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Abstract Recommender systems were originally proposed for helping users
dealing with excessive amounts of data, by suggesting potentially interesting
items to each one of them with the unique objective of achieving accurate pre-
dictions. These systems have diversified, have expanded to several domains,
and were identified as generating biased results that could potentially harm the
data items being recommended. The exposure in generated rankings, for in-
stance in a job candidate selection situation, is supposed to be fairly distributed
among candidates, regardless of sensitive attributes (gender, race, nationality,
age) for providing equal opportunities. It can happen, however, that no such
sensitive information is available in the data applied for training the recom-
mender, and in this case, it is still possible to detect biases that can lead to
unfair treatment, named Feature-Blind unfairness. In this work, we adopt Vari-
ational Autoencoders (VAE), considered as the state-of-the-art technique for
Collaborative Filtering (CF) recommendations, and present a framework for
addressing fairness when having only access to information about user-item
interactions. More specifically, we are interested in Position and Popularity
Bias. VAE loss function combines two terms associated to accuracy and qual-
ity of representation. We introduce a new term for encouraging fairness, and
demonstrate the effect of promoting fair results despite of a tolerable decreas-
ing in recommendations quality. In our best scenario, Position bias is reduced
by 42% despite a reduction of 26% of recall in the top 100 recommendation
results, when compared to the same situation without any fairness constraints.
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1 Introduction

The amount of digital data produced in the Web increases each day, followed
by the number of possibilities one has available when deciding to watch a
movie, to hire a new employee or even to choose a romantic partner. It might
be reasonable to say that when accessing an online platform, one has so many
options available before making a decision that asking help from an intelligent
system would turn necessary. Recommender systems were proposed in this
context, for analyzing historical behavior and providing users with a subset of
data items corresponding to their personal preferences.

In its most popular formulation, known as Collaborative Filtering (CF),
recommender systems associate users to consumption profiles and close profiles
are interpreted as similarity of preferences. The CF method is capable of infer-
ring probabilities for each user/item pair based on neighboring users, assuming
that similar users will behave similarly in the future. Finally, individual lists of
suggestions are built with potentially interesting data items, which users have
not seen yet. The aim of these systems used to be the prediction of potentially
interesting data items with the highest accuracy possible, in order to satisfy
and engage users. But the moment recommenders popularize and start being
incorporated in many online systems, they need to account also for how fair
their results are from the perspective of the data items being recommended.

In general, when systems are responsible for providing ranked lists the
concept of fairness considers the superiority of higher positions in which data
items are presented [20]. The position of an item is usually associated to how
much attention it will get from users: the first positions concentrate much of
the attention, and the attention decreases as the position gets higher. This is
applicable, for instance, in the case of a search engines to which users submit
queries, and get ordered list as a result. A fair result, in this case, is associated
with having data items in the first positions of the rankings independently of
the attributes considered sensitive. In recommenders, specifically, the historical
behavior is stored and analyzed for producing individual lists of suggestions
when requested by users. The results are personalized and can vary from one
user to another, as well as from one round of recommendation to the next one.

Still, in recommenders, it can happen that the system will calculate rele-
vance solely based on users interaction information, or it can also happen that
sensitive information is not stored in databases due to privacy issues. Even
in these situations, there is space for unfair recommendations, more specifi-
cally, through two types of bias, namely Position Bias and Popularity Bias.
In Figure 1, for instance, we see examples of both biases extracted from a real
dataset. On the left, the scores given to the top-10 items suggested to a random
user are compared with a theoretical curve describing user’s attention. From
left to right, we see the level of attention decreasing as the position gets higher,
whereas the scores remain practically stable. That is, equally good items are
presented in substantially different levels of exposure (Position Bias). On the
right, we calculate the number of times each movie was watched in the Movie-
Lens dataset, and order them from the most to least popular, where we see
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Fig. 1 Position (left) and popularity (right) bias in recommender systems. Left, a theoretical
geometric attention decaying curve is compared to a real one in the case of the top-10
positions in a ranking for a random user in Movielens. Right, items are sorted by the number
of interactions, and the vertical lines indicate 20% and 80% thresholds, indicating a very
unbalanced distribution of popularity for the same dataset.

that few movies concentrate the majority of interactions from users. From left
to right, the red lines indicate the thresholds for 20% and 80% of the whole
distribution, respectively (Popularity Bias).

That said, we refer ourselves to methods for mitigating biases with no
connection to any sensitive information, as promoting Feature-Blind fairness.
Specifically, we refer to situations where biases are observed independent of any
individual feature of users or items, and we solely exploit statistical information
of interaction between them, this way, having different implications than hiding
sensitive information during the training phase [14]. So, the challenge here is to
train a model for personalized recommendations that is able to provide users
with potentially interesting data items, while ensuring that all items are being
exposed to users as fair as possible. Encouraging the recommender to predict
scores proportionally to the attention items will receive from users, should
maintain popular items in the highest positions in the ranking, preserving the
overall accuracy of the system. At the same time, it should attract less popular
items to the subsequent positions, promoting items that would normally be
located in positions of lower exposure.

Variational Autoencoders (VAE) are considered today the state-of-the-art
for CF recommender systems, due to its accuracy, scalability and robustness
for dealing with extremely big datasets. Users’ features are learned from the
data, in what is known as the encoder phase, before propagating through the
decoder where scores are actually attributed to each item. VAE recommenders
are derived from the inference model and are capable of learning its latent
variables according to a loss function which combines accuracy and quality of
representation. When encouraged to learn the first, it is basically adjusting
its predictions to the ground truth data, and when encouraged to learn the
second it is approximating a theoretical assumed distribution to the one ob-
served in the data. Both terms can have different weights during the training
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allowing the autoencoder to prioritize one of the objectives, providing it with
flexibility regarding its parameters. In this work, we propose adding a new
term responsible for achieving fair results, that will act in the same fashion,
encouraging the weights to be learned according to a formula previously de-
fined. The amount of bias to be removed in the learning process, here referred
as a proxy for unfairness, can also be controlled through an extra parameter
tested in the experiments.

Specifically, we propose a framework for mitigating bias, or unfairness, in
recommendations, where features about the items are not known, and there-
fore, cannot be judged as being discriminatory. We refer to this scenario as
Feature-Blind, and we argue that when this happens there is still space for bi-
ased results, according to principles inherited from individual fairness, where
equally relevant individuals are treated similarly. Our approach is more of a
statistical approach dedicated to ensuring fair treatment of items according to
the consumption information contained in the dataset.

In short, our main contributions in this work are:

– We introduce the problem of ensuring fairness in recommendations when
no information about data items is available, named Feature-Blind, with
special attention on position bias and popularity bias.

– We present a framework that allows configuration of how much bias is
to be removed from the recommendation results for the price of reduced
accuracy.

– We experimentally show that the strategy proposed here is capable of re-
ducing position bias from the results in a higher proportion than the ac-
curacy decreases. And in some cases the same trade-off is observed for
reducing also popularity bias.

The remaining of this paper is organized as follows. In Section 2, we present
a review on recent works about fairness in decision making algorithms, and we
focus on the specific ones related to recommender systems. In Section 3, we
formalize the task of providing users with fair recommendation results from
the perspective of data items, and we define Feature-Blind fairness. In Section
4, Position Bias and Popularity Bias are presented in details, as examples of
unfairness that might emerge from suggestions when no sensitive information
of data items is provided. In Section 5, we present a framework for mitigating
unfairness in recommenders implemented with VAE. Experiments with real
datasets are described in Section 6, as well as competitors methods and metrics
for evaluating the results. Finally, the results are presented and discussed in
Section 7, and conclusions and future work are presented in Section 8.

2 Previous Work

The urge on adapting decision making algorithms to become explicitly fairness-
aware becomes first evident in situations of automatic classification, before
expanding to ranking and recommender systems. In this section, we review



Feature-Blind Fairness in Collaborative Filtering Recommender Systems 5

the main concepts related to fair classification, ranking and recommendation
algorithms. We present a discussion on techniques that hide demographic in-
formation from the intelligent systems to analyze the effect in reducing the bias
and discrimination. We also summarize a recent discussion about generating
representations considered fair with the technique considered the state-of-the-
art approach for Collaborative Filtering, named Variational Autoencoders.

Fairness in Classification. When it comes to the discussion of algorithmic
fairness, the first setup addressed was the supervised classifiers. In a simplified
scenario, classifiers are assumed as generating binary outputs, say positive and
negative, and a fair outcome was first proposed as a trade-off between indi-
vidual and group fairness [10]. Individual fairness assume similar individuals
being represented equally along the positive results. Group fairness, also re-
ferred as statistical parity, assume individuals separated in groups according to
a sensitive attribute (e.g., gender, age, race), and these groups being selected
equally by the classifier. It has been showed that both can be compatible if
groups are homogeneous, or can demand a prioritization in the case groups
are different one from the other. Having the final decision independent of the
protected attribute is also referred as demographic parity.

A different formulation for fair classification differentiates equality of odds
and equality of opportunity [11]. Both concepts will arise from the argumen-
tation that demographic parity can fail to promote fair results when (i) one
of the groups being classified is too small, or (ii) when the results correlate
with the sensitive attribute. Equality of odds will allow the predicted score to
depend on these attributes, but only through the target label. In other words,
it encourages the use of features allowing the prediction of the output, but pro-
hibits abusing the sensitive variable as a proxy for the prediction. Equality of
opportunity will extend the previous definition and require non-discriminatory
attitude only within the advantaged group.

All concepts of fairness presented so far operate under the premise that
information about sensitive features are known in advance, and can be used to
detect biased outcomes. But it can happen that protected class membership is
not observed in the data, for legal, operational or behavioral reasons [14]. Some
institutions may not allow ethnicity information to be collected in registration
forms, bad quality forms can also conflict with self identification of race and
gender, and it can also happen that people are reluctant to inform their race
for fear of potential discrimination.

Under these circumstances it might be necessary to fill the missing data
with a proxy model, which is capable of guessing the class information based
on a specific or a set of features. It was demonstrated that this can also lead to
biased outcomes [7], as a result of a complex interaction of multiple different
biases contained in the data.

We, instead, propose measuring unfairness in a situation when no demo-
graphic information is available, not even in a secondary dataset or proxy
model. When this happens, there are no protected groups to take into consid-
eration as a prior, and the unfairness is calculated exclusively through statistics



6 Rodrigo Borges, Kostas Stefanidis

obtained from the data, representation and results, according to what we are
here referring to as a Feature-blind approach.

Fairness in Rankings. Moving to the domain of ranking solutions, the out-
put is not considered anymore as a selection to a category but as a list of items
in order of relevance, to be selected by the user of the algorithm. The problem
is modeled as in a search engine, where one can submit a query and get a
list with the results ordered by relevance. This time, there are no good or bad
outcomes as in the binary classification, but rather better or worse positions in
the ranking. We can still apply all previous concepts of fairness if we consider,
for example, a ranking process as a first step of a classification process, within
which the best subset of items is selected. But even then, new challenges are
imposed to practitioners, different from the ones mentioned so far. Next, we
focus on describing specific situations for evaluating fairness in ranked lists.

The ratio of protected individuals that appear within a prefix of the rank-
ing must be above a given proportion, in order to satisfy statistical tests of
representativeness [26]. One possible solution to this is to re-rank items after
the scores were calculated in order to balance opportunity. Furthermore, the
attention received by the items in different positions in the ranking is not
the same: items ranked in first positions are exposed to much more attention
than the lower ones [8]. The situation of having homogeneous scores given in
the first positions in a ranking is mentioned as promoting position bias in [5].
This is described as the situation of originating unfairness due to the wide
difference between attention (position) and relevance (score): the difference
of attention changes drastically from the first position to the second, but the
same difference is not observed between the relevance values. Approximating
both distributions through a post processing method is described as promoting
equity of attention.

The idea of distributing users’ attention along items in a fair manner is
adopted in our work, and transposed to the domain of recommendation. Fur-
thermore, we extend its applicability by suggesting that, when introduced as a
loss function in a recommendation process, it can mitigate also another source
of unfairness, the popularity bias.

Fairness in Recommendations. As mentioned before, recommender sys-
tems have some specificities when compared to general purpose ranking sys-
tems as in the case of, for example, search engines. When a user submits
a query to a search engine it explicitly represents the information needed,
whereas in a recommendation scenario the task is to provide users with items
they might like, based on implicit information collected previously [3]. The col-
laborative approach, specific for recommenders, is also prone to bias already
in its first assumption: grouping similar users together will most likely approx-
imate frequent users, and isolate them from sparse ones. From the perspective
of items, popular items will also influence the training processes if error is
measured by classical accuracy, due to popularity bias [1,2,29].
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When it comes to the techniques applied in the prediction processes, recom-
menders also demand new approaches for measuring and removing bias, and
consequently promoting fairness. The popular matrix factorization is pointed
as potentially unfair due to popularity bias [1,21,3]. New metrics for measur-
ing fairness in recommendation are presented in [25], different from the ones
proposed for ranking systems. The idea of compensating an unfair recommen-
dation round with the following ones is explored in [22], in the context of group
recommendations.

There are several metrics available for measuring unfairness in recommen-
dation, we selected some of the most popular ones, and we pinpoint the rea-
sons why they can not be considered in our study. MADr (Mean Average
Difference - rating) [28] is the absolute difference between mean ratings of dif-
ferent groups, assuming two groups. But in our case, we do not separate items
or users in groups. Instead, we measure the exposure or popularity associated
with each item. BS (Dataset Bias), BR (Recommendation Bias) and BD (Bias
Disparity) [23] refer to categories of items and protected users groups. In our
work, we do not have categories of items or demographics about users. As a
consequence there is no such notion of groups. MADR (Mean Average Dif-
ference - Ranking) and GCE (General Cross-Entropy) [9] are also measures
applicable to situations where a sensitive attribute is defined, and recommen-
dation results are evaluated according to it, and they are not applicable in our
context.

We also review some of the metrics that are useful for measuring popu-
larity in the context of recommendation systems, and we report the reasons
why they cannot be applied here. APLT (Average Percentage of Long Tail
items) and ACLT (Average Coverage of Long Tail items) [2] measure the av-
erage percentage of long tail items in the recommended lists as a proxy of
coverage or diversity. ACLT measures what fraction of the long-tail items the
recommender has covered. But in our work, there is no separation of the pop-
ularity distribution in regions, and consequently no long tail. Instead, we use
a continuous measure considering the popularity of each item separately. RSP
(Ranking-based Statistical Parity) [29] can be defined as forcing the ranking
probability distributions of different item groups to be the same, and REO
(Ranking-based Equal Opportunity) encourages the true positive rates (TPR)
of different groups to be the same. In our case, again, we do not have items
separated in groups.

In our work, we explore a mechanism for removing biases from recommen-
dation results, or more precisely we add a new term to the loss function of
VAE, considered today as the state-of-the-art for CF recommenders [17].

Fair Representations. In some cases, fairness is considered a matter of rep-
resentation, and techniques for isolating sensitive attributes in the main task
being addressed. A central idea in these approaches is to define an attribute in
the input data that should be neutralized, and adapt the loss function applied
in the learning process so the intermediate representation of the data satisfies
a constraint associated to fairness.
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One first attempt was proposed in [27] when a loss function was adapted for
generating fair classification results. A similar approach is described in [19] but
applying VAE to learn the representations. A tensor decomposition technique
is proposed by [28], able to isolate sensitive features and provide recommen-
dation results uncorrelated to them. Recently, β-VAE became popular due
to its capacity of disentangling the latent variables learned from the input
data [18,12]. The main idea is to enhance the power of inner representation in
the sense of increasing mutual information during the learning process. These
representations are demonstrated as providing fair results due to its capac-
ity of isolating potential distributions used for generating the input data, in
a explainability fashion [18]. [6] adds a stochastic component to the regular
operation of VAE in order to mitigate position bias in a CF task. The hypoth-
esis is tested when applying three different Gaussian noise distributions for
achieving different levels of fluctuations in the final recommendation rankings.

Our proposed model is able to learn fair representations from users’ be-
havior data while retaining as much information about the input as possible.
This is done in a similar fashion than [19], but applied for recommendations
and with no information about sensitive attributes.

3 Feature-Blind Fairness

Let us assume a group of users (u ∈ U) interacting with items (n ∈ N),

and every interaction user/item stored in a rating matrix (X ∈ IN|U |×|N |). A
recommender is trained having X as the input, and after having its weights
optimized it assigns probability values to each unseen item/user pair. A subset
(K ∈ IN) of the best options is presented to each user in a descending order
according to the predicted score. The score assigned by the algorithm reflects
the item relevance (r ∈ [0, 1]), and the position in the ranking is used as a
proxy for attention (a ∈ [0, 1]) in a way that lower positions are exposed to
more attention than higher ones. That is, the most likely items occupy the first
positions, and the score decreases as the position index increases (alip > aliq
as well as rlip > rliq,∀nip, niq with p < q). This implies the first positions in
the ranking as the most relevant, and also as the ones more exposed to users
attention. All variables are defined in Table 1.

Table 1 Variables definition

n ∈ N a set of items to be ranked
u ∈ U a set of users
a ∈ [0, 1] the position in the ranking (a proxy for the level of attention)
Aj the attention distribution associated to a single list presented to user uj

r ∈ [0, 1] the score given by the model (a proxy for the relevance)
Rj the relevance distribution associated to a single list presented to user uj

rjik ∈ [0, 1] relevance score of item nik in ranking for user uj in position k

ajik ∈ [0, 1] attention to which item nik is exposed in ranking for user uj in position k
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In the core, we require that ranked subjects receive attention that is propor-
tional to their relevance in a series of rankings. The requirement is presented
in [5] as Equity of Attention, and is defined as:

∑U
l=1 a

l
ip∑U

l=1 r
l
ip

=

∑U
l=1 a

l
iq∑U

l=1 r
l
iq

,∀nip, niq with p < q (1)

For example, the relation between the attention to which the item in the
first position is exposed to (ali1) and its relevance (rli1) should be as similar as
possible to the relation measured for the item in the second position. And it
should be also valid for all other items in the set. Achieving equal proportions is
not a feasible option, as we will see in the following sections, but the difference
should be minimized accordingly.

In this work, we are interested in the specific situation when no demo-
graphic information is available for modeling, as in the case of many recom-
menders training processes. We refer to the unfairness that might originate
from biased results as a situation of Feature-Blind unfairness. This kind of
unfairness can be detected as a direct consequence of biases originated in sit-
uations where users are interacting with items, or from any premise on the
predicted scores, as for example in a search engine or a recommender system.

Definition 1: Feature-Blind criteria are the ones applied for measuring un-
fairness when no demographic information is taken into account.

It can happen that ranking relevance is calculated taking into account the
clickthrough rate an item received previously. It can also happen that an item
that is very popular in a recommendation scheme, and is constantly appearing
in the first positions. In both cases, marginal items are, in principle, excluded
from the privileged ranking positions, and as long as the bias increases, the
chance of overcoming it becomes harder each time. It can also happen that
new items are added to the platform, and present no previous information
about user interaction. The lack of a strategy to attract these items to public
attention will prevent them being exposed properly.

Difference from Fairness Under Unawareness. These criteria differ from Fair-
ness Under Unawareness [14] in the sense that there is no proxy model here,
and items and users are never associated to their inner characteristics. We are
specially interested in statistical biases that can flourish from the methods,
from the metrics applied for measuring utility or from the interaction between
users and items.

Proximity to Individual Fairness. The proposed feature-blind criteria refer to
each item individually, even though the bias can have been measured according
to some statistical value extracted from the whole population. There is still
space for decreasing, for example, demographic parity in a method optimized
for reducing a feature-blind criterion.



10 Rodrigo Borges, Kostas Stefanidis

4 Position and Popularity Bias

We now describe two biases, position and popularity, considered as potential
sources of unfairness in recommendations. We bring practical examples when
both can occur, and formulas for measuring them in the final results.

4.1 Position Bias

When providing recommendations to users, algorithms are responsible for as-
signing probability values to each item in the set, and presenting them in a
descending order. It can happen, however, that one individual ranking presents
very homogeneous regions, that is, items with very similar relevance occupy-
ing different positions. This situation is referred to as Position Bias [5], and
when occurring systematically and for many rankings, can promote long term
unfairness. Next, we describe a situation in which it can potentially occur.

Situation 1 : Lets assume that a recommendation algorithm was previously
trained and is ready to provide suggestions of movies. An specific user opens
the recommendation interface and sees a list of 5 movies sorted from the
most to the least relevant. The user does not have access to this information,
but the scores given to each of the movies, in order, were 0.9, 0.9, 0.89, 0.8,
0.79. We can imagine this happening for several times and for several users, a
situation where equivalently relevant items (with same or really close scores)
being exposed to considerably different levels of attention in a recommendation
ranking.

That said, we state that: A recommender is fair as long as equally relevant
items are presented to users in a corresponding position in the ranking. In
other terms, as long as it can provide rankings with relevance proportional to
the attention received by users.

The position in the ranking is assumed as proxy for the attention, and
the relevance as a proxy for the score given by the system. The attention is
defined as a geometric distribution [5], the first position is assumes as concen-
trating majority of the attention, and attention value decreases according to
a parameter p within the interval [0, 1]:

wj =

{
p(1− p)j−1, if j ≤ k
0, if j > k

(2)

Lets consider the k items predicted with highest scores by the recommen-
dation algorithm as having relevance values [r1, r2, . . . , rk], or R, and corre-
sponding attention levels [a1, a2, . . . , ak] or A, calculated with Formula 2. A
and R are converted to multinomial probability distributions by simply divid-
ing each term by the summation of all values ( A/sum(A) and R/sum(R)), as
in the example of Figure 1 (Left). The divergence between both is calculated
with Kullback-Leibler (KL) divergence formula:
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POSB@K(uj) = DKL(Aj ||Rj) =

K∑
k=1

P (ajk) log

(
P (ajk)

P (rjk)

)
1 (3)

KL divergence has its origin in the field of information theory, using the
idea of entropy. It measures the expectation of the log difference between
the probability of data in the original distribution with the approximating
distribution. Here, A is selected as the target distribution, and KL divergence
will retrieve small values in the case R is similar to it.

The attention distribution is held fixed, with a static value for p, and for
every ranking, and the value calculated by POSB@K indicate how close the
scores calculated for the first K items distributions are to this theoretical
attention distribution.

4.2 Popularity Bias

Usually, in Collaborative Filtering recommendation systems, few data items
concentrate the majority of ratings given by users, referred to as Popularity
Bias. And the consequences are that a great proportion of unpopular items,
the ones with few ratings, end up sharing small percentages of users feedback.
We assume the popularity bias as a mixture of unbalanced preferences au-
thentically expressed by the users, as well as a side effect of algorithms and
metrics applied by these systems. Moreover, suggesting unpopular items has
the desired effect of serendipity (providing users with novelty), and also ex-
pand the knowledge of the system about unpopular items with very few rating
information. We follow describing another situation in which it can potentially
occur.

Situation 2 : Let’s assume a recommender operating through an algorithm
trained according to an error-based metric, that is to say, its success refers
to the ratio of right guesses it can perform in a separated part of the data
(test set). After N rounds of recommendations, 0.7% of available items were
responsible for 20% of users interactions registered by the platform (Figure 1).
We expect that in its next train round, the algorithm will try to adjust its
weights to maximize its overall accuracy, which will certainly refer mostly to
those 0.7% items than for unpopular ones responsible, for 99.3% of the play
counts. We imagine this happening successively, and in each round the model
is more adjusted according to popular items, and unaware of a great slice of
items that could potentially found their niches of consumption, or simply refer
to items added to the platform recently.

Formally: A recommneder is fair as long as it can attract unpopular items
to users attention. In others terms, it can distribute users’ attention as equally
as possible among items.

In order to measure Popularity Bias, we propose a metric inspired by
NDCG that expresses how much a ranking is biased because of the popularity

1 The i index for indicating item ni in position i is removed for the sake of simplicity.
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of recommended items. As a first step, a discounted summation of popular-
ity is calculated for the top-k items with Discounted Cumulative Popularity
(DCP):

DCP@K =

K∑
i=1

ω(i)

log2(i+ 1)
(4)

where ω indicates a function for measuring the proportion of interactions in
the training set associated to item in position i, and this number is considered
as a proxy its popularity. High values of DCP indicate popular items being
presented in first K positions.

The ideal version of DCP, named IDCP, is calculated with the formula just
presented, but this time having the same set of items ordered by popularity.
The popularity bias (POPB) is obtained as a normalized version of DCP when
considering IDCP:

POPB@K =
DCP

IDCP
(5)

5 Fair Recommendations

Variational Autoencoders (VAE) are considered today the state-of-the-art
technique for CF recommendation solutions [17]. VAE derive directly from
Auto Encoding Variational Bayes (AEVB) [15], which apply Stochastic Gra-
dient Variational Bayes (SGVB), allowing efficient approximation of posterior
inference and learning model parameters without the need of expensive iterate
inference schemes per datapoint. Briefly said, Variational Bayes approximates
the full posterior by attempting to minimize the Kullback-Leibler divergence
between the true posterior and a predefined factorized distribution on the same
variables, as described in the following.

5.1 Variational Autoencoder

Let the observed variable x be a random sample from a process whose true
distribution p(x) is unknown. Our aim is to approximate the process with a
model pθ(x) with parameters θ. pθ(x) can be very complex (contain arbitrary
dependencies), and a common approach is to assume an unobserved random
latent variable z involved in the process of generating x. A simple assump-
tion is pθ(x, z) = pθ(z)pθ(x|z) = pθ(x)pθ(z|x), where pθ(x|z) corresponds to
estimating x from z, and pθ(z|x) corresponds to estimating z from x.

pθ(z) is assumed as Gaussian, but pθ(z|x) is still intractable. An auxil-
iary model qφ(z|x) is introduced then, whose parameters φ will be learned to
approximate qφ(z|x) ∼ pθ(z|x), and (reproduced from [16]):
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log pθ(x) = Eqφ(z|x)(log pθ(x))

= Eqφ(z|x)

(
log
(pθ(x, z)

pθ(z|x)

))
= Eqφ(z|x)

(
log
(pθ(x, z)

pθ(z|x)

qφ(z|x)

qφ(z|x)

))
= Eqφ(z|x)

(
log
(pθ(x, z)

qφ(z|x)

))
+Eqθ(z|x)

(
log
(qφ(z|x)

pθ(z|x)

))
(6)

The second term in the right hand side is the non-negative Kullback-Leibler
divergence between qφ(z|x) and pθ(z|x), and the first term is known as the
evidence lower bound (ELBO). ELBO is defined as:

Lθ,φ(x) = Eqφ(z|x)(log pθ(x, z)− log qφ(z|x)) (7)

And maximizing the ELBO corresponds to maximizing:

Lθ,φ(x) = log pθ(x)−KL(qφ(z|x)||pθ(z|x)) (8)

The first term in the right corresponds to the to the marginal likelihood,
and the second term the error of distribution approximation. The optimization
process corresponds to optimizing parameters φ and θ. In the specific case of a
rating-matrix-based recommender, xu contains the number of interactions for
user u, qφ(z|xu) corresponds to the estimation of z space departing from input
data, named Encoder, and pθ(xu|z) corresponds to estimating the original data
departing from the latent space, named Decoder.

5.2 Bias-aware VAEs

Our aim here it to introduce a new term to the ELBO for encouraging the
optimization process to generate fair results, as a consequence of bias removal.
We add a new term to Equation 8 referred as bias, to be minimized together
with prediction error and KL divergence. We also add regularization factors
for the second and third term, respectively β and λ.

Lθ,φ(x) = log pθ(x)− β ·KL(qφ(z|x)||pθ(z|x))− λ ·Bias (9)

The framework implemented from this equation allows the user to define
the bias to be removed form the results, and also the strength of the quality
of representation (KL divergence) and fairness (Bias).

The bias measured as the distance between attention (A) and relevance
(R) distributions, as in [5], but measured in a training batch of size UT with
UT << U .

Bias =

N∑
i=1

∥∥∥∥∥∥
UT∑
j=1

aji −
UT∑
j=1

rji

∥∥∥∥∥∥ (10)
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Rankings are considered independent of each other, each one being asso-
ciated to one user2. The resources needed for the calculation are the scores
given by the algorithm and the position in the sorted ranking. High measured
values indicate high relevance items in low positions, or low relevance in high
positions in the rankings.

6 Experiments

In order to evaluate our methods, we run a series of recommendation experi-
ments with data obtained from movie and music recommendation platforms.
We choose two among the most popular datasets in recommendation field,
MovieLens-20M3 and Netflix [4], and two smaller ones associated to music
consumption, Nowplaying4 and 30music [24].

6.1 Data Preparation

Nowplaying dataset is a compilation of tracks that were posted on Twitter with
the hashtag #nowplaying, 30music is also a compilation of play events collected
from the LastFM platform, the MovieLens-20M dataset contains movie ratings
collected from 1995 to 2015, and the Netflix data has a similar format and was
collected from 1998 to 2005. Users who interacted with less than 5 song/movies
were removed and the data was converted to binary as in the case of implicit
feedback. In the following, we describe the process of preparing the data,
adjusting parameters for the model and competitors, and the metrics used in
the experiments.

We consider each user as a ranking round [3], and remove sequences longer
than 1,000 items for avoiding unrealistic behaviors. The model selected for
attention is a geometric progression with p = 0.5 (Equation 2), meaning that
the first position takes the value of p and decreases exponentially towards 0.

For the Nowplaying dataset, there are 496,657 watching events from 12,621
users and 33,167 movies (sparsity: 0.119%). In 30music, there are 1,228,485
watching events from 25,038 users and 86,398 movies (sparsity: 0.057%). In the
case of Movielens, there are 9,785,141 watching events from 136,526 users and
13,160 movies (sparsity: 0.545%). In the case of Netflix, there are 54,514,109
watching events from 459,559 users and 17,680 movies (sparsity: 0.671%). All
information is presented in Table 2.

The set of users is split in train/validation/test subsets, in the following
percentages 80/10/10. In the case of the training subset, all items consumed by
each user u is considered as a profile Pu used for adjusting the models’ weights.
Validation and test subsets are also converted in profiles, but this time these
profiles are also randomly split in query/target subsets, in the percentages

2 This could be measured for a sequence of recommendations for a single user as well.
3 https://grouplens.org/datasets/movielens/
4 https://zenodo.org/record/2594483#.YDzqBHVfhhE
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Table 2 Datasets description

Dataset # events # users # items
NowPlaying 496,657 12,621 33,167

30 Music 1,228,485 25,038 86,398
MovieLens 9,785,141 136,526 13,160

Netflix 54,514,109 459,559 17,680

80/20. We refer to the subset of queries associated to test users as QTe and
the targets associated to the same users as TTe. The same procedure is applied
for the users separated for validating the model.

6.2 Method and Baselines

The train is conducted with a batch size of 500 samples, the validation and test
batches are set to 100 samples. Encoder and Decoder are implemented as one-
hidden MLP, and the model is trained for 300 epochs in all cases. The MLP
dimensions depend on the number of items available for the recommender (N),
and is described as [N −→ 600 −→ 200 −→ 600 −→ N ]. The learning rate is set to
0.001 and its value decreases by a factor of 0.1 consecutively in epochs number
100 and 150. We add a dropout of 0.5 as a first layer in the Encoder, and a
Tanh between layers in both Encoder and Decoder.

[18,12] are here considered as adopting a Feature-Blind criterion, and taken
as baseline methods. Specifically, we adopt the approach proposed in [12].
These approaches were all applied in the context of image representation, and
they propose a technique for isolating independent factors of variation in the
input data in order to avoid biases for sensitive factors that one might not
be even aware. The approach presented in [19], however, assumes an explicit
sensitive attribute and can not be applied here. We do not apply annealing
steps to out training processes, and in this case, the effect of disentanglement,
as proposed in [12], is achieved by varying the value of β in Equation 9.

We train the model for three different values of β (0.1, 1.0 and 10) with
no bias removal, and maintain the first one considered here a standard oper-
ation of VAE in the following experiments. The extra factor responsible for
mitigating the bias is then incorporated to the training process with three
different values for λ (25, 50, 100) for three more rounds of experiment. In
every experiment the model is trained for 250 epochs and after each epoch the
model is validated by presenting every entry in the validation queries subset
(QV l). A list of recommendations is obtained ordered by relevance and trun-
cated in the 100th position. The output scores generated by the model are
always normalizes with a softmax function for obtaining probabilities.

Matrix factorization methods were widely applied for the task of CF, and
a specific adaptation was proposed for dealing with implicit feedbacks5 [13],

5 Implicit feedbacks are unintrusively acquired as part of the users’ interaction process
(i.e. click, watch, skip), as opposed to explicit feedback that require an active action of rating
items.
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adopted in this work as WMF. Hyperparameters were maintained with the
values reported in the original work, except for the one associated to confi-
dence, that was set as linear and with α equals to 100 through several rounds
of experiments conducted with the smallest dataset.

6.3 Evaluation Metrics

The quality of recommendations is measured comparing the predicted scores
with the target subset of test subset. The truncated version of Recall is adopted
from [17] for indicating accuracy.

RECALL@K(u) =
1

min(K, |TTeu |)

K∑
k=1

I[nk ∈ TTeu ] (11)

where I is an indicator function, nk the item ranked in position k and TTeu is
the target subset for user u. Recall indicate the proportion of items brought
in the first K position that were actually in the target subset, and does not
consider the order in which items are shown.

ARP (Average Recommendation Popularity) os proposed in [2] for measur-
ing the average popularity of the recommended items in each list. We adapted
the original formulation to a normalized version.

ARP@K(u) =
1

I

K∑
k=1

ω(i) (12)

where ω indicates a function for measuring the number of interactions in the
training set associated to item in position i, as in Equation 5, and I represents
the total number of interactions (number of user-item interactions) observed in
the training set. This metric will help on the understanding of the proportion of
interactions concentrated in the first K positions of recommended lists having
the total interactions in the train subset as a reference.

In order to explicitly measure the overall effect of reducing accuracy while
removing bias from the results, we measure two trade-offs, the POSB − TF
and the POPB − TF . The first one is an average between relative reduction
of position bias and decrease in recall, when comparing to the unbiased setup
as a reference:

POSB-TF =

(
POSB@100GT
POSB@100

+
REC@100

REC@100GT

)
× 1

2
(13)

where the subscript GT stands for Ground Truth and is here assumed as
the situation when β equals to 0.1. Higher values indicate a positive effect
of reducing bias in a higher proportion than recall reduction. In the second
case, with POP − TF , the same logic is applied to popularity bias, with the
following formula:
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POPB-TF =

(
POPB@100GT
POPB@100

+
REC@100

REC@100GT

)
× 1

2
(14)

The same notation remains from the former case, and again, values higher
than 1 indicate the superiority of bias removal despite of a accuracy decrease.
The Recall was elected as a reference for reflecting directly the accuracy of the
method [21].

7 Results

We start by analyzing the curves indicating the evolution of Recall, Position
Bias, Popularity Bias and Average Recommendation Popularity during the
training phase when β was set to 0.1 and λ was set to 0, 25, 50 and 100.
Figure 2 shows the impact of increasing the amount of bias correction in the
system’s accuracy. The best overall accuracy results were obtained for the
Movielens dataset, and the lowest one was observed in the case of Nowplaying.
In this first three datasets, the RECALL@100 measurements stabilize around
150 epochs and, in the case of Movielens, a sudden slope is observed in epoch
100, due to the reduction in the learning rate by a factor of 0.1. In the case
of Netflix, the accuracy measurements diverge for high values of λ, and in the
worst scenario, not even a stability is achieved.

Reducing bias from the recommendation results has an interesting effect in
the measurements of POS@100, as one can see in Figure 2. The very first thing
to be mentioned is the clear effect of bias removal in the results measured for
the validation set. It decreases as the value of λ increases, as expected, but
in a different scales: when training the recommenders with music datasets
the POSB is not affected when increasing λ from 0 to 25, as much as when
increasing it from 25 to 50, or from 50 to 100. There is also a clear difference
regarding stability when the four datasets’ partial results are compared. In
the three first ones, the measurements get stable after a certain amount of
epochs, and in the last, it starts increasing after epoch 150. This might indicate
different sensibility to learning rate reduction in this specific epoch or in this
dataset.

Similar results are observed when tracking the removal of Popularity Bias,
except that now the measurements remains relatively stable after decreasing
the learning rate. In the case of movie consumption datasets, the ARP values
seems to mimic POPB ones, which is understandable, once they are both
associated with the the same phenomena. But when training the models with
music data, both seem to behave a bit more independent from each other.

Finally, we apply the trained models to the test subset, in order to check
the generalization capacities of those models. We report results in Table 3
according to the metrics presented in Sections 4 and 6. We now have two more
competitors, WMF and POP. The best overall accuracy results were obtained
for β equals to 0.1 in the case of movie datasets, and higher values for the
parameter provided better results in the remaining experiments with music
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Fig. 2 All results measured during the training processes for Nowplaying, 30music, Movie-
Lens and Netflix datasets. The curves correspond to λ equals to 0 (blue/solid), 25 (or-
ange/dotted), 50 (green/dashed) and 100 (red/dash-dotted). It is worth mentioning that λ
equals to 0 correspond to standard VAE with no bias regularization.

listening data. Accuracy, represented here by Recall, decreases relatively fast
when increasing the same parameter, as one can also notice in the trade-off
values. The metrics for measuring biases, however, increase in the same fashion
for all datasets.

Higher values for λ are responsible for better POS-TF trade-off in the case
of Nowplaying and 30music datasets. The trade-off for popularity bias, on
the other hand, decreases in a similar trend. The best overall RECALL@100
results are observed for WMF in both cases, and in the case of 30music it is
reflected also in the best POS-TF value. But the best trade-off was measured
for Nowplaying trained with λ equals to 100, when RECALL@100 was reduced
by 26% and POSB@100 by 42%.

In the case of the models trained with MovieLens data, the best trade-off
between decreasing the Recall while decreasing the position bias is achieved
for λ equals to 100, when the RECALL@100 decreases 14% for promoting a
reduction of 33% in the POS@100. In the case of the bias originated from
unbalanced popularity of items, the POP@100 was reduced by 22%.

The situation is different in the case of Netflix dataset, when the best trade-
off for position bias was also observed for the same value of λ, 100, but the
best scenario when reducing the bias associated to popularity was observed for
λ equals to 50. In the first case RECALL@100 had its value decreased by 24%,
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Table 3 Results for performance and bias metrics. VAE(β = 0.1) is reported as VAE.

Dataset Method REC@100 POSB@100 POPB@100 ARP@100 POSB-TF POPB-TF

NowPlaying

POP 0.055 31.542 1.000 0.045 0.116 0.472
WMF 0.330 1.206 0.746 0.010 0.908 1.123
VAE 0.261 0.667 0.733 0.016 - -

VAE(β = 1.0) 0.268 0.760 0.759 0.018 0.952 0.997
VAE(β = 10.0) 0.269 0.766 0.765 0.018 0.951 0.995
VAE(λ = 25) 0.233 0.597 0.725 0.014 1.004 0.951
VAE(λ = 50) 0.222 0.484 0.710 0.013 1.113 0.941
VAE(λ = 100) 0.194 0.388 0.702 0.013 1.232 0.894

30Music

POP 0.024 18.756 1.000 0.025 0.058 0.401
WMF 0.432 1.203 0.739 0.005 0.991 1.250
VAE 0.282 0.542 0.715 0.007 - -

VAE(β = 1.0) 0.287 0.614 0.715 0.008 0.951 1.009
VAE(β = 10.0) 0.284 0.626 0.714 0.008 0.937 1.005
VAE(λ = 25) 0.251 0.526 0.707 0.007 0.961 0.952
VAE(λ = 50) 0.231 0.429 0.691 0.006 1.042 0.928
VAE(λ = 100) 0.211 0.340 0.666 0.005 1.171 0.910

MovieLens

POP 0.332 inf 1.000 0.219 0.250 0.649
WMF 0.556 1.137 0.764 0.094 0.792 0.941
VAE 0.664 0.850 0.799 0.124 - -

VAE(β = 1.0) 0.645 0.935 0.835 0.134 0.941 0.965
VAE(β = 10) 0.638 0.956 0.850 0.138 0.925 0.951
VAE(λ = 25) 0.643 0.824 0.727 0.114 1.000 1.034
VAE(λ = 50) 0.611 0.684 0.663 0.108 1.082 1.063
VAE(λ = 100) 0.568 0.567 0.624 0.104 1.178 1.068

Netflix

POP 0.273 inf 1.000 0.166 0.244 0.664
WMF 0.407 1.259 0.783 0.078 0.734 0.900
VAE 0.560 0.932 0.840 0.099 - -

VAE(β = 1.0) 0.532 1.031 0.867 0.109 0.927 0.960
VAE(β = 10) 0.520 1.055 0.880 0.113 0.906 0.942
VAE(λ = 25) 0.539 0.848 0.782 0.089 1.031 1.019
VAE(λ = 50) 0.495 0.690 0.713 0.079 1.117 1.031
VAE(λ = 100) 0.425 0.599 0.653 0.069 1.157 1.023

and POS@100 is reduced by 36%. In the second case the accuracy decreases
by 12%, and POP@100 by 15%.

In order to bring the reader a visualization of the literal effect of removing
bias from CB recommendations, we select a random user and show the first 10
predicted scores before and after applying the new term responsible for bias
removal. The comparison can be seen in Figures 3 and 4. When increasing the
new term in Equation 9 for encouraging the system to remove the bias from
the results, the model is actually approximating its predictions to a theoret-
ical attention curve (Equation 2). The result is clear in Figure 3. The same
interpretation is also valid for mitigating Popularity Bias, but this time the
effect is of attracting unpopular items to the first positions of the ranking, as
one can see in Figure 4.

8 Conclusions

In this work, we revisited several definitions of fairness proposed in different
fields of research, for considering the situation when no demographic (and no
sensitive) information about users is provided in the data. We refer ourselves
to this situation as a common one in the recommendation field, when datasets
are restricted to users and items interactions, and when there is still space
for biases and unfair results. We then proposed new criteria for the so called
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Fig. 3 The top 10 scores calculated for a random user before (Left) and after (Right)
applying the new term for removing Position Bias. The attention (solid line) is calculated
by a theoretical model, and the predictions are plotted as dots.
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applying the new term for removing Popularity Bias. The popularity (solid line) is calculated
by summing the ratings an item received in the training subset, and the predictions are
plotted as dots.

Feature-Blind fairness, and we discuss possible relations with previous defini-
tions. We analyzed the trade-offs between accuracy and fairness in Collabo-
rative Filtering recommendations. We introduced a framework within which
the designer is capable of tuning parameters depending on how much bias is
to be removed, and how much accuracy should be maintained. The method
is based on Variational Autoencoders, which provides the basis for generating
high quality recommendations.

An interesting effect was observed when reducing the learning rate by a
factor of 0.1 in the epoch number 150: the Position Bias, here calculated as
POS@100, started increasing after a strong decrease trend. The effect was
observed when applying positives results for the parameter responsible for
removing bias from the results (λ), and the rate the bias increases gets higher
for greater values of λ. In the case of MovieLens, the effect was also observed
for values of λ greater than 100, but not presented in the text. These led
us to consider the fact that different datasets have different sensibility to the
reduction of the learning rate, and that higher values of λ might require longer
training processes, or at least different intervals for reducing the learning rate.
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As a final remark, the bias term proposed in this work correlates directly the
bias presented as being associated to position in the recommendation ranking,
but has proven also efficient in removing popularity bias.
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