A Flexible Framework for Understanding the Dynamics
of Evolving RDF Datasets

Yannis Roussakis', Ioannis Chrysakis', Kostas Stefanidis', Giorgos Flouris', and
Yannis Stavrakas?

! Institute of Computer Science, FORTH, Heraklion, Greece
{rousakis,hrysakis, kstef, fgeo}Rics.forth.gr
2 TInstitute for the Management of Information Systems, ATHENA, Athens, Greece
yannis@imis.athena-innovation.gr

Abstract. The dynamic nature of Web data gives rise to a multitude of problems
related to the description and analysis of the evolution of RDF datasets, which
are important to a large number of users and domains, such as, the curators of
biological information where changes are constant and interrelated. In this paper,
we propose a framework that enables identifying, analysing and understanding
these dynamics. Our approach is flexible enough to capture the peculiarities and
needs of different applications on dynamic data, while being formally robust due
to the satisfaction of the completeness and unambiguity properties. In addition,
our framework allows the persistent representation of the detected changes be-
tween versions, in a manner that enables easy and efficient navigation among
versions, automated processing and analysis of changes, cross-snapshot queries
(spanning across different versions), as well as queries involving both changes
and data. Our work is evaluated using real Linked Open Data, and exhibits good
scalability properties.

1 Introduction

With the growing complexity of the Web, we face a completely different way of cre-
ating, disseminating and consuming big volumes of information. The recent explosion
of the Data Web and the associated Linked Open Data (LOD) initiative has led sev-
eral large-scale corporate, government, or even user-generated data from different do-
mains (e.g., DBpedia, Freebase, YAGO) to be published online and become available
to a wide spectrum of users [22]. Dynamicity is an indispensable part of LOD; LOD
datasets are constantly evolving for several reasons, such as the inclusion of new experi-
mental evidence or observations, or the correction of erroneous conceptualizations [23].
Understanding this evolution by finding and analysing the differences (deltas) between
datasets has been proved to play a crucial role in various curation tasks, like the syn-
chronization of autonomously developed dataset versions [3], the visualization of the
evolution history of a dataset [13], and the synchronization of interconnected LOD
datasets [15]. Deltas are also necessary in certain applications that require access to
previous versions of a dataset to support historical or cross-snapshot queries [21], in
order to review past states of the dataset, understand the evolution process (e.g., to
identify trends in the domain of interest), or detect the source of errors in the current

modelling. Unfortunately, it is often difficult, or even infeasible, for curators or editors
to accurately record such deltas; studies have shown that manually created deltas are of-
ten incomplete or erroneous, even for centrally curated datasets [15]. In addition, such
a recording would require a closed and controlled system, and is thus, not suitable for
the chaotic nature of the Web.

To study the dynamics of LOD, we propose a framework for detecting and analysing
changes and the evolution history of LOD datasets. This would allow remote users of
a dataset to identify changes, even if they have no access to the actual change process.
Apart from identifying the change, we focus on empowering users to perform sophis-
ticated analysis on the evolution data, so as to understand how datasets (or parts of
them) evolve, and how this evolution is related to the data itself. For instance, one could
be interested in specific types of evolution, e.g., transfers of soccer players, along a
certain timeframe, e.g., DBpedia versions v3.7-v3.9, with emphasis on specific parts
of the data, e.g., only for strikers being transferred to Spanish teams. This motivat-
ing example is further discussed in Section 2, where we give an informal description
of our framework. We restrict ourselves to RDF® datasets, which is the de facto stan-
dard for representing knowledge in LOD. Analysis of the evolution history is based
on SPARQL [18], a W3C standard for querying RDF datasets. Details on RDF and
SPARQL appear in Section 3.

Regarding change detection, our framework acknowledges that there is no one-size-
fits-all solution, and that different uses (or users) of the data may require a different set
of changes being reported, since the importance and frequency of changes vary in dif-
ferent application domains. For this reason, our framework supports both simple and
complex changes. Simple changes are meant to capture fine-grained types of evolution.
They are defined at design time and should meet the formal requirements of complete-
ness and unambiguity, which guarantee that the detection process is well-behaved [15].
Complex changes are meant to capture more coarse-grained, or specialized, changes
that are useful for the application at hand; this allows a customized behaviour of the
change detection process, depending on the actual needs of the application. Complex
changes are totally dynamic, and defined at run-time, greatly enhancing the flexibility
of our approach. More details on the definition of changes are given in Section 4.

To support the flexibility required by complex changes, our detection process is
based on SPARQL queries (one per defined change) that are provided to the algorithm
as configuration parameters; as a result, the core detection algorithm is agnostic to the
set of simple or complex changes used, thereby allowing new changes to be easily de-
fined. Furthermore, to support sophisticated analysis of the evolution process, we pro-
pose an ontology of changes, which allows the persistent representation of the detected
changes, in a manner that permits easy and efficient navigation among versions, analy-
sis of the deltas, cross-snapshot or historical queries, and the raising of changes as first
class citizens. This, in a multi-version repository, allows queries that refer uniformly to
both the data and its evolution. This framework provides a generic basis for analyzing
the dynamics of LOD datasets, and is described in Section 5.

In our experimental evaluation (Section 6), we used 3 real RDF datasets of dif-
ferent sizes to study the number of simple and complex changes that usually occur in

Shttp://www.w3.org/RDF/

D1

Real_Madrid_CF

Real_Madrid Real_Madrid

Low-level changes Simple changes Complex changes

[@ (Mikel_Lasa, team, Real_Madrid_CF}

@ (Mikel_Lasa, name, Mikel Lasa)
Add_Property_Instance (Mikel_Lasa,
name, “Mikel Lasa")
(Mikel_Lasa, rdF:type, Athlete)

Add_Type_To_individual
(Mikel_Lasa, Athlete)

team, Real_Madrid_CF)

Add_Property_lnstance (Mikel_Lasa, Add_Player(“Mikel Lasa”,ReaIMadridCi

Fig. 1. Motivating Example

real-world settings, and provide an analysis of their types. Moreover, we report the eval-
uation results of the efficiency of our change detection process and quantify the effect
of the size of the compared versions and the number of detected changes in the perfor-
mance of the algorithm. To our knowledge, this is the first time that change detection
has been evaluated for datasets of this size.

2 Motivating Example

In our work, we provide a change recognition method, which, given two dataset versions
Doid> Drnew, produces their delta (A), i.e., a formal description of the changes that were
made to get D,,.,, from D,;4. The naive approach is to express the delta with low-level
changes (consisting of triple additions and deletions). Our approach builds two more
layers on top of low level changes, each adding a semantically richer change vocabulary.

Low-level changes are easy to define and detect, and have several nice proper-
ties [24]. For example, assume two DBpedia versions of a partial ontology with infor-
mation about football teams (Figure 1 (top)), in which the RDF class of Real Madrid_CF
is subclass of SoccerClub. Commonly, change detection compares the current with the
previous dataset version and returns the low-level delta containing the added triples:
(Mikel_Lasa, team, Real_Madrid.CF), (Mikel_ Lasa, name, Mikel
Lasa), (Mikel_Lasa, type, Athlete).Clearly, the representation of changes
at the level of (added/deleted) triples, leads to a syntactic delta, which does not prop-
erly capture the intent behind a change and generates results that are not intuitive
enough for the human user. What we would like to report is: Add_Player(“Mikel Lasa”,
Real_Madrid_CF), which corresponds to the actual essence of the change.

In order to achieve this, we need an intermediary level of changes, called simple
changes. Simple changes are fine-grained, predefined and domain-agnostic changes. In

our example, the low-level changes found as added triples, reflect three simple changes,
namely, two Add_Property _Instance changes, for the property:team and property:name,
and one Add_Type_To_Individual change, for denoting the type of athlete (Figure 1).
Interestingly, a simple change can group a set of different low-level changes.

However, it is still not easy for the user who is not domain expert and familiar
with the notion of triples to define simple changes. To address this problem, changes
of coarser granularity are needed. The main idea is to group simple changes into com-
plex ones, that are data model agnostic and carry domain-specific semantics, thereby
making the description of the evolution (delta) more human-understandable and con-
cise. In our example, the three simple changes can be grouped under one complex,
called Add_Player. The change’s definition includes two arguments: Add_Player(“Mikel
Lasa”, Real_ Madrid_CF). Such a complex change consumes the corresponding simple
changes, thus, there is no need for further reporting them.

In a nutshell, complex changes are user-defined, custom changes, which intend to
capture changes from the application perspective. Different applications are expected
to use different sets of complex changes. Complex changes are defined at a semantic
level, and may be used to capture coarse grained changes that happen often; or changes
that the curator wants to highlight because they are somehow useful or interesting for a
specific domain or application; or changes that indicate an abnormal situation or type of
evolution. Thus, complex changes build upon simple ones because, intuitively, complex
changes are much easier to be defined on top of simple changes.

On the other hand, complex changes, being coarse-grained, cannot capture all evo-
lution aspects; moreover, it would be unrealistic to assume that complex changes would
be defined in a way that captures all possible evolution types. Thus, simple changes
are necessary as a “default” set of changes for describing evolution types that are not
interesting, common, or coarse-grained enough to be expressed using complex changes.

3 Preliminaries

We consider two disjoint sets U, L, denoting the URIs and literals (we ignore here blank
nodes that can be avoided when data are published according to the LOD paradigm);
the set T=U x U x (UUL) is the set of all RDF triples. A version D; is a set of RDF
triples (D; C T); a dataset D is a sequence of versions D = (D1, ..., D,).

SPARQL 1.1 [18] is the official W3C recommendation language for querying RDF
graphs. The building block of a SPARQL statement is a triple pattern tp that is like
an RDF triple, but may contain variables (prefixed with character 7); variables are
taken from an infinite set of variables V, disjoint from the sets U, L, so the set of
triple patterns is: TP= (UU V) x (UUV) x (UUL UYV). SPARQL triple patterns
can be combined into graph patterns gp, using operators like join (“.”), optional (OP-
TIONAL) and union (UNION) [1] and may also include conditions (using FILTER). In
this work, we are only interested in SELECT SPARQL queries, which are of the form:
“SELECT vy,...,v, WHERE gp”, where n > 0, v; € V and gp is a graph pattern.

Evaluation of SPARQL queries is based on mappings, which are partial functions
i V= UUL that associate variables with URIs or literals (abusing notation, u(tp)
is used to denote the result of replacing the variables in ¢p with their assigned values

according to p). Then, the evaluation of a SPARQL triple pattern ¢p on a dataset D
returns a set of mappings (denoted by [[tp]]?), such that, u(tp) € D for u € [[tp]]P.
This idea is extended to graph patterns by considering the semantics of the various
operators (e.g., [[tpy UNION tps]]P = [[tp1]]P U [[tp2]]P). Given a SPARQL query
“SELECT wvy,...,v, WHERE gp”, its result when applied on D is (p(v1), ...,
w(vy,)) for 1 € [[gp]]P. For the precise semantics and further details on the evaluation
of SPARQL queries, the reader is referred to [16, 1].

4 Semantics

4.1 Language of Changes

We assume aset £ = {cy, ..., ¢, } of changes, which is disjoint from V, U, L. The set £
is called a language of changes and is partitioned into the set of simple changes (denoted
by L£°) and the set of complex changes (denoted by £¢). Each change has a certain arity
(e.g., Add_Player has two arguments); given a change c, a change specification is an
expression of the form ¢(p1, . . ., p,), where n is the arity of ¢, and py,...,p, € V.

As was made obvious in Section 2, the detection semantics of a change specification
are determined by the changes that it consumes and the related conditions. Formally:

Definition 1. Given a simple change ¢ € L7, and its change specification c(p1, . . ., pn),
the detection semantics of ¢(p1, . . ., pn) is defined as a tuple (5, do1d, Onew) Where:

— 0§ determines the consumed changes of ¢ and is a pair § = (67,57), where 5+, §~
are sets of triple patterns (corresponding to the added/deleted triples respectively).
— Gold, Onew are graph patterns, called the conditions for D,iq, Dipew, respectively.

Definition 2. Given a complex change ¢ € L, and its change specification c(p1, . . ., pn),
the detection semantics of ¢(p1, . . ., pn) is defined as a tuple (5, Go1d, Onew) Where:

— § determines the consumed changes of c and is a set of change specifications from

L5 ie, § ={ci(pl, .- Ph1)s s Cm(DY, . P,)} where {c1, ... ,cpn} C L5
— Gold, Pnew are graph patterns, called the conditions for D,iq, Dipew, respectively.

In our running example, the detection semantics of Add_Property_Instance(Mikel-
Lasa, team, Real Madrid_CF) are: 6T = {(Mikel_Lasa, team, Real_Madrid_CF)},
07 =0, 0010 =, Prew = 7. Additionally, the detection semantics of Add_Player(‘“Mikel
Lasa”, Real_Madrid_CF) are: Add_Property_Instance(Mikel Lasa, team, Real_ Madrid_
CF), Add_Property_Instance(Mikel Lasa, name, “Mikel Lasa”), Add_Type_To_Individual
(Mikel_Lasa, Athlete).

The structure of the above definitions determines the SPARQL to be used for de-
tection (see Subsection 5.2, and [20]). Any actual detection will give specific values
(URIs or literals) to the variables appearing in a change specification. For example,
when Add_Property_Instance is detected, the returned result should specify the sub-
ject and object of the instance added to the property; essentially, this corresponds to
an association of the three variables (parameters) of Add_Property_Instance to specific
URIs/literals. Formally, for a change c, a change instantiation is an expression of the
form ¢(x1, ..., x,), where n is the arity of ¢, and x4, ..., 2, € UUL.

4.2 Detection Semantics

Simple changes. For simple changes, a detectable change instantiation corresponds to
a certain assignment of the variables in 6T, 6, 014> Pnew» such that the conditions
(Polds Pnew) are true in the underlying datasets, and the triples in §7, 5~ have been
added/deleted, respectively, from D,;4 to get D,,q,. Formally:

Definition 3. A change instantiation c(x1,...,x,) of a simple change specification
c(p1,-..,pn) is detectable for the pair Dyjq, Dyew iff there is a ji € [[poa]]Poe N
[[Pnew]]Prew such that for all tp € 6T: p(tp) € Dpew \ Dog and for all tp € 6 :
w(tp) € Dora \ Dnew and for all i: u(p;) = x;.

Simple changes must satisfy the properties of completeness and unambiguity; this
guarantees that the detection process exhibits a sound and deterministic behaviour [15].
Essentially, what we need to show is that each change that the dataset underwent is
properly captured by one, and only one, simple change. Formally:

Definition 4. A detectable change instantiation ¢(x1, . . ., x,) of a simple change spec-
ification ¢(p1, . .. ,pn) consumes t € Dyey \ Dora (respectively, t € Dyig \ Drew) iff
there is a pu € [[po1a)]P2 N [[Prew]]Prew and a tp € 6+ (respectively, tp € =) such
that p(tp) = t and for all i: p(p;) = x;.

The concept of consumption represents the fact that low-level changes are “as-
signed” to simple ones, essentially allowing a grouping (partitioning) of low-level changes
into simple ones. To fulfil its purpose, this “partitioning” should be perfect, as dictated
by the properties of completeness and unambiguity. Formally:

Definition 5. A set of simple changes C'is called complete iff for any pair of versions
Dotds Drnew and for all t € (Dpew \ Dotd) U (Dotd \ Dnew), there is a detectable
instantiation c(z1, . . .,) of some ¢ € C such that c(x1, ..., x,) consumes t.

Definition 6. A set of simple changes C is called unambiguous iff for any pair of
versions Dog, Dpew and for all t € (Dpew \ Dota) U (Dota \ Drew)s if ¢, € C
and c(xz1,...,x,),c (2}, ... ") are detectable and consume t, then c(x1, ..., Tp) =
(. .,xl).

In a nutshell, completeness guarantees that all low level changes are associated with
at least one simple change, thereby making the reported delta complete (i.e., not miss-
ing any change); unambiguity guarantees that no race conditions will emerge between
simple changes attempting to consume the same low level change (see Figure 2 for
a visualization of the notions of completeness and unambiguity). The combination of
these two properties guarantees that the delta is produced in a complete and determin-
istic manner. Regarding the simple changes, £°, used in this work (for a complete list,
see [20]), the following holds:

Proposition 1. The simple changes in L® [20] are complete and unambiguous.

Incomplete and Unambiguous

- 5. |Simple_
R
s . :
Complete and Unambi . . L
¢ L
® e o

: Simple_Change_1
~—
Simple_Change 2 Complete and Ambiguous

Simple_
“.. | Change_ 2

5"

ambiguity
N

Simple_Change_1

Simple_Change_1

Fig. 2. Visualization of Completeness and Unambiguity

Complex Changes. As complex changes can be freely defined by the user, it would be
unrealistic to assume that they will have any quality guarantees, such as completeness
or unambiguity. As a consequence, the detection process may lead to non-deterministic
consumption of simple changes and conflicts; to avoid this, complex changes are asso-
ciated with a priority level, which is used to resolve such conflicts.

The detection for complex changes is defined on top of simple ones. A complex
change is detectable if its conditions are true for some assignment, while at the same
time the corresponding simple changes in ¢ are detectable. However, this naive defini-
tion could lead to problems, as it could happen that the same detectable simple change
instantiation is simultaneously contributing in the detection of two (or more) complex
changes. Such a case would lead to undesirable race conditions, so we define a total or-
der (called priority, and denoted by <) over £¢, which helps disambiguate these cases.
This leads to the following definitions:

Definition 7. A complex change instantiation ¢(x1,. .., %y,) is initially detectable for
the pair Dyyg, Drew iff there is a i € [[po1a]]Po' N [[dnew]|Prew such that ¢ (u(p}),
-, 1(p,)) is detectable for all ' (p}, ..., pl,) € 0, and u(p;) = z; fori=1,...,n.

Definition 8. An initially detectable complex change instantiation c¢(x1, ..., x,) con-
sumes a simple change instantiation ¢/ (x, ..., z,,) iff ¢ (v}, ..., p,) € 0 and there is
a € [[¢o1d)] Pt N [[dnew]]Prew such that for all i, u(p;) = x;, u(p) = .

Definition 9. A complex change instantiation c¢(x1, . . . ,x,) is detectable for the pair
Doids Drew iff it is initially detectable for the pair D,iq, Dnew and there is no initially
detectable change instantiation ¢’ (2, . .., x},) such that ¢ < ¢’ and ¢, ¢’ have at least
one consumed simple change instantiation in common.

5 Change Detection for Evolution Analysis

5.1 Representing Detected Changes

We treat detected changes (i.e., change instantiations) as first-class citizens in order to
be able to perform queries analysing the evolution of datasets. Further, we are interested
in performing combined queries, in which both the datasets and the changes should be
considered to get an answer. To achieve this, the representation of the changes that are
detected on the data cannot be separated from the data itself.

For example, consider the following query: “return all the left backs born before
1980, which were transferred to Athletic Bilbao between versions D,;4 and D,,.,, and
used to play for Real Madrid CF in any version”. Such a query requires access to the
changes (to identify transfers to Athletic Bilbao), and to the data (to identify which
of those transfers were related to left backs born before 1980); in addition, it requires
access to all previous versions (cross-snapshot query) to determine whether any of the
potential results (players) used to play for Real Madrid CF in any version.

To answer such queries, the repository should include all versions, as well as their
changes. We opt to store the changes in a structured form; their representation should
include connections with the actual entities (e.g., teams or players) and the versions
that they refer to. This can be achieved by representing changes as RDF entities, with
connections to the actual data and versions, so that a detectable change can be associated
with the corresponding data entities that it refers to.

In particular, we propose the use of an adequate schema (that we call the ontol-
ogy of changes) for storing the detected changes, thereby allowing a supervisory look
of the detected changes and their association with the entities they refer to in the ac-
tual datasets, facilitating the formulation and the answering of queries that refer to
both the data and their evolution (see Figure 3). In a nutshell, the schema in our rep-
resentation describes the change specifications and detection semantics, whereas the
detected changes (change instantiations) are classified as instances under this schema.
More specifically, at schema level, we introduce one class for each simple and com-
plex change ¢ € L. Each such class c¢ is subsumed by one of the main classes “Sim-
ple_Change” or “Complex_Change”, indicating the type of c. Each change is also asso-
ciated with its user-defined name, a number of properties (one per parameter), and the
names of these parameters (not shown in Figure 3 to avoid cluttering the image).

For complex changes, we also store information regarding the changes being con-
sumed by each complex change, as well as the SPARQL query used for its detec-
tion, which is automatically generated at change definition time; this is done for ef-
ficiency, to avoid having to generate this query in every run of the detection pro-
cess. Note that the information related to complex changes is generated on the fly at
change creation time (in contrast to simple changes, which are built in the ontology
at design time). All schema information is stored in a dataset-specific named graph
(“D/changes/Appl/schema”, for a dataset D and a related application App1); this is nec-
essary because each different application may adopt a different set of complex changes.

At instance level, we introduce one individual for each detectable change instantia-
tion ¢(x1, .. ., x,) in each pair of versions (AddPI1 and AddPlayer1). This individual is
associated with the values of its parameters, which are essentially URIs or literals from

Kl/changes/Appl/schema

[NIiZa @Ml Complex_Change f Simple_Change
i /_l‘

Add_Type_To_Individual

Fig. 3. The Ontology of Changes

the actual dataset versions. This provides the “link” between the change repository and
the data, thereby allowing queries involving both the changes and the data. In addition,
complex changes are connected with their consumed simple ones. The triples that de-
scribe this information are stored in an adequate named graph (e.g., “D/changes/v1-v2”,
for the changes detected between v1, v2 of the dataset D).

5.2 Change Detection Process and Storage

To detect simple and complex changes, we rely on plain SPARQL queries, which are
generated from the information drawn from the detection semantics of the correspond-
ing changes (Definition 1 and 2). For simple changes, this information is known at de-
sign time, so the query is loaded from a configuration file, whereas for complex changes,
the corresponding query is generated once at change-creation time (run-time) and is
loaded from the ontology of changes (see Figure 3). For examples of such queries, see
[20]. The results of the generated queries determine the change instantiations that are
detectable; these results determine the actual triples to be inserted in the ontology of
changes.

The SPARQL queries used for detecting a simple change are SELECT queries,
whose returned values are the values of the change instantiation; thus, for each vari-
able in the change specification, we put one variable in the SELECT clause. Then,
the WHERE clause of the query includes the triple patterns that should (or should not)
be found in each of the versions in order for a change instantiation to be detectable;
more specifically, the triple patterns in 6T must be found in D,,.,, but not in D4, the
triple patterns in 6~ must be found in D,;4 but not in D,,,,, and the graph patterns in
Dold, Pnew should be applied in Dy, Dpew, respectively.

The generation of the SPARQL queries for the complex changes follows a similar
pattern. The main difference is that complex changes check the existence of simple
changes in the ontology of changes, rather than triples in the two versions (as is the
case with simple changes detection); therefore, complex changes should be detected

after the detection of simple changes and their storage in the ontology. Note also that
the considered simple changes should not have been marked as “consumed” by other
detectable changes of a higher priority; thus, it is important for queries associated with
complex changes to be executed in a particular order, as implied by their priority.
Following detection, the information about the detectable (simple or complex) change

instantiations is stored in the ontology of changes along with any new consumptions of
simple changes. To do so, we process each result row to create the corresponding triple
blocks, as specified in Section 5.1. This is done as a separate process that first stores
the triple blocks in a file (on disk) and subsequently uploads them in the triple store (in
our implementation, we use Virtuoso* and its bulk loading process for triple ingestion).
Note that the detection and storing of changes could be done in one step, if one used an
adequately defined SPARQL INSERT statement® that identified the detectable change
instantiations, created the corresponding triple blocks and inserted them in the ontol-
ogy using a single statement. However, this approach turned out to be slower by 1 to 2
orders of magnitude, partly because it does not exploit bulk updates based on multiple
threads, and also because bulk loading is much faster.

6 Experimental Evaluation

Our evaluation focuses on identifying the number and type of simple and complex
changes that usually occur in real-world settings, study the performance of our change
detection process and quantify the effect of different parameters in the performance of
the algorithm. Our experiments are based on the changes defined in [20].
Setting. For the management of linked data (e.g., storage of datasets and query execu-
tion), we worked with a scalable triple store, namely the open source version of Virtuoso
Universal Server*, v7.10.3209 (note that, our work is not bounded to any specific in-
frastructure or triple-store). Virtuoso is hosted on a machine which uses an Intel Xeon
E5-2630 at 2.30GHz, with 384GB of RAM running Debian Linux wheezy version, with
Linux kernel 3.16.4. The system uses 7TB RAID-5 HDD configurations. From the to-
tal amount of memory, we dedicated 64GB for Virtuoso and 5GB for the implemented
application. Moreover, taking into account that CPU provides 12 cores with 2 threads
each, we decided to use a multi-threaded implementation; specifically, we noticed that
the use of 8 threads during the creation of the RDF triples along with the ingestion
process gave us optimal results for our setting. This was one more reason to select Vir-
tuoso for our implementation, as it allows the concurrent use of multiple threads during
ingestion. To eliminate the effects of hot/cold starts, cached OS information etc., each
change detection process was executed 10 times and the average times were considered.
For our experimental evaluation, we used 3 real RDF datasets of different sizes: a
subset of the English DBpedia® (consisting of article categories, instance types, labels
and mapping-based properties), and the FMA’ and EFO?® datasets. Table 1 summarizes

‘nttp://virtuoso.openlinksw.com
Shttp://www.w3.0rg/TR/2013/REC-sparqlll-update-20130321/
®http://dbpedia.org
"http://sig.biostr.washington.edu/projects/fm/AboutFM.html
$http://www.ebi.ac.uk/efo/

Table 1. Evaluated Datasets: Versions and Sizes

|| DBpedia || FMA | EFO
Version [[v3.7[v3.8[v3.9]] v1.4 [v3.0 | v3.1 [[v2.44[v2.45]v2.46 | v2.47 [v2.48[v2.49[v2.50
Triples|[49M|63M|68M|[1.51M|1.67M[1.71M[]0.38M[0.38M|0.39M|0.39M[0.4M [0.4M |0.42M

Table 2. Sets of Complex Changes for DBpedia, FMA and EFO

DBpedia

[[FMA

[[EFO

Add_Subject (1)

Add_Concept (1)

Add_Definition (1)

Delete_Subject (1)

Delete_Concept (1)

Add_Synonym (1)

Add_Thing (1)

Add_Restriction (1)

Delete_Definition (1)

Delete_Thing (1)

Delete_Restriction (1)

Delete_Synonym (1)

Add_Athlete (1)

Add_Synonym (1)

Mark_as_Obsolete (2)

Update_Label (2)

Update_Comment (2)

Update_Comment (2)

Add_Place (2)

Update_Domain (2)

Update_Domain (2)

Delete_Place (2)

Update_Range (2)

Update_Label (2)

Add_Person (3)

Add_Observation (3)

Update_Range (2)

Delete_Person (3)

Delete_Observation (3)

Update_Property (4)

the sizes of the evaluated versions of these datasets. To evaluate the performance of
the complex change detection process, we created 3 sets of complex changes, one for
each dataset. To do this, we exploit domain experts knowledge’, so as to have sets of
changes that reflect real-users needs and show similar characteristics, namely (i) same
number of complex changes in the sets and (ii) very close numbers of simple changes
consumed by the complex changes in the sets. Table 2 presents the particular complex
changes used for each dataset along with the number of simple changes consumed (for
the definition of the changes, see [20]).

For DBpedia and FMA, let DBpl, DBp2 and FMA1, FMA?2 stand for the pairs of
versions (v3.7,v3.8), (v3.8, v3.9), and (v1.4, v3.0), (v3.0, v3.1), respectively. Similarly,
we denote with EFO1 the pair of versions (v2.44, v2.45) of the EFO dataset, with EFO2
the pair of versions (v2.49, v2.50), and so forth. To our knowledge, this is the first time
that change detection has been evaluated for datasets of this size.

Detected Simple Changes. Figure 4 summarizes the number and type of simple changes
that appear in the evaluated datasets. We note the large number of changes which oc-
curred during DBpedia evolution compared to the FMA and EFO datasets, due mostly
to its bigger size. However, even if the versions sizes of FMA are much smaller than
DBpedia (Table 1), there are cases in which the number of changes between two FMA
versions are of the same order of magnitude compared to the number of changes be-
tween two DBpedia versions (e.g., Add_Property_Instance). This is explained by the
fact that FMA contains experimental biological results and measurements that change
over time, thus new versions are vastly different from previous ones. Moreover, observe
that the majority of changes (in all datasets except EFO) are applied to the data level
(e.g., Add_Property_Instance), whereas in EFO, we have also changes which are ap-

®http://www.ebi.ac.uk/

B ADD_COMMENT B ADD_DOMAIN B ADD_LABEL B ADD_PROPERTY_INSTANCE

HADD_RANGE B ADD_SUPERCLASS B ADD_TYPE_CLASS B ADD_TYPE_TO_INDIVIDUAL

W DELETE_COMMENT W DELETE_DOMAIN W DELETE_LABEL DELETE_PROPERTY_INSTANCE

DELETE_RANGE DELETE_SUPERCLASS DELETE_TYPE_CLASS DELETE_TYPE_FROM_INDIVIDUAL

Fig. 4. Detected Simple Changes

plied to the schema (we notice a big number of Add_Superclass changes, expressing a
modification on the hierarchy of the EFO schema).

Performance of Simple Change Detection. Table 3 reports on the performance of the
detection process for the employed datasets. We split the results in two parts, namely
triple creation and triple ingestion; the former includes the execution of the SPARQL
queries for detection and the identification of the triples to be inserted in the ontology
of changes, whereas the latter is the actual enrichment of the ontology of changes.
Our main conclusion is that the number of simple changes is a more crucial factor for
performance than the sizes of the compared versions. This observation is more clear in
the DBpedia dataset, where the evolution between v3.7 and v3.8 produces about twice
the number of changes than the evolution between v3.8 and v3.9; despite the fact that
in the second case, we compare larger dataset versions (Table 1), the execution time
in the former case is almost twice as large. Note that this conclusion holds for both
triple creation and ingestion. Overall, our approach is about 1 order of magnitude faster
compared to the most relevant approach, presented in [15]. To show this, we performed
an additional experiment with the largest dataset used in [15], namely the GO' dataset
(versions v22-09-2009 and v20-04-2010) with about 0.2M triples per version. In this
experiment, our approach needs 1,52 sec, while [15] requires 33,13 sec.

Detected Complex Changes. Figure 5 summarizes the number of complex changes per
type for the evaluated datasets. Clearly, the size of the datasets determines the number
of the complex changes occurred during the datasets evolution; abstractly speaking, the
bigger the dataset (see Table 1), the more the changes. From Figure 5, we can identify
the particular types of complex changes that are the most popular ones. Specifically,
in DBpedia, changes like Add_Subject, Add_Thing and Add_Person are very common
(on average, there are 2.7M, 1M and 0.5M changes, respectively). In FMA, we observe

Yhttp://geneontology.org

Table 3. Performance of Simple Change Detection

[Versions Pairs[# Simple Changes[# Ingested Triples|Triple Creation (sec)| Triple Ingestion (sec) [Duration (sec)|
DBpl 20.7M 74.8M 412 143 555
DBp2 9.3M 32M 235 73 308
FMA1 2.TM 8.8M 113 12 125
FMA2 2.5M 9.TM 140 12 152
EFO1 0.1K 0.3K 0.33 0.11 0.44
EFO2 59K 180K 0.9 1.63 2.53
EFO3 0.3K 1K 0.22 0.79 1.01
EFO4 1.9K 6.4K 0.64 0.33 0.97
EFO5 0.6K 2K 0.57 0.2 0.77
EFO6 2.8K 8.9K 0.47 0.39 0.86

B Add Athlete ™ Add Concept Add Definition ® Add Observation ® Add Person Add Place

® Add Restriction = Add Subject = Add Synonym ® Add Thing ® Delete Definition # Delete Observation
® Delete Person H Delete Place ¥ Delete Restriction M Delete Subject ¥ Delete Synonym Delete Thing

¥ Mark as Obsolete " Update Comment Update Domain " Update Label Update Property Update Range

Fig. 5. Detected Complex Changes

a big number of Add_Concept, Delete_Concept, Add_Observation, Delete_Observation
and Add_Synonym changes with about 140K, 140K, 140K, 140K, 46K changes, respec-
tively. EFO is the smallest dataset with the smaller number of changes; for example,
we count about 7K, 7K and 1.5K Add_Synonym, Delete_Synonym and Add_Definition
changes. In overall, the majority of complex changes are applied to the data level.

Performance of Complex Change Detection. Table 4 reports on the performance of
the complex change detection process for the employed RDF datasets. Again, we pro-
vide execution times for both the triple creation, i.e., for the execution of the SPARQL
queries for detecting the triples to be inserted in the ontology of changes, and the triple
ingestion, i.e., for the actual enrichment of the ontology of changes. Moreover, we show
the size, in number of triples, of the ontology of changes per dataset; the ontology of
changes, as produced after identifying the simple changes, is used for searching for
complex changes, instead of the actual datasets versions. The bigger the size of the
ontology of changes, the higher the execution time (for both triple creation and inges-
tion). Given that, typically, the ontologies of changes contain much fewer triples than
the datasets versions, searching for complex changes needs much less time, compared
to the time required for searching simple changes. The reported small execution times
are affected as well by the smaller number of complex changes identified, compared to
the number of the identified simple changes. Finally, note that here we follow a multi-

Table 4. Performance of Complex Change Detection

Versions [# Complex| Ontology of |# Ingested Triple Triple Duration

’ Pairs | Changes |Changes Size| Triples |Creation (sec)|Ingestion (sec)| (sec)
DBpl 5.79M 74.8M 100.2M 136.5 52.8 189.3
DBp2 5.67TM 32M 53.6M 130.7 48 178.7
FMA1 | 616.4K 8.8M 13.6M 20.93 19.65 40.58
FMA2 | 627.8K 9.7M 13.1IM 20.84 19.23 40.07
EFO1 36 0.3K 0.5K 0.79 0.04 0.83
EFO2 15.7M 180K 243.6K 1.17 0.93 2.1
EFO3 39 1K 1.2K 0.08 0.02 0.1
EFO4 M 6.4K 11.1K 0.35 0.21 0.56
EFO5 287 2K 3.4K 0.57 0.06 0.63
EFO6 IM 8.9K 14.3K 0.44 0.07 0.51

threaded implementation only for triple ingestion. Due to the fact that unambiguity does
not hold for complex changes, we cannot perform triple creation in parallel.

7 Related Work

In general, approaches for change detection can be classified into low-level and high-
level ones, based on the types of changes they support. Low-level change detection ap-
proaches report simple add/delete operations, which are not concise or intuitive enough
to human users, while focusing on machine readability. [4] discusses a low-level detec-
tion approach for propositional Knowledge Bases (KBs), which can be easily extended
to apply to KBs represented under any classical knowledge representation formalism.
This work presents a number of desirable formal properties for change detection lan-
guages, like delta uniqueness and reversibility of changes. Similar properties appear
in [24], where a low-level change detection formalism for RDFS datasets is presented.
[10] describes a low-level change detection approach for the Description Logic £L; the
focus is on a concept-based description of changes, and the returned delta is a set of con-
cepts whose position in the class hierarchy changed. [11] presents a low-level change
detection approach for DL-Lite ontologies, which focuses on a semantical description
of the changes. Recently, [8] introduces a scalable approach for reasoning-aware low-
level change detection that uses an RDBMS, while [12] supports change detection be-
tween RDF datasets containing blank nodes. All these works result in non-concise,
low-level deltas, which are difficult for a human to understand.

High-level change detection approaches provide more human-readable deltas. Al-
though there is no agreed-upon list of changes necessary for any given context, vari-
ous high-level operations, along with the intuition behind them, have been proposed.
Specifically, [9, 14] describes a fixed-point algorithm for detecting changes, imple-
mented in PromptDiff. The algorithm incorporates heuristic-based matchers to detect
changes between two versions, thus introducing uncertainty in the results. [17] pro-
poses the Change Definition Language (CDL) as a means to define high-level changes.
A change is defined and detected using temporal queries over a version log that contains
recordings of the applied low-level changes. The version log must be updated whenever
a change occurs; this overrules the use of this approach in non-curated or distributed en-
vironments. In general, these approaches do not present formal semantics of high-level

operations, or of the corresponding detection process; thus, no useful formal properties
can be guaranteed.

The most relevant work appears in [15], where an approach for detecting high-level
changes appears. In that work, unlike our approach, a fixed set of high-level changes is
proposed, without providing facilities related to representing the detected changes and
answering cross-snapshot queries, or queries accessing both the changes and the data;
as such, it only partly addresses the problem of analyzing datasets’ dynamics. Interest-
ingly, we experience significantly improved performance and scalability (see Section 6).
In [2] the authors focus on formally defining high-level changes as sequences of triples,
but do not describe a detection process or a specific language of changes, while [6] pro-
poses an interesting high-level change detection algorithm that takes into account the
semantics of OWL. Using a layered approach designed for OWL as well, [7] focuses
on representing changes only at schema level.

The idea of using SPARQL query templates to identify evolution patterns is also
used in [19]; however, this paper aims to identify problems caused during ontology evo-
lution, rather than analyse the evolution and report or represent changes. A complemen-
tary to ours work is presented in [5]; it defines a SPARQL-like language for expressing
complex changes and querying the ontology of changes in a user-friendly manner. On
the contrary, our work provides the semantics of the created complex changes, and the
changes ontology, upon which the evolution analysis will be made.

8 Conclusions

The dynamicity of LOD datasets makes the automatic identification of deltas between
versions increasingly important for several reasons, such as storing and communica-
tion efficiency, visualization and documentation of deltas, efficient synchronization and
study of the dataset evolution history. In this paper, we proposed an approach to cope
with the dynamicity of Web datasets via the management of changes between versions.
We advocated in favour of a flexible, extendible and triple-store independent approach,
which prescribes (i) the definition of custom, application-specific changes, and their
management (definition, storage, detection) in a manner that ensures the satisfaction of
formal properties, like completeness and unambiguity, (ii) the flexibility and customiza-
tion of the considered changes, via complex changes that can be defined at run-time, and
(iii) the easy configuration of a scalable detection mechanism, via a generic algorithm
that builds upon SPARQL queries easily generated from the changes’ definitions.

An important feature of our work, in which we handle real datasets snapshots, is
the ability to perform sophisticated analysis on top of the detected changes, via the
representation of the detected changes in an ontology and their treatment as first-class
citizens. This allows queries spanning multiple versions of the data (cross-snapshot), as
well as queries involving both the evolution history and the data.

Acknowledgments. This work was partially supported by the EU FP7 projects DI-
ACHRON (#601043) and IdeaGarden (#318552).

References

1

2.

10.

11.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

M. Arenas, C. Gutierrez, and J. Pérez. On the semantics of SPARQL. In Semantic Web
Information Management - A Model-Based Perspective. Springer, 2009.

S. Auer and H. Herre. A versioning and evolution framework for RDF knowledge bases. In
PSI, 2007.

. R. Cloran and B. Irvin. Transmitting RDF graph deltas for a cheaper semantic Web. In

SATNAC, 2005.

. E. Franconi, T. Meyer, and I. Varzinczak. Semantic diff as the basis for knowledge base

versioning. In NMR, 2010.

. T. Galani, Y. Stavrakas, G. Papastefanatos, and G. Flouris. Supporting complex changes in

RDF(S) knowledge bases. In MEPDaW-15, 2015.

. G. Groner, F. S. Parreiras, and S. Staab. Semantic recognition of ontology refactoring. In

ISWC, 2010.

. J. Hartmann, R. Palma, Y. Sure, P. Haase, and M. C. Suarez-Figueroa. OMV ontology

metadata vocabulary. In Ontology Patterns for the Semantic Web Workshop, 2005.

. D.-H. Im, S.-W. Lee, and H.-J. Kim. Backward inference and pruning for rdf change detec-

tion using rdbms. J. Information Science, 39(2):238-255, 2013.

. M. Klein, A. Proefschrift, M. Christiaan, A. Klein, and J. M. Akkermans. Change manage-

ment for distributed ontologies. Technical report, VU University Amsterdam, 2004.

B. Konev, D. Walther, and F. Wolter. The logical difference problem for description logic
terminologies. In IJJCAR, 2008.

R. Kontchakov, F. Wolter, and M. Zakharyaschev. Can you tell the difference between DL-
Lite ontologies? In KR, 2008.

D.-H. Lee, D.-H. Im, and H.-J. Kim. A change detection technique for RDF documents
containing nested blank nodes. In PSI, 2007.

. N. F. Noy, A. Chugh, W. Liu, and M. A. Musen. A framework for ontology evolution in

collaborative environments. In ISWC, 2006.

N. F. Noy and M. A. Musen. Promptdiff: A fixed-point algorithm for comparing ontology
versions. In A, 2002.

V. Papavasileiou, G. Flouris, I. Fundulaki, D. Kotzinos, and V. Christophides. High-level
change detection in RDF(S) KBs. ACM Trans. Database Syst., 38(1), 2013.

J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL. In ISWC,
2006.

P. Plessers, O. De Troyer, and S. Casteleyn. Understanding ontology evolution: A change
detection approach. Web Semant., 5(1):39—49, 2007.

E. Prud’hommeaux, S. Harris, and A. Seaborne. SPARQL 1.1 Query Language. Technical
report, W3C, 2013.

C. Riess, N. Heino, S. Tramp, and S. Auer. Evopat — pattern-based evolution and refactoring
of RDF knowledge bases. In ISWC 2010, 2010.

Y. Roussakis, I. Chrysakis, K. Stefanidis, and G. Flouris. A flexible framework for un-
derstanding the dynamics of evolving RDF sdatasets: Extended version. Technical Report
TR-456, FORTH-ICS, July 2015.

K. Stefanidis, I. Chrysakis, and G. Flouris. On designing archiving policies for evolving
RDF datasets on the Web. In ER, 2014.

K. Stefanidis, V. Efthymiou, M. Herchel, and V. Christophides. Entity resolution in the Web
of data. In WWW, 2014.

J. Umbrich, M. Hausenblas, A. Hogan, A. Polleres, and S. Decker. Towards dataset dynam-
ics: Change frequency of Linked Open Data sources. In LDOW, 2010.

D. Zeginis, Y. Tzitzikas, and V. Christophides. On computing deltas of rdf/s knowledge
bases. ACM Trans. Web, 5(3):14:1-14:36, 2011.

