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Abstract. A context-aware system is a system that uses context to pro-
vide relevant information or services to its users. While there has been
a variety of context middleware infrastructures and context-aware appli-
cations, little work has been done in integrating context into database
management systems. In this paper, we consider a preference system that
facilitates context-aware OLAP queries, that is OLAP queries whose re-
sult depends on the context at the time of their submission. We propose
using data cubes to store the dependencies between context and database
relations and OLAP techniques for the manipulation of context-aware
queries.

1 Introduction

Context is any information than can be used to characterize the situation of
an entity. An entity is a person, place or object that is considered relevant
to the interaction between a user and an application, including the user and
the application themselves [1]. There are various types of context such as time,
location, and computing devices. A system is context-aware, if it uses context
to provide relevant information and/or services to the user, where relevancy
depends on the user’s task. Although there has been a lot of work on developing
a variety of context infrastructures and context-aware applications, there has
been only little work integrating context information into databases.

In this paper, we investigate the use of context in relational database manage-
ment systems. We consider context-aware queries that are queries whose results
depend on the context at the time of their submission. In particular, users express
their preferences on specific attributes of a relation. Such preferences depend on
context, that is, they may have different values depending on context. To this
end, we make the following contributions:

— We provide a logical model for the representation of user preferences and
context-related information. The impact of context information on the eval-
uation of user preferences is explicitly traced.

— We discuss the implementation of our model in a relational DBMS.

— We investigate the usage of On-Line Analytical Processing (OLAP) tech-
niques for the manipulation of context-aware query operations.

The rest of this paper is organized as follows. Section 2 describes a motivating
example, which is used in the rest of the paper to explain our approach. Section



3 introduces our preference model, while Section 4 focuses on how preferences
are stored. Section 5 discusses query processing in our framework. Related work
is presented in Section 6. Section 7 concludes the paper with a summary of our
contributions.

2 DMotivating Example

Consider a database schema with information about restaurants and users (Fig.
1). In this application, we consider two context parameters as relevant: location
and weather. Users have preferences about restaurants that they express by
providing a numeric score between 0 and 1. The degree of interest that a user
expresses for a restaurant depends on the values of the context parameters. For
instance, a user may want to eat different kinds of food when the weather is rainy,
cloudy or sunshine. For example, user Mary may give to restaurant Kohylia
that serves “Russian” food a higher score when the weather is rainy than when
the weather is sunshine. Furthermore, the current user’s location affects the
result of a query, for example, a user may prefer restaurants that are nearby
his current location. Thus, a user’s preference on a specific restaurant depends
on the context parameters. A user can specify preferences without giving values
for all context parameters, i.e. preference(187, 334, *, sunshine) = 0.8 means
that the restaurant Kohylia with id = 187, for the user Mary with id = 334
has interest score 0.8, when the weather is sunshine, independently of the user’s
location. In general, when a context parameter has the special value *, any value
is acceptable.

Restaurant(rid, name, phone, region, cuisine)
User(uid, name, phone, address, e-mail)

Fig. 1. The database schema of our running example.

3 A Logical Model for Context and User Preferences

Our model is based on relating context and database relations through prefer-
ences. First, we present the fundamental concepts related to context modeling.
Then, we proceed in defining user preferences.

3.1 Modeling Context

The modeling of context relies on several fundamental concepts. As usual, do-
mains represent the available types and collections of values of the system. Con-
text parameters refer to the available set of attributes that the database designer
will chose to represent context. At any point in time, a context state refers to
an instantiation of the context parameters at this point. Context parameters are
extended with OLAP-like hierarchies, in order to enable a richer set of query
operations to be applied over them.



Domains. A domain is an infinitely countable set of values. All domains are
enriched with a special value * for representing NULL, the semantics of which
refers to our lack of knowledge.

Attributes and Relations. As usual, we assume a countable collection of attribute
names. Each attribute A; is characterized by a name and a domain dom(A4,).
A relation schema is a finite set of attributes and a relation instance is a finite
subset of the Cartesian product of the domains of the relation schema.

Context Parameters. Context is modeled through a finite set of special-purpose
attributes, called context parameters (¢;). For a given application X, we can de-
fine its context environment Cx as a set of n context parameters {c1, ca, ..., cn}.

Context State. In general, a context state is an assignment of values to context
parameters. The context state at time instant ¢ is a tuple with the values of the
context parameters at time instant ¢, CSx(t) = {c1(t), c2(t),...cn(t)}, where
¢i(t) is the value of the context parameter ¢; at timepoint ¢. For instance, as-
suming location and weather as context parameters, a context state can be:
CS(current) = { Acropolis, sunshine}.

Hierarchies for Attributes. It is possible for an attribute to participate in an
associated hierarchy of levels of aggregated data i.e., it can be viewed from
different levels of detail. Formally, an attribute hierarchy is a lattice of attributes
— called levels for the purpose of the hierarchy — L = (Lq,...,L,, ALL). We
require that the upper bound of the lattice is always the level all, so that we can
group all the values into the single value 'all’. The lower bound of the lattice
is called the detailed level of the parameter. For instance, let us consider the
hierarchy location of Fig. 2. Levels of location are Region, City, Country, and
all. Region is the most detailed level. Level all is the most coarse level for
all the levels of a hierarchy. Aggregating to the level all of a hierarchy ignores
the respective parameter in the grouping (i.e., practically groups the data with
respect to all the other parameters, except for this particular one).

All All
Country Greece
City Athens Salonica
T i Acropolis| Kefalari Polichni
Region

Fig. 2. Hierarchies on location.

The relationship between the values of the context levels is achieved through

the use of the set of ancff functions. A function ancff assigns a value of the do-

main of Ly to a value of the domain of L. For instance, ancgi’;yion(Acropolis) =
Athens. A formal definition of these hierarchies can be found in [2].



Dynamic and Static Context Parameters. We discriminate between two kinds
of context parameters: (a) static and (b) dynamic context parameters. Static
context parameters take as value a simple value out of their domain. Dynamic
context parameters on the other hand, are instantiated by the application of a
function, the result of which is an instance of the domain of the context pa-
rameter. In our example, we assume that weather is a static parameter, i.e.,
each new value for weather derives from an explicit update. On the other hand,
location’s values depends on time. The location is a function of time and in that
way, we can compute the value of this parameter at the point we want to use it,
without the need for continuous updates.

3.2 Contextual Preferences

In this section, we define how a context state affects the results of a query.
In our model, each user expresses his/her preference by providing a numeric
score between 0 and 1 [3]. This score expresses a degree of interest, which is a
real number. Value 1 indicates extreme interest. In reverse, value 0 indicates no
interest for a preference. The special value @ for a preference, means that there
is a user’s veto for the preference. Furthermore, the value * represents that any
value is acceptable.

More specifically, we divide preferences into basic (concerning a single context
parameter) and aggregate (concerning a combination of context parameters):

— Basic preferences. Each basic preference is described by (a) a context para-
meter ¢;, (b) a set of non-context parameters A;, and (c) a degree of interest,
i.e., a real number between 0 and 1. So, for the context parameter c;, we have:
preferencepasic; (Ciy Ax+1, ..., An) = interest_score;

— Aggregate preferences. Each aggregate preference is derived from a combi-
nation of basic preferences. The aggregate preference is expressed by a set
of context parameters ¢; and a set of non-context parameters A;, and has a
degree of interest (preference(cy,...ck, Agt1, ..., An) = interest_score).
The interest score of the aggregate preference is a value function of the in-
dividuals scores (the degrees of the basic preferences). The value function
prescribes how to combine basic preferences to produce the aggregate score,
according to the user’s profile. Users define in their profile how the basic
scores contribute to the aggregate, giving a weight to each context parame-
ter. So, if the weight for a context parameter is w; the interest score will be:

interest_score = wy * interest_score; + ...+ wg * interest_scorey.

In our motivating example, there are two context parameters, location and
weather. Also, the set of non-context parameters are attributes about restaurants
and users (in this case the user is Mary), that are stored in the database. From
Mary's profile we know that when she is at Acropolis she gives at the restau-
rant BeauBrummel the score 0.8, and when the weather is cloudy the same
restaurant has score 0.9. In order to explain Mary’s high scores to the above
preferences, we refer that the restaurant BeauBrummel is located in Athens,



near Acropolis, and Mary likes to eat french cuisine when the weather is cloudy
(BeauBrummel has french cuisine). So, the basic preferences are:
preferencepasic, (Acropolis, BeauBrummel, Mary) = 0.8 and
preferencepasic, (cloudy, BeauBrummel, Mary) = 0.9
In this way, if the weight of location is 0.6 and the weight of weather is
0.4, the preference has score: 0.6 * 0.8 + 0.4 % 0.9 = 0.84 (from the above value
function). Thus, we have:
preference(Acropolis, cloudy, BeauBrummel, Mary) = 0.84.

4 The Storage Model

There is a straightforward way to store our context and preference information
in the database. We organize preferences as data cubes, following the OLAP
paradigm [2]. We discuss the implementation of our context model in relational
DBMS structures. First, we discuss the storage of preferences and then the stor-
age of attribute hierarchies.

A

/ Location // Weathe
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User User

Restaurantg Restauranjs
Fig. 3. Data cubes for each context parameter.

Storing Basic Preferences. In our model, we store basic user preferences in
hypercubes, or simply, cubes. The number of data cubes is equal with the num-
ber of context parameters, i.e., we have one cube for each parameter, as shown in
Fig. 3. In each cube, there is a dimension for restaurants, a dimension for users
and a dimension for the context parameter. In each cell of the cube, we store
the degree of interest for a specific preference. So, we can have the knowledge of
score for a user, a restaurant and a context parameter. Formally, a cube is de-
fined as a finite set of attributes C' = (A¢, A1, ..., An, M), where A¢ is a context
parameter, A, ..., A, are non-context attributes and M is the interest score.
The values of a cube are the values of the corresponding preference rules. A re-
lational table implements such a cube in a straightforward fashion. The primary
key of the table is A¢, Ay, ..., A,. If dimension tables representing hierarchies
exist (see next), we employ foreign keys for the attributes corresponding to these
dimensions.

Our schema which is a modification of the classical star schema is depicted in
Fig. 4. As we can see, there are two fact tables, Fact_Location and Fact_W eather.
The dimension tables are: Users and Restaurants. These are dimension tables
for both fact tables.
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Fig. 4. The two fact tables of our schema (one for each context parameter) and the
dimension tables for Users and Restaurants.

Storing Context Hierarchies. An advantage of using cubes to store user pref-
erences is that they provide the capability of using hierarchies to introduce
different levels of abstractions of the captured context data [4]. In that way,
we can have a hierarchy on a given context dimension. Context dimension hi-
erarchies give to the application the opportunity to use a combination of data
between the fact and the dimension tables on one of the context parameters. The
typical way to store data in databases is shown in Fig. 5 (left). In this modeling,
we assign an attribute for each level in the hierarchy. We also assign an artificial
key to efficiently implement references to the dimension table. The contents of
the table are the values of the ancff functions of the hierarchy. The denormal-
ized tables of this kind, participating in a database schema often called a star
schema suffer from the fact that there exists exactly one row for each value of
the lowest level of the hierarchy. Therefore, if we want to express preferences
at a higher level of the hierarchy, we need to extend this modeling (assume for
example that we wish to express the preferences of Mary when she is in Cyprus,
independently of the specific region, or city of Cyprus she is found at).

To this end, in our model, we use an extension of this approach, as shown in
the right of Fig. 5. In this kind of dimension tables, we introduce an extra tuple
for each value at any level of the hierarchy. We populate attributes of lower
levels with NULLs. To explain the particular level that a value participates
at, we also introduce a level indicator attribute. Dimension levels are assigned
attribute numbers through a topological sort of the lattice.

G_ID Region City Country| Level

1 Acropolis Athens | Greece 1

2 Kefalari Athens | Greece 1

3 Polichni Salonica | Greece 1

G_ID Region City Country 101 NULL Athens Greece 2
1 Acropolis Athens | Greece 102 NULL Salonica_| Greece 2

2 Kefalari Athens Greece 120 NULL NULL Greece 3
3 Polichni Salonica | Greece 121 NULL NULL Cyprus 3

Fig.5. A typical (left) and an extended dimension table (right).



Storing the Value Functions. The computation of aggregate preferences refers to
the composition of simple basic preferences, in order to compute the aggregate
one. The technique used for this involves using weights for each of the parameters.
Each aggregate preference involves (a) a set of k context parameters -i.e., cubes
and (b) a set of n non-context parameters, common to all context cubes:
preference(cy,...cr, Agta, ..., An) = interest_score
The non-context parameters pin the values of the aggregate scores to specific
numbers and then, the individual scores for each context parameter are collected
from each context table. Recall that the formula for computing an aggregate
preference is: interest_score = wy * interest_scorey + ...+ wg * interest_scorey,.
Therefore, the only extra information that needs to be stored concerns the
weights employed for the computation of the formula. To this end, we employ
a special purpose table AggScores(wen, ..., wok, Ag+1, - - ., An). The value for
each context parameter wc; is the weight for the respective interest score and
the value for each non-context attribute A; is the specific value uniquely de-
termining the aggregate preference. For instance, in our running example, the
table AggScores has the attributes Location_weight, Weather_weight, U ser
and Restaurant. A record in this table can be (0.6, 0.4, Mary, Beau Brummel).
Assume that from Mary's profile, we know that Beau Brummel has interest
score at the current location 0.8 and at the current weather 0.9, then, the ag-
gregate score is: 0.6 x 0.8 +0.4%x 0.9 = 0.84

5 Querying Context

In this section, we classify the query operations that can be posed to our context-
aware DBMS, by exploiting the combined information on preferences and con-
text.
Querying Simple Preferences. Firstly, there are queries executed without a need
for the computation of the aggregate score. In this category of queries, users
explicitly define that they are not interested in specific context parameters. For
example, the following query computes the users’ preferences directly.
Query 1 Look for Mary's most preferable restaurants in Athens, independently
of the status of weather. In SQL, the query is:
— SELECT R.name, FL.score

FROM Users U, Restaurants R, Fact_Location FL, Location L

WHERE U.uid = FL.uid AND R.rid = FL.rid AND L.lid = FL.lid AND

U.name ='Mary’ AND L.region ='Athens’

ORDER BY FL.score DESC;

Another similar query would be “Look for the users in Athens that prefer
restaurant Beau Brummel independently of weather” that can be used for ex-
ample to advertise a specific restaurant in the context of “Athens”.

Querying with Aggregate Scores. Another useful operation is the computation
of aggregate scores from simple ones. For example, the following query needs to
compute the aggregate score:

Query 2 Look for Mary's most preferable restaurants (in the current context).



The execution of Query 2 leads to the execution of the following subqueries
(we suppose that C'S(current) = {Acropolis, sunshine}):

— SELECT R.name, FL.score
FROM Users U, Restaurants R, Fact_Location FL, Location L
WHERE U.name ='Mary’ AND U.wid = FL.wwid AND R.rid = FL.rid
AND L.lid = FL.lid AND current_location =" Acropolis’;
and
— SELECT R.name, FW.score
FROM Users U, Restaurants R, Fact_Weather FW
WHERE U.name ='Mary’ AND U.uid = FW.uid AND R.rid = FW.rid
AND current_weather ='sunshine’;

Using the results of subqueries, we calculate the aggregate scores for restaurants
using the value function, as described above. In this case, we have the most
preferable Mary’s restaurants in decreasing order.

Traditional OLAP operators. OLAP provides a principled way of querying in-
formation. The traditional techniques for relational querying are enriched with
special purpose query operators, such as roll-up and drill-down [5, 2].

— Slice-n-Dice. The dice operator on a data set corresponds to a selection (in
the relational sense) of values on each dimension. A slice is a selection on
one of the N dimensions of the cube. A dice operator can be implemented as
a sequence of slices. Simple preference queries can be computed using slice
operators. For instance, Query I can be implemented using slice operations
on User and Location.

— Roll-up. The roll-up operation provides an aggregation on one dimension.
Here for example, a roll-up on location can generate a cube that uses cities
instead of regions.

— Drill-down. Similarly, drill-down is the reverse operation, i.e. when we have
the result of a query which includes restaurants that are located in Athens,
we can take a result that includes restaurants located at Acropolis, using
the drill-down operator.

Computing Aggregate Scores. The technique used for processing queries involv-

ing aggregate scores (e.g., Query 2 above) is the following.

1. First, a dice operator is executed on the context cubes. We select specific
values for Users and for the context parameter. For instance, for the first
cube a selection could be on a value of location, e.g., Acropolis and for a
value of user, e.g., Mary.

2. Second, having pinned all dimension attributes to a specific value, we have
all the preference interest scores available. In fact, the individual scores for
each context parameter are collected from each context table (although this
practically involves a relational join on all non-context parameters, it is quite
more easy to simply collect the values from the respective cubes from a set
of point queries over them). So, we can compute the aggregate score of a
preference by using a value function (as described in the previous sections).



3. In the context of an OLAP session, the aggregate scores just computed for
a user can be stored in a new transient cube. As with cubes concerning
basic preferences, a cube concerning aggregate preferences has one attribute
for each context and non-context parameter and an extra attribute for the
interest score. Then, the user can reuse the result of a query, by just using
the last cube, without executing all the above steps.

6 Related Work

Although, there is much research on location-aware query processing in the area
of spatio-temporal databases, integrating other forms of context in query process-
ing is a new issue.

Context and Queries. In the context-aware querying processing framework of
[6], there is no notion of preferences, instead context attributes are treated as
normal attributes of relations. Query processing is divided into three-phases:
query pre-processing, query execution and query post-processing. During query
pre-processing, a query is further constrained by adding constraints that may
include context attributes and any contextual attributes are bound to exact val-
ues. After query execution, at the query post-processing phase, the results may
be sorted by observing predefined rules. This framework is orthogonal to our
approach and a potential extension of our work includes enriching our model
with constraints involving context attributes. Storing context data using data
cubes, called context cubes, is proposed in [4] for developing context-aware ap-
plications that use archive sensor data. In this work, data cubes are used to
store historical context data and to extract interesting knowledge (such as rules,
regularities, constraints, patterns) from large collections of context data. In our
work, we use data cubes for storing context-dependent preferences and answer-
ing related queries. Finally, context has been used in the area of multidatabase
systems to resolve semantic differences, e.g., [7-9] and as a general mechanism
for partitioning information bases [10].

Preferences in Databases. In this paper, we use context to confine database
querying by selecting as results the best matching tuples based on the user
preferences. The research literature on preferences is extensive. In particular, in
the context of database queries, there are two different approaches for expressing
preferences: a quantitative and a qualitative one. With the quantitative approach,
preferences are expressed indirectly by using scoring functions that associate
a numeric score with every tuple of the query answer. In our work, we have
adapted the general quantitative framework of [3], since it is more easy for users
to employ. In the quantitative framework of [11], user preferences are stored
as degrees of interest in atomic query elements (such as individual selection or
join conditions) instead of interests in specific attribute values. Our approach
can be generalized for this framework as well, either by including contextual
parameters in the atomic query elements or by making the degree of interest
for each atomic query element depend on context. In the qualitative approach
(for example, [12]), the preferences between the tuples in the answer to a query
are specified directly, typically using binary preference relations. For example,



one may express that restaurant; is preferred from restaurants if their opening
hours are the same and its price is lower. This framework can also be readily
extended to include context. For instance, one may express that restaurant; is
preferred from restaurants if their opening hours are the same, its price is lower
and it is closer to the current user’s location.

7 Summary

The use of context is important in many applications such as in pervasive com-
puting where it is important that users receive only relevant information. In this
paper, we consider integrating context with query processing, so that when a
user poses a query in a database, the result depends on context. In particular,
each user indicates preferences on specific attributes of a relation. Such pref-
erences depend on context. We store preferences in data cubes and show how
OLAP techniques can be used to compute context-aware queries, that is queries
whose results depend on context.
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