
Preferential Publish/Subscribe

Marina Drosou
Dept. of Computer Science

University of Ioannina, Greece

mdrosou@cs.uoi.gr

Evaggelia Pitoura
Dept. of Computer Science

University of Ioannina, Greece

pitoura@cs.uoi.gr

Kostas Stefanidis
Dept. of Computer Science

University of Ioannina, Greece

kstef@cs.uoi.gr

ABSTRACT
In publish/subscribe systems, subscribers express their in-
terests in specific events and get notified about all pub-
lished events that match their interests. As the amount
of information generated increases rapidly, to control the
amount of data delivered to users, we propose enhancing
publish/subscribe systems with a ranking mechanism, so
that only the top-ranked matching events are delivered. Ran-
king is based on letting users express their preferences on
events by ordering the associated subscriptions. To avoid
the blocking of new notifications by top-ranked old ones,
we associate with each notification an expiration time. We
have fully implemented our approach in SIENA, a popular
publish/subscribe middleware system.

1. INTRODUCTION
The publish/subscribe paradigm provides loosely coupled

interaction among a large number of users of a large-scale
distributed system. Users can express their interest in an
event via a subscription and inject this subscription into the
system. The system will then notify them whenever some
other user generates (or publishes) an event that matches
a previously made subscription. Users that generate such
events are called publishers, while users that consume the
published events are called subscribers. All published events
that are relevant to at least one of a specific user’s subscrip-
tion will eventually be delivered to this user.

Typically, in publish/subscribe systems, all subscriptions
are considered equally important. However, due to the abun-
dance of information, users may receive overwhelming a-
mounts of event notifications. In such cases, users would pre-
fer to receive only a fraction of this information, namely the
most interesting to them. For example, assume a user, say
John, who is generally interested in drama movies. Specifi-
cally, John is more interested in drama movies directed by
Tim Burton than drama movies directed by Steven Spiel-
berg. Ideally, John would like to receive notifications about
Steven Spielberg drama movies only in case there are no, or

not enough, notifications about Tim Burton drama movies.
In this paper, we advocate using some form of ranking

among subscriptions, so that users can express the fact that
some events are more important to them than others. To
rank subscriptions, we use preferences. A variety of prefer-
ence models have been proposed, most of which follow either
a quantitative or a qualitative approach. In the quantitative
approach (e.g. [5, 13]), users employ scoring functions that
associate a numeric score with specific data to indicate their
interest in it. In the qualitative approach (e.g. [8, 12, 11]),
preferences between two data items are specified directly,
typically using binary preference relations. To express pri-
orities among subscriptions, we first introduce preferential
subscriptions, that is, subscriptions enhanced with inter-
est scores following the quantitative preference paradigm.
Based on the subscription scores, we propagate to users only
the notifications that are the most interesting to them. We
extend this idea to encompass qualitative preferences.

Based on preferential subscriptions, we introduce a top-k
variation of the publish/subscribe paradigm in which users
receive only the k most interesting events as opposed to all
events matching their subscriptions. Since the delivery of
notifications is continuous, we introduce a timing dimension
to the top-k problem, since without some notion of freshness,
receiving top-ranked notifications would block for ever the
delivery of any new, less interesting notifications. To this
end, we associate an expiration time with each notification,
so that, notifications for old events will eventually die away
and let new ones be delivered to the users.

To locate the subscriptions that match a specific event
notification efficiently, we adopt a graph-based representa-
tion of subscriptions, called preferential subscription graph.
Subscriptions correspond to nodes in the graph and edges
point from more general to more specific subscriptions.

Our prototype implementation, PrefSIENA [3], extends
SIENA [6], a popular publish/subscribe middleware system,
by including preferential subscriptions and top-k notification
delivery. We report some preliminary experimental results
that compare the number of notifications delivered by Pref-
SIENA with respect to the corresponding number in the case
of the original SIENA system.

The rest of this paper is structured as follows. In Sec-
tion 2, we introduce preferential subscriptions, that is, sub-
scriptions augmented with interest scores. We also propose
time-valid notifications by associating expiration times with
notifications. In Section 3, we focus on how to compute the
top-k notifications based on preferential subscriptions and
time-valid notifications, while in Section 4, we extend pref-

nodes responsible for
storing subscriptions and
matching events to them.

publisher

publisher

publisher

subscriber

subscriber

subscriber

publish()

publish()

publish()

subscribe()

unsubscribe()

notify()

subscribe()

subscribe()

notify()

event-notification service

Figure 1: Basic publish/subscribe system.

erential subscriptions to encompass qualitative preferences.
In Section 5, we present our evaluation results. Section 6
describes related work and finally, Section 7 concludes the
paper with a summary of our contributions.

2. PREFERENTIAL MODEL
In this section, we first describe a typical form of noti-

fications and subscriptions used in publish/subscribe sys-
tems. Then, we introduce an extended version of subscrip-
tions that include the notion of preferences. Also, we extend
the definition of notifications to include the notion of time
validity.

2.1 Publish/Subscribe Preliminaries
A publish/subscribe system is an event-notification ser-

vice designed to be used over large-scale networks, such as
the Internet. Generators of events, called publishers, can
publish event notifications to the service and consumers of
such events, called subscribers, can subscribe to the service
to receive a portion of the published notifications. Publish-
ers can publish notifications at any time. The notifications
will be delivered to all interested subscribers at some point
in the future.
Architecture: In general, a publish/subscribe system [9]
consists of three parts: (i) the publishers that provide events
to the system, (ii) the subscribers that consume these events
and (iii) an event-notification service that stores the vari-
ous subscriptions, matches the incoming event notifications
against them and delivers the notifications to the appropri-
ate subscribers. As shown in Figure 1, the event-notification
service provides a number of primitive operations to the
users. The publish() operation is called by a publisher
whenever it wishes to generate a new event. The sub-
scribe() operation is called by a subscriber whenever it
wishes to express a new interest. An unsubscribe() opera-
tion is usually also provided to cancel previous subscriptions.
The event-notification service can use the notify() opera-
tion whenever it wants to deliver a notification to a sub-
scriber. An event-notification service can be implemented
using a centralized or a distributed architecture, that is, we
may have one or a set of servers responsible for the process
of matching notifications to subscriptions.
Notifications: We use a generic way to form notifications,
similar to the one used in [6, 10]. In particular, notifications
are sets of typed attributes. Each notification consists of an
arbitrary number of attributes and each attribute has a type,
a name and a value. Attribute types belong to a predefined
set of primitive types, such as “integer” or “string”. At-
tribute names are character strings that take values accord-

string title = LOTR: The Return of the King

string director = P. Jackson
time release date = 1 Dec 2003

string genre = fantasy

integer oscars = 11

Figure 2: Notification example.

string director = P. Jackson

time release date > 1 Jan 2003

Figure 3: Subscription example.

ing to their type. An example notification about a movie is
shown in Figure 2.

Definition 1 (Notification). A notification n is a
set of typed attributes {a1, . . . , ap}, where each ai, 1 ≤ i ≤ p,
is of the form (ai.type ai.name = ai.value).

Subscriptions: Subscriptions are used to specify the kind
of notifications users are interested in. Each subscription
consists of a set of constraints on the values of specific at-
tributes. Each attribute constraint has a type, a name,
a binary operator and a value. Types, names and values
have the same form as in notifications. Binary operators
may include common operators such as =, 6=, <, >, ≤, ≥,
substring, prefix and suffix. An example subscription is
depicted in Figure 3.

Definition 2 (Subscription). A subscription s is a
set of attribute constraints {b1, . . . , bq}, where each bi, 1 ≤
i ≤ q, is of the form (bi.type bi.name θbi

bi.value), θbi
∈ {=,

<, >,≤,≥, 6=, substring, prefix, suffix}.

Matching notifications to subscriptions: Intuitively,
we can say that a notification n matches a subscription s,
or alternatively a subscription s covers a notification n, if
and only if every attribute constraint of s is satisfied by some
attribute of n. Formally:

Definition 3 (Cover Relation). Given a notificati-
on n of the form {a1, . . . , ap} and a subscription s of the
form {b1, . . . , bq}, s covers n if and only if ∀ bi ∈ s, ∃ aj ∈ n

such that bi.type = aj .type, bi.name = aj .name and it holds
((aj .value) θbi

(bi.value)), 1 ≤ i ≤ p, 1 ≤ j ≤ q.

A notification n is delivered to a user if and only if the user
has submitted at least one subscription s, such that s covers
n. For example, the subscription of Figure 3 covers the no-
tification of Figure 2 and therefore, this notification will be
delivered to all users who have submitted this subscription.

2.2 Preferential Subscriptions
In this paper, we extent the publish/subscribe paradigm

to incorporate ranking capabilities. Assuming that each user
has defined a set of preferences, then this user should receive
a newly published notification, if and only if, the notifica-
tion describes an event that is more preferable to the user
than any previously received event. To express preferences
along with subscriptions, we can follow either the quanti-
tative or the qualitative approach. For simplicity reasons,
we first consider the quantitative preference model, while in
Section 4, we apply qualitative preferences.

A preferential subscription is a subscription enhanced with
a numeric score. The higher the score, the more interested

string director = P. Jackson
0.7

date release date > 1 Jan 2003

Figure 4: Preferential subscription example.

the user is in notifications covered by this specific subscrip-
tion. These scores can have any real value. We assume here
that they take values within the range [0, 1]. An example of
a preferential subscription is shown in Figure 4.

Definition 4 (Preferential Subscription). A pref-
erential subscription psX

i , submitted by user X, is of the
form psX

i = (si, score
X
i), where si is a subscription and

scoreX
i is a real number within the range [0, 1].

Assuming that a user X defines a set of preferential sub-
scriptions P X , we use the user’s preferential subscriptions
to rank the published notifications and deliver to the user
only the top-k notifications, i.e. the k highest ranked ones
(where k is a user-defined parameter). We define the score
of a notification to be the largest among the scores of the
subscriptions that cover it:

Definition 5 (Notification Score). Assume a no-
tification n, a user X and the set P X of the user’s preferen-
tial subscriptions. Assume further the set P X

n = {(s1, score
X
1),

. . . , (sm, scoreX
m)}, P X

n ⊆ P X , for which si covers n, 1 ≤
i ≤ m. The notification score of n for X is equal to sc(n, X)
= max {scoreX

1 , . . . , scoreX
m}.

A newly published notification n is delivered to a user X,
if and only if, it is covered by some subscription s previously
issued by X and X has not already received k notifications
more preferable to n. A notification n1 is more preferable
for user X to a notification n2, if and only if, it has a higher
notification score for X than n2.

In general, we assume that scores are indicators of positive
interest, thus, we use the maximum value of the correspond-
ing subscriptions. One could argue for other ways of aggre-
gating the scores, for instance using the mean, minimum or
a weighted sum. Yet, an alternative way would be to use
only the scores of a subset of P X

n , namely the most specific
subscriptions. A similar notion for preferences is introduced
in [15]. For example, assume the notification of Figure 2 and
the preferential subscriptions ({genre = fantasy}, 0.7) and
({genre = fantasy, director = P. Jackson}, 0.6) (for ease
of presentation we omit the type of each attribute). The
second subscription is more specific than the first one, in
the sense that in the second subscription the user poses an
additional, more specific requirement to movies than in the
first one, and so, the score of the first one should be ignored.
Formally, a subscription s ∈ P X

n is a most specific one if no
other subscription in P X

n covers it (see Definition 7).
We leave as future work a user study to evaluate the ap-

propriateness of the different methods for assigning scores.
In general, all such methods may increase the complexity of
the process of matching notifications to subscriptions, since
in traditional publish/subscribe, for matching to be com-
pleted successfully, it suffices to find just one subscription
that covers the notification, whereas for computing the no-
tification score, we may need to locate all covering subscrip-
tions.

2.3 Time-Valid Notifications
In a publish/subscribe system, where new event notifica-

tions are constantly produced, the following problem may

genre = comedy 0.9

genre = drama 0.8

n (20:00)1

title = The Godfather
genre = drama

= 21:10showing time

title = Fight Club
genre = drama

= 23:00showing time

title = Casablanca
genre = drama

= 23:10showing time

title = Vertigo
genre = drama

= 23:20showing time

n2 (20:10)

n3 (20:15)

n4 (22:00)

n5 (22:10)

n6 (22:20)

title = The Apartment
genre = comedy

showing time = 21:00

title = Ratatouille
genre = comedy

= 21:15showing time

n2

title = The Godfather
genre = drama

= 21:10showing time

title = The Apartment
genre = comedy

= 21:00showing time

n1

title = Ratatouille
genre = comedy

= 21:15showing time

n3

Figure 5: Top-2 notifications for a single user at 22:30 (no
expiration time used).

arise: it is possible for very old but highly preferable no-
tifications to prevent newer notifications from reaching the
user. Specifically, after receiving k very highly preferable
notifications, the user will receive no new ones unless they
are ranked higher, something that may not be desirable.

For instance, consider the example of Figure 5. For sim-
plicity, we assume a single user, say John, who has defined
the following preferential subscriptions for movies: John
has assigned score 0.9 to comedies and score 0.8 to dra-
mas. Assume that a movie theater generates the notifica-
tions n1, n2, . . . , n6 of Figure 5 in that order and that John
is interested in the top-2 results. n1 will be delivered to
John, since it is the first notification that is covered by his
subscriptions. n2 will also be delivered, since it is the second
best result seen up to this moment. n3 is equally preferred
to n1 and will therefore also be delivered to John (replac-
ing n2 in the current top-2 results). Since n4, n5 and n6

are less preferable to the current top-2 results, none of them
will be delivered to John. Assuming that notifications are
published one hour prior to the showing time, if John checks
his top-2 results at 22:30 he will only find movies that he
can no longer watch (the top-2 results at 22:30 are marked
with gray color), even though other interesting movies that
start at 23:00 have been published.

To overcome this problem, we need to define the subset
of notifications over which the top-k notifications for each
user will be located. One solution would be to split time in
periods of duration T and at each time instance, deliver a
notification to the user, if the user has not already received,
during the current period, k notifications with higher scores.
However, since top-k computation starts anew in the be-
ginning of each period, the rank of events received by the
user may end up being rather arbitrary. For example, high-
ranked notifications appearing in periods with many other
high-ranked ones may not be delivered to the user, whereas
low-ranked publications appearing in periods with a small
number of high-ranked ones may be delivered.

A more general approach is to associate each published
notification n with an expiration time n.exp. The notifica-
tion is considered valid only while n.exp has not expired.
The top-k results for each user are defined over the subset
of valid notifications. This way, older notifications which
have expired do not prevent valid ones from reaching the
user even if they are more preferable than those. Consid-
ering the previous example, assume that each notification
expires at the showing time of the corresponding movie (see
Figure 6). n1, n2 and n3 will be delivered to the user as

genre = comedy 0.9

genre = drama 0.8

n (20:00)1

title = The Godfather
genre = drama

= 21:10showing time

title = Fight Club
genre = drama

= 23:00showing time

title = Casablanca
genre = drama

= 23:10showing time

title = Vertigo
genre = drama

= 23:20showing time

n (20:10)2

n (20:15)3

n (22:00)4

n (22:10)5

n (22:20)6

title = The Apartment
genre = comedy

showing time = 21:00

title = Ratatouille
genre = comedy

= 21:15showing time

n1

title = The Godfather
genre = drama

= 21:10showing time

title = Fight Club
genre = drama

= 23:00showing time

title = Casablanca
genre = drama

= 23:10showing time

title = Vertigo
genre = drama

= 23:20showing time

n2

n3

n4

n5

n6

title = The Apartment
genre = comedy

= 21:00showing time

title = Ratatouille
genre = comedy

= 21:15showing time

Figure 6: Top-2 notifications for a single user at 22:30 (with
expiration time used).

before. By the time n4 is published (22:00), n1, n2 and
n3 have expired and therefore, n4 will also be delivered to
the user. n5 and n6 will be delivered as well, since they
are equally preferred as the notifications in the top-2 at the
time of their publication. Notice that the periodic approach
is a special case of the expiration-time one. By setting the
expiration time of each notification equal to the ending time
of the current period, we achieve the same result as with the
periodic approach.

Based on the assumption that published notifications are
valid only for a specific time period, next we define which
ones belong to the top-k notifications for a user.

Definition 6 (Top-k Notifications). Assume a user
X and P X the set of X’s preferential subscriptions. A notifi-
cation n published at time t belongs to the top-k notifications
of X, if and only if, n is covered by at least one subscrip-
tion s appearing in a preferential subscription ps ∈ P X and
X has not already received k notifications n1, . . . , nk with
ni.exp > t and sc(i, X) > sc(n, X), 1 ≤ i ≤ k.

An alternative way to set the expiration time for a noti-
fication would be to let the user define a refresh time along
with each subscription. This can be also expressed through
defining appropriate values of the expiration time for notifi-
cations as follows. Assuming that a notification n is covered
by a user subscription s associated with a refresh time r,
then the expiration time of n could be set to t + r, where
t is the time that n is sent to the user. Note that in this
approach, a specific notification does not have a single expi-
ration time but instead, it is associated with a different one
for each user.

3. RANKING IN PUBLISH/SUBSCRIBE
In this section, we introduce a preferential subscription

graph for organizing our preferential subscriptions. We also
present an algorithm for computing the top-k results and
discuss the server topology.

3.1 Preferential Subscription Graph
To reduce the complexity of the matching process between

notifications and subscriptions, it is useful to organize the
subscriptions using a graph. We use preferential subscrip-
tions to construct a directed acyclic graph, called prefer-
ential subscription graph, or PSG. To form such graphs,
we use the cover relation between subscriptions defined as
follows.

cinema = ster

(John, 0.5)

genre = drama
time > 21:00

(John, 0.7)

cinema = ster
genre = drama
time > 21:00

(John, 0.9)
(Anna, 0.6)

Figure 7: Preferential subscription graph example.

Definition 7 (Cover between Subscriptions). Gi-
ven two subscriptions si and sj, si covers sj , if and only if,
for each notification n such that sj covers n, it holds that si

covers n.

For example, the subscription {genre = fantasy} covers
the subscription {genre = fantasy, director = P. Jackson}.

In a preferential subscription graph, nodes correspond to
subscriptions and edges to cover relations between subscrip-
tions. Assume the set P of all preferential subscriptions, i.e.
the preferential subscriptions defined by all users. For each
subscription si ∈ SP , where SP is the set of all subscrip-
tions in P , we maintain a set of pairs, called score set, of the
form (j, score

j
i), where j is a user and score

j
i is the numeric

score that j has assigned to si. A subscription si is associ-
ated with the pair (j, score

j
i), if and only if, a preferential

subscription ps
j
i = (si, score

j
i) exists in P . Next, we define

formally the score set of a subscription.

Definition 8 (Score Set). Assume a set of users U ,
a set of preferential subscriptions P , and SP the set of all
subscriptions in P . For each si ∈ SP , the score set is the
set Wi = {(j, score

j
i) | (si, score

j
i) ∈ P }.

Having defined the score set of a specific subscription, we
now define the preferential subscription graph.

Definition 9. (Preferential Subscription Graph).
Let P be a set of preferential subscriptions and SP the set
of all subscriptions in P . A Preferential Subscription Graph
PSGP (VP , EP) is a directed acyclic graph, where for each
different si ∈ SP , there exists a node vi, vi ∈ VP , of the form
(si, Wi), where Wi is the score set of si . Given two nodes
vi, vj , there exists an edge from vi to vj , (vi, vj) ∈ EP , if
and only if, si covers sj and there is no node v′

j such that
si covers s′j and s′j covers sj.

For example, assume two users, John and Anna, who ex-
press the following preferential subscriptions: John gives to
subscription s1 = {cinema = ster, genre = drama, time >

21:00} score 0.9, to s2 = {genre = drama, time > 21:00}
score 0.7 and to s3 = {cinema = ster} score 0.5. Similarly,
Anna assigns to s1 score 0.6. For the above preferential
subscriptions, the graph of Figure 7 is constructed.

The preferential subscription graph resembles the filters
poset data structure proposed in [6]. Whereas the filters
poset represents a partially ordered set of subscriptions, the
preferential subscription graph is based on subscriptions en-
hanced with interest scores.

3.2 Forwarding Notifications
To show how the top-k results for each user are computed,

we first assume a single server maintaining a preferential

subscription graph PSG. In the next section, we general-
ize our approach for more servers. This single server acts
as an access point for all subscribers and publishers. Al-
though publish/subscribe systems are typically stateless, in
the sense that they do not maintain any information about
previous notifications, here, we need to maintain some infor-
mation about previously sent top-ranked notifications. The
server maintains a list of k elements for each of the sub-
scribers (users) that are connected to it. These lists contain
elements of the form (score, expiration) where score is a nu-
meric value and expiration is a time field. The score part
of such a pair represents the score of a notification that has
already been delivered to the corresponding user and ex-
pires at time expiration. Only the scores corresponding to
the top-k most preferable valid notifications that have been
already sent to the users appear in these lists.

All lists are initially empty. Whenever the server receives
a notification n, it walks through its PSG to find all sub-
scriptions that cover n. For each subscriber j associated
with at least one of these subscriptions, a score sc(n, j)
is computed: assuming that m subscriptions s1, s2, . . . , sm

submitted by j cover n, then sc(n, j) = max {scorej
1
, score

j
2
,

. . . , scorej
m}. After that, the corresponding list, denoted

listj , is checked and all elements which have expired are re-
moved. If listj contains less than k elements, n is forwarded
to j and the pair (sc(n, j), n.exp) is added to the list, where
n.exp is the expiration time of n. Otherwise, n is forwarded
to j only if sc(n, j) is greater or equal to the score of the el-
ement with the minimum score in the list. In this case, this
element is replaced by (sc(n, j), n.exp). Note that, a more
recent notification equally important to an older one is for-
warded to the user to favor fresh data over equally-ranked
old ones. The process described above is summarized in the
Forward Notification Algorithm shown in Algorithm 1.

Next, we prove the completeness and correctness of Algo-
rithm 1. First, we will show that if a notification n belongs
to the top-k results of user j, then it will be forwarded to j.
Assume for the purpose of contradiction, that such a notifi-
cation is not forwarded to j. Let sc(n, j) be the score of n

for j. Since n is not forwarded to j, there exist k valid noti-
fications n1, . . . , nk with scores sc(n1, j), . . . , sc(nk, j) such
that sc(ni, j) > sc(n, j), 1 ≤ i ≤ k. This means that n

does not belong to the top-k results of user j, which vio-
lates our assumption. Next, we proceed with showing that
if a notification n is forwarded to j, then it belongs to the
user’s top-k results. For the purpose of contradiction, as-
sume that n does not belong to the user’s top-k results. This
means that there exist k valid notifications n1, . . . , nk with
scores sc(n1, j), . . . , sc(nk, j) such that sc(ni, j) > sc(n, j),
1 ≤ i ≤ k. Therefore, according to Algorithm 1 (line 21), n

will not be forwarded to j, which is a contradiction.
Note that it is not necessary to walk through all nodes

of the preferential subscription graph to locate the subscrip-
tions that cover a specific notification. We may safely ignore
a node v with subscription s for which there is no other node
v′ with subscription s′, such that s′ covers s and at the same
time s′ covers n. This way, entire paths of the graph can be
pruned and not used in the matching process.

3.3 Hierarchical Topology of Servers
An event-notification service can be implemented over

various architectures. At one extreme, a centralized ap-
proach can be followed, e.g. [10]. In this case, a single server

Algorithm 1 Forward Notification Algorithm

Input: A notification n and a preferential subscription graph
PSG.

Output: The set of subscribers ResSet n will be forwarded to.

1: Begin
2: ResSet = Ø;
3: tmpW = Ø; /* temporary score set */
4: for all nodes vi in PSG do

5: if si covers n then
6: tmpW = tmpW ∪ Wi;
7: end if

8: end for
9: for all subscribers j that appear in tmpW do

10: sc(n, j) = max{score
j
1
, . . . , score

j

mj}, where (j, score
j
i)

∈ tmpW , 1 ≤ i ≤ mj ;
11: for all elements i in listj do
12: if i has expired then

13: remove i from listj ;
14: end if

15: end for
16: if listj contains less than k elements then

17: add (sc(n, j), n.exp) to listj ;
18: ResSet = ResSet ∪ j;
19: else
20: find the element i of listj with the minimum score;
21: if sc(n, j) > i.score then

22: remove i from listj ;
23: add (sc(n, j), n.exp) to listj ;
24: ResSet = ResSet ∪ j;
25: end if

26: end if
27: end for

28: return ResSet;
29: End

gathers all subscriptions and notifications and carries out
the matching process. However, due to the nature of such
systems, where participants are physically distributed across
the globe, a distributed architecture is more scalable. When
more than one server exists in the network, each server runs
Algorithm 1 for its own preferential subscription graph. No-
tifications are propagated among servers based on the server
topology. The servers of the system are responsible for col-
lecting all the published notifications and carrying out the
selection process, i.e. delivering each notification only to the
subscribers that have declared their interest to it.

We consider a hierarchical topology, where the servers
that implement the event-notification service are connected
to each other to form a hierarchy. Each publisher and sub-
scriber is connected to one of the servers in the hierarchy.

Furthermore, we wish to organize the participants of the
network in an efficient way, i.e. in a way that will reduce
the number of messages exchanged between the servers and
the complexity of the maintained data structures. One way
to achieve this is by placing subscribers with similar sub-
scriptions nearby in the hierarchy, so that the notifications
covered by those subscriptions need to be propagated only
toward this part of the hierarchy.

While in most publish/subscribe systems, new subscribers
randomly select a server to connect to, in our approach,
when a new subscriber enters the network it probes a num-
ber of servers and chooses one of them according to a number
of criteria:

• (Criterion 1) The number of new nodes added to the
highest level of the server’s preferential subscription
graph. The smaller the number of such nodes, the

genre = comedy

(X , 0.5)1

Server A

genre = drama

(X , 0.6)2

Server B

(a)

genre = comedy

(X , 0.5)1

genre = comedy
length > 120

(X ,3 0.7)

Server A

genre = drama

(X , 0.6)2

Server B

(b)

genre = comedy

(X , 0.5)1

Server A

genre = drama

(X , 0.6)2

genre = comedy
length > 120

(X ,3 0.7)

Server B

(c)

Figure 8: Clustering.

fewer the additional notifications that should be prop-
agated to the server in the future.

• (Criterion 2) The number of nodes in the server’s pref-
erential subscription graph. The fewer the nodes in the
graph, the lower the complexity of searching it.

A new subscriber X chooses a server to subscribe accord-
ing to the above criteria. For instance, X may first use
Criterion 1, and in case of a tie, Criterion 2. For example,
consider the case of Figure 8a where there are two servers,
Server A and Server B, both already storing some user sub-
scriptions from subscribers X1 and X2. Assume that a new
subscriber X3 wishes to insert a new preferential subscrip-
tion ({genre = comedy, length > 120}, 0.7) to the system.
If X3 chooses Server A to subscribe, the result will be the
one shown in Figure 8b. If X3 chooses Server B, the result
will be the one shown in Figure 8c. Using the first crite-
rion, X3 will choose to join Server A because in this case no
new nodes will be added to the highest level of the PSG of
Server A and thus, no new message traffic will be generated
(except from the messages sent from Server A to X3).

4. SUBSCRIPTIONS USING A QUALITA-
TIVE MODEL

Preferential subscriptions as defined in Section 2.2 exploit
the notion of quantitative preferences. Here, we discuss how
to express preferential subscriptions using a qualitative pref-
erence model.

Assume that a user X provides a set of subscriptions SX
P .

To define choices between subscriptions, X expresses prior-
ity conditions of the form si ≻ sj , si, sj ∈ SX

P , to denote
that si is preferred to sj for X. Let CX be the set of pri-
ority conditions expressed by user X, i.e. CX = {(si ≻ sj)
| si, sj ∈ SX

P }. To extract the most preferable subscriptions
CX , we use the winnow operator [8]. In particular, the first
application of the winnow operator returns the set winX (1)
of subscriptions si ∈ SX

P such that ∀si ∈ winX (1) there is
no sj ∈ SX

P with sj ≻ si. If we would like to retrieve further
the most preferable subscriptions after the ones included in
winX (1), we apply the winnow a second time. winX (2)
consists of the subscriptions si ∈ (SX

P −winX(1)) such that
∀si ∈ winX (2) there is no subscription sj ∈ (SX

P −winX (1))
with sj ≻ si. The winnow operator may be applied until all

subscriptions are returned. To locate the subscriptions that
belong to a specific winnow result set, we define the multiple
level winnow operator.

Definition 10. (Multiple Level Winnow Operator).
Assume a user X and let SX

P be the set of X’s subscrip-
tions. Let CX be the set of priority conditions of X, the
multiple level winnow operator at level l, l > 1, returns a set
of subscriptions, winX (l), consisting of the subscriptions si

∈ SX
P − ∪l−1

q=1
winX (q) such that ∀ si ∈ winX (l) ∄sj ∈ SX

P

− ∪l−1

q=1
winX(q) with (sj ≻ si) ∈ CX .

To compute the top-k results for each user when priority
conditions between subscriptions are specified, we modify
the process described in Algorithm 1 as follows. Again, each
server maintains a list of k elements for each user that is
connected to it. These lists now contain elements of the
form (pos, expiration) where pos represents a position value
and expiration is a time field. The pos value denotes the
winnow level that a subscription that covers a notification
which has already been delivered to the user belongs to,
and expiration the time instance the notification expires.
Again, only the elements corresponding to the top-k most
preferable valid notifications that have been already sent to
the users appear in these lists. In this work, we assume that
there are no conflicting priority conditions.

Whenever the server receives a notification n, it walks
through its PSG to find all subscriptions that cover n. For
each subscriber j associated with at least one of these sub-
scriptions, a value rank(n, j) is calculated: assuming that
m subscriptions s1, s2, . . . , sm submitted by j cover n, then
rank(n, j) = min {level

j
1
, level

j
2
, . . . , leveljm}, where level

j
i

denotes the winnow level that the subscription si belongs to.
In the following, the corresponding list, listj , is checked and
all expired elements are removed. If listj contains less than
k elements, n is forwarded to j and the pair (rank(n, j),
n.exp) is added to the list, where n.exp is the expiration
time of n. Otherwise, n is forwarded to j only if rank(n, j)
is less or equal to the rank value of the element with the
maximum rank in the list. In this case, this element is re-
placed by (rank(n, j), n.exp).

5. EVALUATION
To evaluate our approach, we have extended the SIENA

event notification service [4], a multi-threaded publish/sub-
scribe implementation, to include preferential subscriptions.
We refer to our implementation as PrefSIENA. Our source
code is available for download at [3].
System Description: To evaluate the performance of our
model, we use a real movie-dataset [2], which consists of
data derived from the Internet Movie Database (IMDB) [1].
The dataset contains information about 58788 movies. For
each movie the following information is available: title, year,
budget, length, rating, MPAA and genre.

string title = LOTR: The Return of the King

integer year = 2003
integer length = 251
integer rating = 9

string mpaa = PG-13
string genre = Action

Figure 9: Generated notification.

Each publisher randomly selects mP numbers from 1 to
58788. For each of the corresponding mP movies, the pub-

lisher creates a new notification consisting of the title, year,
length, rating, MPAA and genre of the movie. An example
of such a notification can be seen in Figure 9. Each sub-
scriber generates mS subscriptions and each subscription
is generated independently from the others. We randomly
select a number of the available attributes to appear in a
subscription. The value of each attribute can be generated
using either a uniform (i.e. all values are equally preferable)
or a zipf distribution (i.e. some values are more popular)
according to the values appearing in the dataset. In both
cases, a subscription is associated with a numeric score uni-
formly distributed in [0, 1]. Subscription examples can be
seen in Figure 10.

string genre = Romance

0.3integer length > 120
string mpaa = PG-13

string genre = Drama

0.6
integer length > 100

integer year < 1980

integer rating > 6

Figure 10: Generated subscriptions.

Experiments: To run our experiments, we assume a net-
work in which each computer node can act as a publisher,
subscriber or server. A combination of these roles is also
possible. The servers are organized in a hierarchical topol-
ogy while clients (i.e. publishers and subscribers) can be
connected to any one of the servers. Each involved client
executes a series of service requests. More specifically, each
publisher generates a number of notifications and injects
them into the network. All notifications expire after time τ

of their publication. Each subscriber generates a number of
subscriptions and chooses a server to connect to and sub-
scribe. After that, each subscriber waits for notifications to
arrive.

In general, the number of delivered notifications depends
on the covering relations between the various subscriptions
and published notifications, the scores associated with these
subscriptions and the order in which notifications are gener-
ated. The notification receipt rate for each individual user
can be fine-tuned by letting the user define appropriate val-
ues for refreshing the subscriptions (so that the expiration
times of the corresponding notifications are set accordingly)
and by selecting k.

First, we measure the number of notifications delivered to
a specific subscriber using PrefSIENA as a function of the
number k of the top results the subscriber is interested in.
We run this experiment with 100 matching events and for
expiration time τ equal to 15t and 20t, where t = 500ms is
the time length between the generation of two notifications.
Note that t refers to real, and not simulated, time. We con-
sider the following two scenarios. In the first one, scenario 1,
most of the notifications with higher scores for the user are
published early, while in the second one, scenario 2, notifica-
tions with higher scores arrive towards the end. We observe
that in the first scenario the user receives fewer notifications
than in the second one (Figure 11). This happens because in
the first scenario, where notifications with higher scores ar-
rive first, many of the notifications with lower scores cannot
enter the top-k results, until some of the first ones expire.
In the second scenario, however, the user receives both the

 50

 55

 60

 65

 70

 75

 80

 85

 90

k=1 k=3 k=5 k=7 k=10

N
um

 o
f d

el
iv

er
ed

 n
ot

ifi
ca

tio
ns

Num of top results

15t (scenario 1)
20t (scenario 1)
15t (scenario 2)
20t (scenario 2)

Figure 11: Number of delivered notifications for various val-
ues of τ and k.

 0

 20

 40

 60

 80

 100

t 2t 10t 20t 40t 60t inf

N
um

 o
f n

ot
ifi

ca
tio

ns
 in

 P
re

fS
IE

N
A

/S
IE

N
A

 (
%

)

Expiration time length

user 1
user 2
user 3

Figure 12: Percentage of delivered notifications for various
expiration times (from t = 500ms to infinity)

notifications with the lower scores that arrive first and the
notifications with higher scores that arrive later. In both
scenarios, the number of delivered notifications decreases
with the increase of the expiration time. This happens be-
cause notifications with higher scores for the user remain
in the top-k results for a longer time period and prevent
notifications with lower scores from reaching the user.

Furthermore, we measure the number of notifications de-
livered to a number of different users in the following cases:
(i) using SIENA, (ii) using PrefSIENA with no expiration
time for notifications and (iii) using PrefSIENA with a num-
ber of different expiration times. The number of published
events is 200 and their expiration time τ takes values from
t to 60t, where t = 500ms. All subscribers submit 5 dif-
ferent subscriptions and are interested in the top-1 result.
We select to show results for three users according to the
percentage of notifications that are covered by their sub-
scriptions. The subscriptions of user 1 cover 51% of the
generated notifications. For user 2 and user 3, the per-
centage values are 27% and 15% respectively. In Figure 12,
we depict the results for these three users. We count the
percentage of delivered notifications in PrefSIENA over the
number of notifications in SIENA. By varying the expira-
tion time, we can achieve different notification receipt rates.
This rate depends on the scores of users subscriptions, and
also, on the specific time that various notifications in the
top-k results expire, as shown by the previous experiment.

We also experimented with using the clustering criteria
described in Section 3.3 during bootstrapping. We observed
a 27% reduction on average of the total messages exchanged
between nodes of the system, even though in this case we
have an overhead of extra messages during bootstraping.

6. RELATED WORK
Although there has been a lot of work on developing a

variety of publish/subscribe systems, there has been only
little work on the integration of ranking issues into pub-
lish/subscribe. Recently, [18] considers the case of continu-
ous queries in distributed systems. In this approach, only a
subset of publishers provide notifications for a specific query.
These publishers are selected according to the similarity of
their past publications to the query. Similarity is computed
via IR techniques. In [17], user preferences are employed to
deliver newly added documents of a digital library to the
users. Next, we discuss work related to publish/subscribe
systems and preferences.
Publish/Subscribe Systems: The publish/subscribe pa-
radigm can be applied to a number of different architectures.
The naive approach is to gather all subscriptions and events
to a specific node. This node will be responsible for man-
aging subscriptions, matching the incoming events against
them and notifying the appropriate subscribers. This is a
centralized approach (e.g. [10]). Often, in publish/subscribe
systems the number of participating nodes becomes very
large. For scalability reasons, a distributed architecture
seems to be more suitable. In this case, the event service is
implemented via a network of interconnected servers who act
as a middle level for the communication of publishers and
subscribers. Various distributed architectures such as hier-
archical [6] and DHT-based [7] ones, have been proposed.

There are two widely used methods for users to express
their subscriptions: the topic-based method and the content-
based one. In the topic-based method (such as [14]) there
are a number of predefined event topics, usually identified by
keywords. Published events are associated with a number of
topics. Users can subscribe to a number of individual topics
and receive all events associated with at least one of these
topics. In the content-based method [6, 7], such as the one
used in this paper, the classification of the published events
is based on their actual content. Users express their sub-
scriptions through constraints which identify valid events.
An event matches a subscription, if and only if, it satisfies
all of the subscription’s constraints. In general, the content-
based method offers greater expressiveness to subscribers
but is harder to implement.
Preferences: The research literature on preferences is ex-
tensive. In general, there are two different approaches for
expressing preferences: a quantitative and a qualitative one.
In the quantitative approach (such as [5, 13, 16]), preferences
are expressed indirectly by using scoring functions that as-
sociate numeric scores with data items. In the qualitative
approach (e.g. [8, 12, 11]), preferences between data items
are specified directly, typically using binary preference rela-
tions.

7. CONCLUSIONS
To control the amount of data delivered to users in pub-

lish/subscribe systems, we extend such systems to incorpo-
rate ranking capabilities. In particular, in this paper, we

address the problem of ranking notifications based on pref-
erential subscriptions, that is, user subscriptions augmented
with interest scores. To maintain the freshness of data de-
livered to users, we associate expiration times with notifi-
cations. We organize preferential subscriptions in a graph
and utilize it to forward notifications to users. We have
fully implemented our approach in SIENA, a popular pub-
lish/subscribe middleware system.

There are many directions for future work. One is consid-
ering alternative approaches for achieving timeliness, such
as computing top-k results over sliding windows of notifi-
cations. Among our future plans is also studying a weight-
ing scheme based on both time and relevance for ranking
notifications. Finally, the focus of this paper has been on
enhancing the expressiveness of publish/subscribe systems.
Besides expressiveness, performance is also central in such
large-scale dynamic systems. In this respect, we plan to con-
sider additional topologies besides the hierarchical one used
in this work.

8. REFERENCES
[1] The Internet Movie Database. http://www.imdb.com.
[2] Movies dataset. http://had.co.nz/data/movies.
[3] PrefSIENA. http://www.cs.uoi.gr/∼mdrosou/PrefSIENA.
[4] SIENA. http://serl.cs.colorado.edu/∼serl/dot/siena.html.
[5] R. Agrawal and E. L. Wimmers. A framework for

expressing and combining preferences. SIGMOD Rec.,
29(2):297–306, 2000.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design
and evaluation of a wide-area event notification service.
ACM Trans. on Computer Syst., 19:332–383, 2001.

[7] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron.
Scribe: A large-scale and decentralized application-level
multicast infrastructure. IEEE JSAC, 20(8):1489–1499,
2002.

[8] J. Chomicki. Preference formulas in relational queries.
ACM Trans. Database Syst., 28(4):427–466, 2003.

[9] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe. ACM
Comput. Surv., 35(2):114–131, 2003.

[10] F. Fabret, A. H. Jacobsen, F. Llirbat, J. a. Pereira, K. A.
Ross, and D. Shasha. Filtering algorithms and
implementation for very fast publish/subscribe systems.
SIGMOD Rec., 30(2):115–126, 2001.

[11] P. Georgiadis, I. Kapantaidakis, V. Christophides, E. M.
Nguer, and N. Spyratos. Efficient rewriting algorithms for
preference queries. In ICDE, pages 1101–1110, 2008.

[12] W. Kießling. Foundations of preferences in database
systems. In VLDB, pages 311–322, 2002.

[13] G. Koutrika and Y. Ioannidis. Personalized queries under a
generalized preference model. In ICDE, pages 841–852,
2005.

[14] T. Milo, T. Zur, and E. Verbin. Boosting topic-based
publish-subscribe systems with dynamic clustering. In
SIGMOD, pages 749–760, 2007.

[15] K. Stefanidis and E. Pitoura. Fast contextual preference
scoring of database tuples. In EDBT, pages 344–355, 2008.

[16] K. Stefanidis, E. Pitoura, and P. Vassiliadis. Adding
context to preferences. In ICDE, pages 846–855, 2007.

[17] Q. Wang, W.-T. Balke, W. Kießling, and A. Huhn. P-news:
Deeply personalized news dissemination for mpeg-7 based
digital libraries. In ECDL, pages 256–268, 2004.

[18] C. Zimmer, C. Tryfonopoulos, K. Berberich, G. Weikum,
and M. Koubarakis. Node Behavior Prediction for
Large-Scale Approximate Information Filtering. In
LSDS-IR, 2007.

