

6 Summary

Digital libraries offer to a heterogeneous population of
users efficient access to a heterogeneous population of data
items distributed across the Web. In this paper, we consider
enhancing such information systems with context dependent
preferences. Context is modeled as a multidimensional at-
tribute with each of its dimensions taking values from hi-
erarchical domains. We address the problem of finding in-
teresting data items based on preferences that assign interest
scores to pieces of data based on context. To this end, instead
of computing scores for all data items in all potential context
states, we exploit the hierarchical nature of context attributes
to identify representative context states.
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