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Abstract. Recommendation systems have received significant atten-
tion, with most of the proposed methods focusing on recommendations
for single users. Recently, there are also approaches aiming at either
group or context-aware recommendations. In this paper, we address the
problem of contextual recommendations for groups. We exploit a hier-
archical context model to extend a typical recommendation model to a
general context-aware one that tackles the information needs of a group.
We base the computation of contextual group recommendations on a
subset of preferences of the users that present the most similar behavior
to the group, that is, the users with the most similar preferences to the
preferences of the group members, for a specific context. This subset of
preferences includes the ones with context equal to or more general than
the given context.

1 Introduction

Recommendation systems provide users with suggestions about products, movies,
videos, pictures and many other items. Many systems, such as Amazon, Net-
Flix and MovieLens, have become very popular. Typically, recommendation ap-
proaches are distinguished between: content-based, that recommend items sim-
ilar to those the user previously preferred (e.g., [20, 15]), collaborative filtering,
that recommend items that users with similar preferences liked (e.g., [13, 8]) and
hybrid, that combine content-based and collaborative ones (e.g., [3, 5]).

The two types of entities that are dealt with in recommendation systems, i.e.,
users and items, are represented as sets of ratings, preferences or features. As-
sume, for example, a restaurant recommendation application (e.g., ZAGAT.com).
Users initially rate a subset of restaurants that they have already visited. Ratings
are expressed in the form of preference scores. Then, a recommendation engine
estimates preference scores for the items, e.g., restaurants, that are not rated by
a user and offers appropriate recommendations. Once the unknown scores are
computed, the k items with the highest scores are recommended to the user.
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Since recommendations are typically personalized, different users are pre-
sented with different suggestions. However, there are cases in which a group of
people participates in a single activity. For instance, visiting a restaurant or a
tourist attraction, watching a movie or a TV program and selecting a holiday
destination are examples of recommendations well suited for groups of people.
For this reason, recently, there are approaches addressing the problem of iden-
tifying recommendations for groups, trying to satisfy the preferences of all the
group members (e.g., [18, 2, 4, 16]).

Moreover, often users have different preferences under different circumstances.
For instance, the current weather conditions may influence the place one wants
to visit. For example, when it rains, a museum may be preferred over an open-air
archaeological site. Context is a general term used in several domains, such as in
machine learning and knowledge acquisition [9, 6]. Our focus here is on how con-
text can be used in conjunction with recommendation systems. In this respect,
we consider as context any information that can be used to characterize the
situations of an entity, where an entity is a person, place, or object that is rel-
evant to the interaction between a user and an application [11]. Common types
of context include the computing context (e.g., network connectivity, nearby
resources), the user context (e.g., profile, location), the physical context (e.g.,
noise levels, temperature) and time [10, 7]. Several approaches, such as [1] and
[19], extend the typical recommendation systems beyond the two dimensions of
users and items to include further contextual information.

In this paper, we address the problem of contextual recommendations for
groups. In general, different approaches have been proposed in the research liter-
ature focusing on either group or context-aware recommendations. However, as
far as we know, this is the first work presenting a complete model for contextual
recommendations for groups. The context model of our previous work [23] serves
as a building brick for extending a typical recommendation model to a general
context-aware one that tackles the information needs of a group.

The computation of contextual group recommendations proceeds in the fol-
lowing main phases. First, given a group of users along with a context state,
or situation, we locate the users that exhibit the most similar behavior or, in
other words, have expressed the most similar preferences, to the group for the
given context. We call such users peers of the group. Next, we employ the peers
preferences defined for the given context to identify the items to be suggested
to the group. Since many times there are no or not enough preferences for a
specific context, we consider also issues underlying context relaxation and so,
employ preferences with context more general than the given one.

The rest of the paper is organized as follows. Sect. 2 presents our context
model, as well as our model for contextual single user and group recommenda-
tions. Sect. 3 focuses on the three main phases for computing contextual group
recommendations, namely, (i) peers selection, (ii) preferences selection and (iii)
recommendations computation. Finally, Sect. 4 draws conclusions and future
work.



2 A Contextual Group Recommendation Model

Assume a set of items I and a set of users U interacting with a recommendation
application. Each user u ∈ U may express, for a context state cs, a contextual
preference for an item i ∈ I, which is denoted by cpref(u, i, cs) and lies in the
range [0.0, 1.0]. As a running example, we shall use a movie recommendation
application.

In the following, we first present our context model and then focus on the
specification of a contextual recommendation model for single users and groups.

2.1 Context Model

A variety of models for context have been proposed (see, for example, [21] for
a survey). We follow the data-centric approach of [23]. Context is modeled as
a set of n context parameters C1, . . . , Cn, where each Ci, 1 ≤ i ≤ n, captures
information that is not part of the database, such as the user location, the
current weather or time. For our movie example, let us assume that context
consists of Weather and Time period. Each context parameter takes values from
a hierarchical domain, so that different levels of abstraction for the captured
context data are introduced.

In particular, each context parameter has multiple levels organized in a hier-
archy schema. Let C be a context parameter with m > 1 levels, Li, 1 ≤ i ≤ m.
We denote its hierarchy schema as L = (L1, ..., Lm). L1 is called the lowest or
most detailed level of the hierarchy schema and Lm the top or most general one.
We define a total order among the levels of L such that L1 ≺ . . . ≺ Lm and use
the notation Li � Lj between two levels to mean Li ≺ Lj or Li = Lj . Fig. 1
depicts the hierarchy schemas of the context parameters of our running example.
For instance, the hierarchy schema of context parameter Time period has three
levels: occasion (L1), interval (L2) and the top level ALL (L3). Each level Lj ,
1 ≤ j ≤ m, is associated with a domain of values, denoted domLj

(C). For all
parameters, their top level has a single value All, i.e., domLm

(C) = {All}. A
concept hierarchy is an instance of a hierarchy schema, where the concept hier-
archy of a context parameter C with m levels is represented by a tree with m
levels with nodes at each level j, 1 ≤ j ≤ m, representing values in domLj

(C).
The root node (i.e., level m) represents the value All. Fig. 1 depicts the concept
hierarchies of the context parameters of our running example. For instance, for
the context parameter Time period, holidays is a value of level interval. The
relationship between the values at the different levels of a concept hierarchy is
achieved through the use of a family of ancestor and descendant functions [24].
Finally, we define the domain, dom(C), of C as: dom(C) = ∪mj=1domLj

(C).

A context state cs is defined as an n-tuple (c1, . . . , cn), where ci ∈ dom(Ci),
1 ≤ i ≤ n. For instance, (warm, holidays) and (cold, weekend) are context
states for our movie example. The set of all possible context states, called world
CW , is the Cartesian product of the domains of the context parameters: CW =
dom(C1)× . . .× dom(Cn).
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Fig. 1. Hierarchy schema and concept hierarchy of Weather and Time period.

2.2 Contextual Recommendations for Single Users

In general, there are different ways to estimate the relevance of an item for a
user under a specific context state by employing a set of available user contextual
preferences of the form cpref(u, i, cs). The meaning of such a preference is that
in the context state specified by cs, the movie, in our case, i was rated by user
u with a score. For example, according to cpef(Tim, The Hangover, (warm,
weekend)) = 0.8, Tim gave a high rate to the comedy movie The Hangover at
a warm weekend, while cpef(Alice, Toy Story, (cold, Christmas)) = 0.9 defines
that Alice likes the animation movie Toy Story during cold Christmas.

Our work falls into the collaborative filtering category. The key concept of
collaborative filtering is to use preferences of other users that exhibit the most
similar behavior to a given user, for a specific context, in order to predict rele-
vance scores for unrated items. Similar users are located via a similarity function
simUcs(u, u

′), that evaluates the proximity between u and u′ for cs.

We use Pu,cs to denote the set of the most similar users to u for a context
state cs. Or, in other words, the users with preferences similar to the preferences
of u for cs. We refer to such users as the peers of u for cs. Several methods can
be employed for selecting Pu,cs. A direct method is to locate those users u′ with
similarity simUcs(u, u

′) greater than a threshold value. This is the method used
in this work. Formally, peers are defined as follows:

Definition 1 (Peers of a Single User). Let U be a set of users. The peers
Pu,cs, Pu,cs ⊆ U , of a user u ∈ U , for a context state cs, is a set of users, such
that, ∀u′ ∈ Pu,cs, simUcs(u, u

′) ≥ δ and ∀u′′ ∈ U\Pu,cs, simUcs(u, u
′′) < δ,

where δ is a threshold similarity value.

Clearly, one could argue for other ways of selecting Pu,cs, for instance, by
taking the k most similar users to u. Our main motivation is that we opt for
selecting only highly connected users even if the resulting set of users Pu,cs is
small.

Next, we define the contextual relevance of an item recommendation for a
user.



Definition 2 (Single User Contextual Relevance). Given a user u ∈ U
and his peers Pu,cs for a context state cs, the single user contextual relevance of
an item i ∈ I for u under cs, such that, @cpref(u, i, cs), is:

crel(u, i, cs) =

∑
u′∈(Pu,cs∩Xi,cs)

simUcs(u, u
′)cpref(u′, i, cs)∑

u′∈(Pu,cs∩Xi,cs)
simUcs(u, u′)

where Xi,cs is the set of users in U that have expressed a preference for item i
for context state cs.

2.3 Contextual Recommendations for Groups

The large majority of recommendation systems are designed to make personal
recommendations, i.e., recommendations for single users. However, there are
cases in which the items to be selected are not intended for personal usage but
for a group of users. For example, assume a group of friends or a family that is
planning to watch a movie together. Existing methods to construct a ranked list
of recommendations for a group of users can be classified into two approaches
[12]. The first approach aggregates the recommendations of each user into a
single recommendation list (e.g., [2, 4, 17]), while the second one creates a joint
profile for all users in the group and provides the group with recommendations
computed with respect to this joint profile (e.g., [14, 25]).

In our work, we adopt the second approach to offer context-aware recommen-
dations to groups. The first step towards this direction is to locate the similar
users to the group, whose preferences will be used for making suggestions.

For a context state cs, we define the similarity between a user u and a group
of users G as follows:

simGcs(u,G) = Aggru′∈G(simUcs(u, u
′))

We employ two different designs regarding the aggregation method Aggr, each
one carrying different semantics: (i) the least misery design, where the similarity
between the user u and the group G is equal to the minimum similarity between
u and any other user in G, and (ii) the fair design, where the similarity between
u and G is equal to the average similarity between u and all users in G. The least
misery design captures cases where strong user preferences act as a veto, e.g.,
do not recommend thriller movies to a group when a group member extremely
dislike them, while the fair design captures more democratic cases where the
majority of the group is satisfied.

Then, the peers of a group for a context state cs are defined as:

Definition 3 (Peers of a Group). Let U be a set of users. The peers PG,cs,
PG,cs ⊆ U , of a group G, for a context state cs, is a set of users, such that,
∀u ∈ PG,cs, simGcs(u,G) ≥ δ′ and ∀u′ ∈ U\PG,cs, simGcs(u

′,G) < δ′, where δ′

is a threshold similarity value.

Based on the notion of peers for a group, we define next the contextual
relevance of an item for a group for a specific context state.



Definition 4 (Group Contextual Relevance). Given a group G and its peers
PG,cs for a context state cs, the group contextual relevance of an item i ∈ I for
G under cs, such that, ∀u ∈ G, @cpref(u, i, cs), is:

crel(G, i, cs) =

∑
u∈(PG,cs∩Xi,cs)

simGcs(u,G)cpref(u, i, cs)∑
u∈(PG,cs∩Xi,cs)

simGcs(u,G)

where Xi,cs is the set of users in U that have expressed a preference for item i
for context state cs.

3 Computing Contextual Group Recommendations

A high level representation of the main components of the architecture of our
system is depicted in Fig. 2. First, a group poses a query presenting its infor-
mation needs. Each query is enhanced with a contextual specification, that is,
a context state denoted as csQ. The context of the query may be postulated
by the application or be explicitly provided by the group as part of the query.
Typically, in the first case, the context associated with a query corresponds to
the current context, that is, the context surrounding the group at the time of the
submission of the query. Such information may be captured using appropriate
devices and mechanisms, such as temperature sensors or GPS-enabled devices
for location. Besides this implicit context, a group may explicitly specify a con-
text state. For example, assume a group that expresses an exploratory query
asking for interesting movies to watch over the coming cold weekend.

Given a specific query, computing contextual group recommendations in-
volves three phases: peers selection, preferences selection and recommendations
computation. In following, we describe each of these phases in detail.

Peers Selection. For locating the peers of a group G for a context state cs, we
need to calculate the similarity measures simGcs(u,G), ∀u ∈ U\G. Those users
u with similarity simGcs(u,G) greater than δ′ represent the peers of G for cs,
PG,cs.

The notion of user similarity is important, since it determines the produced
peers set. We use here a simple variation; that is, we use distance instead of
similarity. More specifically, we define the distance between two users as the
Euclidean distance over the items rated by both under the same context state.
Let u, u′ ∈ U be two users, Iu be the set of items for which ∃cpref(u, i, cs),
∀i ∈ Iu, and Iu′ be the set of items for which ∃cpref(u′, i, cs), ∀i ∈ Iu′ . We
denote by Iu∩Iu′ the set of items for which both users have expressed preferences
for cs. Then, the distance between u, u′ is defined as:

distUcs(u, u
′) =

√∑
i∈Iu∩Iu′ (cpref(u, i, cs)− cpref(u′, i, cs))2

|Iu ∩ Iu′ |

The similarity between two users, simUcs(u, u
′), is equal to 1− distUcs(u, u

′),
based on which the similarity between a user and a group is computed.
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Fig. 2. System architecture.

Preferences Selection. Given a group G, preferences selection determines which
preferences from the peers of G will be employed for making recommendations.
For example, assume that a group wants to find a movie to watch on a Sunday.
Then, the peers preferences for weekdays are outside the query context.

Clearly, in terms of context, a preference cpref(u, i, cs) can be used if cs is
equal to the query context csQ. However, when there are no such peers pref-
erences, or when their number is small, we may need to select, in addition,
preferences whose context state is not necessarily the same with csQ, but close
enough to it. To determine how close the preference and query contexts are, we
rely on an appropriate distance measure. Since our context parameters take val-
ues from hierarchical domains, we exploit this fact and relate contexts expressed
at different levels of detail. For instance, we can relate a context in which the
parameter Time period is instantiated to a specific occasion (e.g., Christmas)
with a context in which the same parameter describes a more general period
(e.g., holidays). Intuitively, a preference defined for a more general value, e.g.,
holidays, may be considered applicable to a query about a more specific one,
e.g., Christmas. In general, we relate the context of a preference to the context
of a query, if the first one is more general than the second, that is, if the context
values specified in cs are equal to or more general than the ones specified in csQ.
In this case, we say that the preference context covers the query context [23].

Given a preference state cs = (c1, . . . , cn) and a query state csQ = (cQ1 , . . . , c
Q
n ),

where cs covers csQ, we quantify their relevance based on how far away are their
values in the corresponding hierarchies.

distH(cs, csQ) =

n∑
i=1

dH(level(ci), level(c
Q
i )),

where level(ci) (resp. level(cQi )) is the hierarchy level of value ci (resp. cQi ) of
parameter Ci and dH is equal to the number of edges that connect level(ci) and

level(cQi ) in the hierarchy of Ci, 1 ≤ i ≤ n.



[22] studies different ways of relaxing context. In particular, a context pa-
rameter can be relaxed upwards by replacing its value by a more general one,
downwards by replacing its value by a set of more specific ones or sideways by
replacing its value by sibling values in the hierarchy.

The output of this phase is a set of m preferences with contexts closest to
the query context, sorted on the basis of their distance to csQ, from the set of
preferences of the users in PG,cs.

Recommandations Computation. For estimating the value of an item i for a
group G under a context state cs, we compute its group contextual relevance
crel(G, i, cs) (Def. 4), taking into account the output of the previous phase. We
do not compute scores for all items in I, but only for the items I ′, I ′ ⊆ I, that
satisfy the selection conditions of the posed query. As a post-processing step, we
rank the items in I ′ on the basis of their score and report the k items with the
highest scores.

4 Conclusions

The focus of this paper is on contextual recommendations for groups. Context
is modeled using a set of context parameters that take values from hierarchi-
cal domains. A context state corresponds to an assignment of values to each
of the context parameters from its corresponding domain. User preferences are
augmented with context states that specify the situations under which prefer-
ences hold. Given a group of users associated with a context state, we consider
the problem of providing the group with context-aware recommendations. To
do this, we follow a collaborative filtering approach that uses the preferences
of the similar users to the group members defined for the context surrounding
the group at the time of recommendations computation or any other explicitly
defined context.

In our current work, we are developing a Java prototype to add a capability
for producing contextual group recommendations to our group recommenda-
tions system [17]. There are many directions for future work. One is to extend
our model so as to support additional ways for locating the peers of a group
of users. Another direction for future work is to consider recency issues when
computing contextual recommendations. For example, since usually the most
recent user preferences reflect better the current trends, it is promising to exam-
ine if they should contribute more in the computation of the contextual group
recommendations.
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