
Social Search Queries in Time

Georgia Koloniari
Department of Applied Informatics

University of Macedonia
Thessaloniki, Greece

gkoloniari@uom.gr

Kostas Stefanidis
Institute of Computer Science

FORTH
Heraklion, Greece

kstef@ics.forth.com

ABSTRACT
Recently, social networks have attracted considerable atten-
tion. The huge volume of information contained in them, as
well as their dynamic nature, makes the problem of searching
social data challenging. In this position paper, to increase
the effectiveness of social search queries, we propose exploit-
ing the temporal information available in social networks. In
particular, we introduce different types of queries aiming at
satisfying information needs from different perspectives. We
present a formal graph and query model augmented with
time and outline methods for query processing and time-
dependent ranking. Finally, we identify several directions
for future work.

1. INTRODUCTION
Due to the increasing popularity of social networks and

the vast amount of information contained in them, recently
there have been many efforts in enhancing web search based
on social data. This has lead to the emergence of social
search that utilizes the underlying graph structure and the
content of a social network to provide both more personal-
ized and more expressive search features for the users.

An important dimension of social networks is their dy-
namic nature. New information is added through user ac-
tivities and updates occur both in the structure of the graph
and the content shared representing respective changes in
the users interests. This temporal aspect of the information
should be exploited and influence social search either explic-
itly by enabling users to query for particular time points or
periods, or implicitly by providing the most recent results
and higher ranking of fresher information [4, 3]. Motivated
by the important role time may assume in web search, our
goal is to exploit the temporal information hidden in a social
network, which has been mostly ignored so far, to improve
the expressiveness and quality of social search queries.

To deal with the temporal aspect of the social graph, two
basic approaches have been followed. In the first approach,
a log-like file recording the updates that occur in the social

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
PersDB 2013
Copyright 2013 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

graph is maintained [8, 7, 6]. This log constitutes the delta
between snapshots of the graph at different time points and,
by applying appropriate portions of it, one can create any
snapshot required. For a time-dependent query, one needs
to construct the required snapshot(s) involved in the query
and then process the query on them. An approach that
avoids the cost of snapshot construction, is introduced for
RDF data [2] and uses an annotated graph model that in-
corporates temporal information.

In our work, we adopt the second approach and define a
social graph model in which each element has a label main-
taining its temporal information. In particular, both nodes,
representing users and objects in the network, and the edges
between them, representing the social relationships, have a
label that indicates their valid time as defined for relational
databases [10]. Unlike the previous approaches that exploit
time to support queries mainly on the evolution of the graph
through time [8, 7, 6], we deal with social search and propose
a new time-enhanced query model.

We present two general query types: user-centric and
system-centric queries. User-centric queries offer a personal-
ized search feature by exploiting the social relationships of a
user. In particular, we discern between user-centric queries
for friends, which aim at discovering a user’s friends that
share common interests as indicated by their connections to
a set of objects, and user-centric queries for objects that re-
quire objects that have connections to a subset of a user’s
friends. On the other hand, system-centric queries provide
a global search feature with many applications in online-
shopping [9] and target-advertising [1], so as to select the
best target group for a new product or the best products
to promote to a given user. Similarly to the user-centric
queries, we discern between queries that aim at discovering
users in the network that share common interests as ex-
pressed through connections to common objects, or objects
that may be of interest to a particular subset of users.

To enable queries to express time explicitly, we extend
user- and system-centric queries to time-dependent queries
by adding time as a hard constraint in their definition, so as
to filter out irrelevant results. To process such queries, the
labels of the nodes in the system are processed to check for
valid items according to the constraint in the queries. Fur-
thermore, we also enable the implicit use of time to enhance
the results of a query by providing a time-dependent rank-
ing, so that more recent or fresher results are returned first.
The ranking process exploits the time of the user activities
recorded in the labels of the edges in the graph, i.e., the time
the connections between the users and the retrieved results



were established.
The rest of the paper is structured as follows. Section 2 de-

fines our graph and query model and how both are enhanced
with temporal information. Section 3 outlines methods for
query processing and introduces time-dependent ranking.
Finally, in Section 4, we discuss our plans for extending this
preliminary model.

2. MODEL
Typically, the entities of a social network represent users

and objects. In this section, we first define users and objects,
and then present our graph and query model.

2.1 User and Object Descriptions
Let ui be a user described by a set of predicates {ai1 , . . . ,

aip}, where each aij , 1 ≤ j ≤ p, is of the form (aij .attribute =
aij .value). For example, an attribute can be name, educa-
tion, occupation, gender or age and a corresponding predi-
cate can be “name = Alice”. See, for instance, Figure 1 for
a user description.

name = Alice
education = college graduate
occupation = educator
gender = female
age = 34

Figure 1: User description example.

Similar to users, we assume that each object oz is described
by a set of predicates {xz1 , . . . , xzr}, where each xzj , 1 ≤
j ≤ r, is of the form (xzj .attribute = xzj .value). Objects
are limited to applications that users use, events that users
organize and attend, pages that users create and follow, and
photos. For example, the description of the event PersDB
for 2013 is shown in Figure 2.

type = event
name = PersDB
description = VLDB Workshop
topic = Databases
location = Trento
date = August 30, 2013
start time = 9.00
end time = 16.00

Figure 2: Event description example.

2.2 Graph Model
We model a social network as an undirected graph, G =

(V,E). The set of nodes V corresponds to the entities that
belong to the social network, while the set of edges E cap-
tures the relationships between the entities that belong to
V .

We discern between two types of entities. First, we con-
sider the type user that consists of the social network users,
or particpants. The second type, object, includes all other
entities in the social network that are not users. In par-
ticular, we limit the objects to include applications, events,
pages and photos. Thus, the set of nodes V is defined as the
union of U and O, V = U ∪ O, where U is the set of users
and O the set of objects of the social network.

An edge (vi, vj) ∈ E, if vi and vj correspond to users
ui, uj ∈ U respectively, captures the friendship between the

corresponding users. Note that our model supports sym-
metrical social friendships between users, such in Facebook.
If vi corresponds to a user ui ∈ U and vj corresponds to
an object oj ∈ O, the edge (vi, vj) declares that user ui is
connected to object oj . This means that in the underlying
social network, ui either uses or participates in some way
in object oj , e.g., ui uses the application represented by oj ,
or he/she is attending the event oj , following the page oj ,
tagged in the photo oj , and so on. We assume that an object
cannot consume another object and thus, object to object
edges are not included in our graph model.

In this paper, we consider extending the typical graph
model with temporal information towards making social se-
arch time-dependent. We are inspired by a traditional tem-
poral database that includes temporal aspects, such as the
valid and transaction time of data items [10]. Specifically,
the valid time denotes the time periods during which a data
item is true, or valid, for the real world, while the transac-
tion time is the time period during which an item is stored
in the database. For the purposes of this position paper, we
consider only the valid time.

Here, we consider an element, node or edge, of a graph
G as valid for the time period for which the correspond-
ing element of the social network it represents is also valid.
That is, each node vi ∈ V is valid for the time period for
which the corresponding user ui or object oi participates
in the social network represented by the graph. Similarly,
each edge (vi, vj) ∈ E is valid for the time period that the
corresponding entities are connected in the social network.

To incorporate times into the social graph, each element
ei in the graph is annotated with a label that determines
the time interval for which the element is valid. In par-
ticular, for each element ei ∈ G, its label is defined as
l(ei) = (tstart, tend), which implies that element ei is valid
for the time interval [tstart, tend).

Next, we consider in detail what is determined by the label
of each type of element in a social graph. When element ei
with label l(ei) corresponds to a user ui, tstart is the time
point user ui joined the social network. If the user no longer
participates in the network, tend corresponds to the time
point the user left the network. Otherwise, if the user is
still a member of the social network, tend =∞.

For an object oi, tstart refers to the time point that the
object is created and appears in the network, while tend

refers to either the time the object stops being valid (for
example, if an application is dropped by its creator or an
event is removed by its organizer), or ∞ if the object does
not have a predetermined expiration time. Note that for
some types of objects, for instance events, each object could
also be associated with starting and ending time points as
part of its description, as the event in Figure 2, where the
attributes start time and end time along with the attribute
date define the time and duration of the event. For such
objects, we consider that their valid time coincides with the
time in their description and use the corresponding start and
end time as the tstart and tend in their label, respectively.
For objects that do not include time in their description,
such as pages, their label defines the time period that the
object appears in the network.

Similarly, for edges, tstart corresponds to the time the
connection represented by the edge is established, while tend

is initially set to∞ and updated if the connection is dropped
with the time it was dropped.



Alice	
  

Melinda	
  

Aaron	
  

Mary	
  

Nicolas	
  

Bob	
  

Anna	
  

Ali	
  

Janet	
  

Diego	
  

persdb13	
  

vldb13	
  
edbt14	
  

agora	
  

yelp	
  

scribd	
  

klout	
  

pinterest	
   (Dec12,	
  ∞)	
  

(Feb05,	
  ∞)	
  

(Aug10,	
  ∞)	
  
(Dec09,	
  ∞)	
  

(Oct09,	
  ∞)	
  

(May09,	
  ∞)	
  

(Apr13,	
  ∞)	
  

(Nov12,	
  ∞)	
  

(Jan08,	
  ∞)	
  

(Mar07,	
  ∞)	
  

(Feb09,	
  ∞)	
  

(Apr08,	
  ∞)	
  

(Oct12,	
  ∞)	
  

(May07,	
  ∞)	
  

(Mar13,	
  ∞)	
  

(Jun07,	
  ∞)	
  

(Jan08,	
  ∞)	
  
(Jun11,	
  ∞)	
  

Figure 3: An instance of a social graph in our model depicting entities along with their temporal labels, and the relationships
between the entities. For clarity, we skip the labels of the edges.

Figure 3 illustrates our social graph model that incorpo-
rates temporal information.

2.3 Query Model
The goal of our system is to support queries for the graph

structure that also exploit the time dimension of the el-
ements in the graph. We discern between queries from
two different perspectives: user-centric queries and system-
centric queries.

2.3.1 User-centric Queries
Let us first focus on the user perspective and, in partic-

ular, on user-centric queries. In such queries, a user ui is
interested in retrieving information about other users or ob-
jects that satisfy specific predicates and are connected to
the user directly or through their friends. We consider two
general categories of user-centric queries. This first category
gives priority to the company of the user, while the second
one to the objects to be consumed. This way, (i) a user ui

requires all his/her friends that are connected to particular
objects, e.g., “retrieve all my friends that attend all events
in Trento with topic Databases” and (ii) a user ui requires
to retrieve the objects that are connected with a particular
set of his/her friends, e.g., “retrieve all the events that my
friends Bob and Mary attend”.

More formally, we define the two categories of user-centric
queries as follows:

Definition 1 (User-centric Query). Given the gra-
ph G = (V,E), V = U ∪ O, of a social network, a user
ui ∈ U that corresponds to a node vi ∈ V and a set of predi-
cates P = {(att1 op val1), . . . , (attk op valk)}, a user-centric
query Q(ui, P ) is defined as a query that retrieves a set of
nodes V ′ ⊆ V that corresponds:

(i) [For user-centric queries for friends], to a set of users
U ′ ⊆ U , such that, uj ∈ U ′ iff ((ui, uj) ∈ E) and (∀ol
that satisfies the predicates in P , ∃(uj , ol) ∈ E), and

(ii) [For user-centric queries for objects], to a set of objects

O′ ⊆ O, such that, oj ∈ O′ iff ∀ul that satisfies the
predicates in P and (ui, ul) ∈ E, ∃(oj , ul) ∈ E.

Next, we enhance our query model with time by including
separate conditions for the validity in specific time intervals
for all, or a set of, the elements that are included in a query.
For instance, our first query example is modified as: “re-
trieve all my friends that will attend all events in Trento
with topic Databases during August 2013”.

Let us try to interpret the use of time in this query. The
query asks for friends that are associated with events taking
place in Trento in August 2013. Thus, for an event ei to be
considered for the query, besides satisfying the predicates
“location = Trento” and “topic = Databases”, its valid time
determined by its label as the interval [l(ei).tstart, l(ei).tend)
should be included within the time period determined by
the constraint in the query. That is, the valid time of the
event for our example should be in August 2013. Or in
the general case, given a time constraint determined by a
period T = [s, d) in a query Q, we say that an element
ei (the corresponding user ui or object oi) is valid for T,
if and only if, l(ei).tstart ≥ s and l(ei).tend < d. Note
that a reverse interpretation is also possible. That is, one
could require the valid time of element ei to include the time
period T determined in the constraint and not the other
way. In that case, an element ei is valid for T, if and only if,
l(ei).tstart ≤ s and l(ei).tend > d. In the rest of this paper,
we always assume the first interpretation for the constraints.

In the query example we use, the time constraint refers to
the objects that connect the friends (user nodes) that the
query retrieves. One could also use the time to impose con-
straints on the valid time of the actual user nodes the query
retrieves. For instance, “retrieve all my friends that were
valid from 2009 to 2010 and are connected to all events with
name = PersDB” retrieves all my friends that were valid in
the time period 2009 to 2010 and have some connection to
all events that satisfy the given predicate, even if the events
themselves are valid at another time period, i.e., one such
event could be PersDB in 2008, and so on.



Similarly, we can interpret the second query example that
is modified as: “retrieve all the events that my friends Bob
and Mary will attend in August 2013”. In this case, the
constraint is on the events (objects) retrieved, but again we
could use constraints on the friends as well.

If the time constraint does not refer to the nodes that
constitute the result of a user-centric query, then it needs to
be satisfied by the nodes that also satisfy the predicates
in P . Therefore, it can be viewed as another predicate
to be satisfied. Note that the difference is that the time
constraint does not refer to an attribute in the description
of the node, but rather to its label. In our first example,
for instance, the events oi that connect the retrieved users
should, besides having “location = Trento” and “topic =
Databases”, also satisfy “l(oi).tstart ≥August 1 and Septem-
ber 1 > l(oi).tend”.

Thus, we focus on queries that apply the time constraint
on the nodes in their result and formally define time en-
hanced user-centric queries. Let us denote the result of a
query Q, i.e., the set V ′ ⊆ V , as res(Q).

Definition 2. (Time-dependent User-centric Que-
ry). Given a user-centric query Q and a time interval T =
[s, d), a time-dependent user-centric query (Q, T ) retrieves
all nodes vj ∈ res(Q) that are valid for T , i.e., l(vj).tstart ≥
s and l(vj).tend < d.

The definition of time-dependent user-centric queries de-
fines a temporal constraint that checks whether the nodes
in the result of Q are valid for a time period T . Note that
besides range-based constraints, our model can also sup-
port constraints that check whether an object is valid in
a specific time point t. In particular, if s = d = t, then
the constraint that needs to be satisfied is transformed as
l(vj).tstart ≤ t < l(vj).tend.

2.3.2 System-centric Queries
From the system perspective, system-centric queries tar-

get on retrieving information about users that plan to con-
sume objects that satisfy specific predicates or, alternatively,
objects that will be consumed by users that satisfy a set of
given predicates. Motivated by online shopping applications
(e.g., [9]) and targeted advertising (e.g., [1]), system-centric
queries identify either sets of users that share some common
interests and, for instance, may be interested in a particu-
lar product or event the system wants to promote, or simi-
larly, sets of objects that may be of interest to some partic-
ular users so that they can choose to promote these objects
to them. Based on this motivation, we consider two gen-
eral categories of system-centric queries. More specifically,
(i) the system requires locating the users that are connected
to particular objects, e.g., “retrieve all users that attend all
events in Trento with topic Databases” and (ii) the system
requires locating the objects that are connected with par-
ticular users, e.g., “retrieve all the events that users Aaron,
Melinda and Diego will attend or have already attended”.

Formally, we define the two categories of system-centric
queries as follows:

Definition 3 (System-centric Query). Given the
graph G = (V,E), V = U ∪ O, of a social network and a
set of predicates P = {(att1 op val1), . . . , (attk op valk)},
a system-centric query Q(G,P ) is defined as a query that
retrieves a set of nodes V ′ ⊆ V that corresponds:

(i) [For system-centric queries for users], to a set of users
U ′, such that, ui ∈ U ′, iff, for all objects oj ∈ O that
satisfy the predicates in P , ∃(ui, oj) ∈ E, or

(ii) [For system-centric queries for objects] to a set of ob-
jects U ′, such that, oi ∈ O′, iff, for all users uj ∈ U
that satisfy the predicates in P , ∃(uj , oi) ∈ E.

Similarly to the user-centric case, we augment system-
centric queries with time, aiming at retrieving only valid
information. The time constraint can be again applied either
on the result of the query, or can be viewed as an additional
special predicate that concerns the label rather than the
description of the node. This way, the enhanced version
of the first query example can be formulated as: “retrieve
all the users of the system that are valid in August 2013
and attend events in Trento with topic Databases”. This
query declares the interest of the system in retrieving the
users that have drawn some attention in participating in
events taking place in Trento with subject Databases and
were using the system in August 2008. Alternatively, the
temporal constraint can refer to the event itself.

In this paper, we do not make any assumptions for the re-
lationships between the retrieved users. One could also en-
vision models where users are connected in the social graph,
or are connected via a small number of other users in the
graph in order to ensure a strong friendship.

In a similar manner, the second query example can be
written as: “retrieve all the events appearing in the system
that the users Aaron, Melinda and Diego will attend in Au-
gust 2013”, where an event to be considered for the query
should be attended by the users at a specific point in time.

In the following, we define the enhanced system-centric
queries. Similarly to enhanced user-centric queries, the tem-
poral condition refers to the nodes in the result set of the
query.

Definition 4. (Time-dependent System-centric Que-
ry). Given a system-centric query Q enhanced with a time
interval T , a time-dependent system-centric query (Q, T ),
retrieves all nodes vi ∈ res(Q) that are valid for T .

3. QUERYING THE SOCIAL NETWORK
In this section, we first proceed in describing how our

user-centric and system-centric queries are processed against
the graph model, and then introduce a simple method for
ranking the derived results.

3.1 Query Processing
Let us first consider the user-centric queries for friends.

Given the graph G = (V,E), V = U∪O, of a social network,
for a query Q(ui, P ), processing proceeds in the following
steps:

Step 1: Retrieve the set of user nodes uj ∈ U , say U ′,
such that, ∃(ui, uj) ∈ E.

Step 2: Retrieve the set of object nodes ol ∈ O, say O′,
such that, ol satisfies all predicates in P .

Step 3: From U ′, remove all nodes uj , such that, for at
least one node ol ∈ O′, @(uj , ol) ∈ E.

Step 4: The remaining nodes form res(Q).

Similarly, we can enumerate the steps for processing a
user-centric query for objects as a sequence of filtering steps.



Step 1: Retrieve the set of user nodes ul ∈ U , say U ′,
such that, ∃(ui, ul) ∈ E.

Step 2: From U ′, remove all nodes that do not satisfy all
predicates in P .

Step 3: Retrieve the set of object nodes oj ∈ O, say O′,
such that, ∀ul retrieved from Step 2, ∃(ul, oj) ∈ E.

Step 4: The nodes in O′ form res(Q).

For time-dependent user-centric queries, an additional step
is introduced in which the nodes are filtered according to
their labels and their valid times. In particular, for both
types of user-centric queries, the additional steps for a time-
dependent query (Q,T ) are:

Step 5: From the nodes in res(Q) remove all nodes vj ,
such that, l(vj).tstart < s or l(vj).tend ≥ d.

Step 6: The remaining nodes form res(Q,T ).

Note that when time does not refer to the retrieved nodes
but rather on the nodes against which the predicates in P
are checked, in the same step in which the predicates are
applied, we can apply the additional time constraint against
the labels of the nodes to filter out the non-valid ones.

Let us now consider the processing procedure of a system-
centric query Q = (G,P ). If Q is a system-centric query for
users, the steps are described as follows:

Step 1: Retrieve the set of object nodes oj ∈ O, say O′,
such that, oj satisfies all predicates in P .

Step 2: Retrieve the set of user nodes ui ∈ U , say U ′,
such that, ∃(ui, oj) ∈ E, ∀oj ∈ O′.

Step 3: The nodes in U ′ form res(Q).

For a system-centric query for objects, the steps are:
Step 1: Retrieve the set of user nodes uj ∈ U , say U ′,

such that, uj satisfies all predicates in P .
Step 2: Retrieve the set of object nodes oi ∈ O, say O′,

such that, ∃(uj , oi) ∈ E, ∀uj ∈ U ′.
Step 3: The nodes in O′ form res(Q).

To deal with time-dependent system-centric queries, two
additional steps for filtering are applied. The formal de-
scription of such queries is skipped, since it is similar to the
description of the time-dependent user-centric queries.

3.2 Ranking
The results returned by our queries so far are defined as a

set of nodes with no particular order among them. However,
if the cardinality of this set is large, providing a ranking of
the results can be very useful from both the user’s and the
system’s perspective. For instance, consider the following
query: “retrieve all my friends that are connected with pages
referring to a database topic that are valid in 2013”. The
result set includes all friends that have connections to pages
that are valid in 2013 with topic “Databases” without any
distinction among these friends. However, one can assume
that users that connected with a page in 2013 are most likely
more actively interested in this page rather than say friends
that have connected to the same page in 2009 and are no
longer that interested in the same topic. In these scenarios,
it might be useful to provide a ranking of results (users, in
our example) according to the freshness of the connections
between users and objects (pages, here).

Let us again consider the previous example. In this case,
even if there is a temporal constraint involved, it does not
suffice to provide the ranking we desire. For ranking, we

are not interested in the validity of the pages themselves
(although this might also be worth considering), but rather
on the freshness of the connection between the user and
the object we describe in our query through the predicates
P . This information is recorded in our graph model on the
labels of the edges between the various nodes in the graph.
Thus, in our particular example, one can sort the returned
results according to the tstart of the label of the edges (uj , ol)
that connect the retrieved users with the qualifying objects
based on predicate P . Results related with edges with higher
tstart values are promoted and placed in higher positions in
the ranking, compared to results with edges with lower tstart
values. Similar examples can be considered for all types of
both user- and system-centric queries.

Next, we will present in detail how ranking is applied. In
general, our motivation is based on the fact that recently
added edges better reflect the current trends and thus, they
could contribute more in the ranking of results. Or, in other
words, the fresher the connections, the more important the
results, and so, the higher their position in the ranking.

We start our description with the case of user-centric
queries for friends. Specifically, assume a query Q(ui, P ).
The result res(Q) of Q is the set of friends of ui, {u1, . . . ,
um}, that are connected with the objects O′ that satisfy
the predicates in P . ranked res(Q) of Q is a ranked list of
the users in res(Q); ranking is achieved with respect to the
labels of the edges that connect the users in {u1, . . . , um}
with the objects O′ and, in particular, with respect to the
time the connections were established. This way, a user ux

precedes a user uy in the ranking if he/she is the owner of
the most recent connection among all connections between
ux and uy, and O′, that is, if he/she is the owner of the
edge with the label with the highest tstart value among the
values in the labels of edges connecting ux and uy with O′.

Following the same key points, for a user-centric query
Q(ui, P ) for objects, we rank the objects in res(Q) according
to the tstart values of the labels of the edges that connect
the objects with the friends of ui that satisfy the predicates
of P .

Definition 5. (Ranked Results of User-centric
Queries). Assume the graph G = (V,E), V = U ∪ O,
of a social network. Given the result res(Q), res(Q) =
{v1, . . . , vm}, res(Q) ⊆ V , of a user-centric query Q(ui, P ),
ranked res(Q) is a ranking of the nodes in res(Q), such
that:

(i) [For user-centric queries for friends], ux precedes uy

in ranked res(Q), if and only if, there exists an edge
between ux and an object oz from the objects O′ that
satisfy P with l(ux, oz).tstart > l(uy, oz′).tstart, ∀oz′ ∈
O′, where ux, uy correspond to nodes vx, vy in res(Q),
and

(i) [For user-centric queries for objects], ox precedes oy
in ranked res(Q), if and only if, there exists an edge
between ox and a user uz from the users U ′ that satisfy
P and are connected with ui, with l(ox, uz).tstart >
l(oy, uz′).tstart, ∀uz′ ∈ U ′, where ox, oy correspond to
nodes vx, vy in res(Q).

The ranked results of time-dependent user-centric queries
are defined in the same way. More specifically, as for the
pure user-centric queries, the results consist of either users,



for the queries for friends, or objects, for the queries for ob-
jects. Even if the resulting set of returned elements is differ-
ent, because here we take into account only valid users and
objects, the method for determining which elements precede
the others follows the same principles.

This approach for ranking users or objects in a social net-
work according to the freshness of their connections with
other elements in the network, is used as well for the case of
system-centric queries. However, from the perspective of a
company that takes advantage of the functionalities of such
a system, the procedure of ranking the query results may
also exploit other characteristics. For example, one could
also envision models where users, or the system itself, prior-
itize the objects that are available for consumption. In this
position paper, we keep this basic model for ranking results,
and leave for future work the study of more complex models.

A brute-force method to produce a ranked set of results
for either a user-centric or a system-centric query that is
dependent on time or not, is the following. First, assign to
each element in the query result a score equal to the maxi-
mum tstart value among the values that appear in the labels
of its connections to the nodes that satisfy the predicates of
the query. Then, sort the result elements according to that
value to construct the ranking of the results. Determining
the ranked res(Q) for a query Q using such a straightfor-
ward algorithm is computationally costly. The focus of our
current work is on introducing a top-k variation of the prob-
lem along with an algorithm for computing the ranked re-
sults in a single phase, i.e., without distinguishing between
identifying and ranking results.

4. DISCUSSION AND FUTURE WORK
In this position paper, we focus on the problem of rank-

ing results of queries for the graph structure representing
a social network by exploiting the time dimension of the
elements, users, objects or connections, in the graph. We
distinguish between user-centric and system-centric queries
aiming at satisfying the user’s and the system’s, or com-
pany’s, information needs, respectively.

In particular, we outline a graph and a query model for
the problem and sketch a method for its solution. Clearly,
there are many directions for future work including modeling
issues, efficient algorithms for computations and implemen-
tations in specific contexts. Next, we elaborate on these
issues a bit further.

We describe users and objects as sets of predicates of the
form (attribute = value). Other models are feasible as well.
For example, going beyond the equality operator, more ex-
pressive descriptions, such as range predicates, can be em-
ployed. One can also incorporate additional types of ob-
jects, like public posts, places and groups, and discern be-
tween different types of connection edges between users and
objects expressing likes, shares and comments. To capture
the dynamic nature of users, objects and their relationships
in social networks, labels may consist of a set of mutually
exclusive time intervals representing removals and rejoins to
the network.

In many cases, the result of a query may contain very few
nodes (users or objects) or even may not exist. In such cases,
a relaxation approach should be sought for. For instance,
instead of requiring a result node to be connected with all
the nodes (objects or users, depending on the query) that
satisfy a set of given predicates, it may be wise to relax the

conditions in order to include in the query result a node
that has at least one connection to a node that satisfies the
query predicates. Other approaches, such as relaxing the
query predicates or approximating them, are also reason-
able. Concerning the temporal validity of users, objects and
their connections, here we apply hard constraints. That is,
we require that a node or an edge that is labeled with a time
period T is valid with respect to a given time period T ′, if T
is included in T ′. A relaxed version of this approach allows
for soft constraints in which T and T ′ intersect.

Finally, depending on these relaxation schemes, efficient
query processing and ranking algorithms need to be de-
signed. For ranking in particular, one may also study more
sophisticated multi-criteria ranking schemes, by allowing users
to define their own preferences or taking into account the
popularity of the returned elements, in terms of number of
connections, among the users of the social network. Also,
one could classify the connections based on their valid time,
as in [5], to form groups of nodes with different temporal
characteristics that can be exploited for ranking.

Acknowledgments
The work of the first author is partially supported by the
Operational Program “Education and Lifelong Learning”
of NSRF-Research Funding Program: Thales (Cloud9), co-
financed by the ESF and Greek national funds. The work of
the second author is supported by the project “IdeaGarden”
funded by the Seventh Framework Programme under grand
no 318552.

5. REFERENCES
[1] A. Farahat and M. C. Bailey. How effective is targeted

advertising? In WWW, pages 111–120, 2012.

[2] C. Gutierrez, C. A. Hurtado, and A. A. Vaisman.
Introducing time into RDF. IEEE Trans. Knowl.
Data Eng., pages 207–218, 2007.

[3] W. Huo and V. J. Tsotras. Temporal top-k search in
social tagging sites using multiple social networks. In
DASFAA (1), pages 498–504, 2010.

[4] H. Joho, A. Jatowt, and R. Blanco. A survey of
temporal web search experience. In WWW
(Companion Volume), pages 1101–1108, 2013.

[5] A. Khodaei and O. Alonso. Temporally-aware signals
for social search. In TAIA, 2012.

[6] U. Khurana and A. Deshpande. Efficient snapshot
retrieval over historical graph data. In ICDE, 2013.

[7] G. Koloniari, D. Souravlias, and E. Pitoura. On graph
deltas for historical queries. In WOSS, 2012.

[8] C. Ren, E. Lo, B. Kao, X. Zhu, and R. Cheng. On
querying historical evolving graph sequences. PVLDB,
pages 726–737, 2011.

[9] S. B. Roy, S. Amer-Yahia, A. Chawla, G. Das, and
C. Yu. Constructing and exploring composite items.
In SIGMOD, pages 843–854, 2010.

[10] B. Salzberg and V. J. Tsotras. Comparison of access
methods for time-evolving data. ACM Comput. Surv.,
pages 158–221, 1999.


