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Abstract. A recommender system can be considered as an information
filtering system that seeks to predict the preference a user would have
for a data item. It is commonly utilized in digital stores to recommend
products to their users according to the users previous purchases. This
applies to Steam as well, a widely used digital distribution platform for
games. The existing recommender system mainly suggests new games to
a given user by calculating similarities between games they own and those
that they do not. These similarities are based on predefined attributes
(game genres). Additionally, the system is able to recommend games
based on the game preferences of the users friends. In this work, we target
at creating an enhanced recommender system for Steam. The goal is to
design a hybrid approach for producing suggestions that will utilize data,
such as playing time, game price and game release date, in addition to
the genres and the preferences of friends.
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1 Introduction

The Steam platform is the largest digital distribution platform for PC gaming
nowadays. On 14 Jan 2019, Steam published its annual report based on the past
12 months, including data on stores, the Steam community, gameplay, Steam-
works, and things behind the scenes. According to the report, Steam users have
experienced explosive growth in 2018 [18]. Among them, the daily active users
of the platform are up to 47 million, the monthly active users are 90 million, the
highest number of online users is 18.5 million, and the monthly growth of users
with valid purchases is 1.6 million. One of the key reasons Steam is growing so
rapidly is the good search-ability in store, which was mentioned in the report
as well. They are working on a new recommendation system driven by machine
learning to find games that match the player’s personal preferences. Although
the algorithm is just part of the search-ability solution, they are also building
more live and appreciation features and continually evaluating the overall design
of the store.

On the other hand, the recommender system sometimes does not work as
well as expected. One reason for this is the Matthew Effect [15], which means



the rich gets richer and the poor gets poorer always appears in the social science
field, can be also applied to the game market. Those games developed by big
game developing companies receive more budget on advertisement so that they
can be very popular. Popular games will appear on the top position on the
store web pages and attract more users to buy including you and your friends.
Meanwhile, games developed by small studios or individual developers are not
that lucky. Those budget games without enough attention would easily disappear
from users. What is even worse, if developers are unable to earn money from
those games, they are very likely to break down which does harm to the whole
game market. This is the reason why people need a recommender system, for
suggesting niche games to users.

Our goal, in this paper, is to create a hybrid approach for producing sugges-
tions that will utilize data, such as playing time, game price and game release
date, in addition to the genres and preferences of friends used already. Our ini-
tial target is to analyze the data, which comes in three parts. The first part
includes the user IDs, the games that they purchased and the hours they had
spent playing the game1. The second part consists of the game titles combined
with their prices and release dates2, while the third part consists of the game
names, game IDs and their genres. This dataset was manually crawled from the
Steam API.

We convert all available data into numerical ratings ranging from 1 to 5.
These ratings will then be used in calculating the Pearson correlation between
the cases to determine the similarities. A rating of 1 equals to total similarity
and -1 means that the entities being compared are total opposites to each other.
For producing recommendations, the final rating of a game to any given user is
the mean of several values, including user preference of this game genre, user
preference of games similar to this game, similar users preference of this game,
user preference of price and user preference of game released in that time zone.
The proposed approach includes no assigned weights to the individual parts
for computing the overall ratings, i.e., each aspect of the data would have an
equal amount of impact on the final rating. Python is used as the programming
language of the system.

We evaluate the accuracy of our results by separating the dataset into a test
set and a training set. Specifically, we attempt to predict the values in the test
set using the training set.

This paper is organized as follows. Section 2 discusses about the recommender
system in use of the Steam platform and the recommender of other platforms.
Section 3 introduces the dataset and analysis method. Section 4 shows the per-
formance of the proposed approach, and Section 5 concludes the paper with a
summary of our contributions.

1 https://www.kaggle.com/tamber/steam-video-games/
2 https://www.kaggle.com/ kingburrito666/over-13000-steam-games/



2 Related Work

2.1 Recommender System of Steam

Valve Software3 is keeping improve the recommending system of Steam platform
annually. However, Valve has never gave out any detailed information about the
algorithm of its recommender system. The system is like a black box to common
users. Some analysts (e.g., Erik Johnson) have attempted to dive deeply into
the mechanism behind Steam. Erik Johnson stopped using his personal Steam
account and spent two months recording all the games he had played, viewed and
commented since then, as well as the play-time, and he even stored the HTML
pages of those games. During the two months, he viewed all the 672 games
recommended by Steam and started to find the relationships among them.

According to this study, Eric Johnson found that the system could make
better recommendations if it relied less on popularity and recency, and instead
did a better job of surfacing titles based on quality and personal relevance factors.
The challenge here is that popularity and recency are easy to quantify. Quality
and relevance are more elusive. Furthermore, the most surprising omission in all
these systems is the lack of collaborative filtering [10].

2.2 Other Works on Recommender Systems

The recommender system is not a unique feature of the game platform. Since the
popularity of the Internet, various platforms have used their unique recommender
systems to provide customized services to users.

In general, a recommender system aims at providing suggestions to users or
groups of users by estimating their item preferences and recommending those
items featuring the maximal predicted preference. Typically, depending on the
type of the input data, i.e., user behavior, contextual information, item/user
similarity, recommendation approaches are classified as content-based [19], col-
laborative filtering [20], knowledge-based [4], hybrid [2], or even social ones [22].
Nowadays, recommendations have more broad applications, beyond products,
like links (friends) recommendations [28], query recommendations [6], health-
related recommendations [23, 24], open source software recommendations [11],
diverse venue recommendations [7], recommendations for groups [14, 16, 17], se-
quential recommendations [25, 3] or even recommendations for evolution mea-
sures [21, 27].

Next, we take as an example a shopping experience to showcase how recom-
menders work. So, typically, recommender algorithms start by finding a set of
customers who purchased and rated items overlap the users purchased and rated
items. The algorithm aggregates items from these similar customers, eliminate
items the user has already purchased or rated, and recommends the remaining
items to the user. In the case of item-to-item collaborative filtering, like in our
work, the focus is on finding similar items, not similar customers. For each of the

3 https://www.valvesoftware.com/en/



users purchased and rated items, the algorithm attempts to find similar items.
It then aggregates similar items and recommends them (e.g., [13]). This is the
method that many companies, like Amazon, are using. However, this method
is more likely to be a have-to choice due to the lack of friends feature, so its
recommendations rely on items and similar users. It would guess which product
you may like according to your wish list, your previous purchase and the goods
you searched for.

There are also shopping websites which allow users to add each other as
friends and take what your friends bought into account. Some people may have
similar experience like: The shop recommends the item I just bought. Here we
are going to introduce a concept that is the cost of making mistakes. A bad
recommendation will have a bad effect, but the question is how big the effect.
The cost is very small in shopping field because when a user opens the website,
he/she knows clearly what he/she needs. If they recommend him/her something,
he/she does not need, this user will even never click on it. The game field is kind
of the opposite. Many users open the game store without a specific game need.
They just select a game for fun, no matter which one. It is very difficult to judge
a game according to its description and several images. For example, based on
the description and images, the user might think that he/she likes it, but after
trying the game, he/she disliked it. During this period, the user needs to pay
both money and time, leading to trust reduction of the user for the system.

This is totally different in another field, like YouTube. The top sector on
YouTube web page is the recommendation of the video. Its algorithm is based
on the channels you subscribed, the videos you previously viewed and videos you
liked. They use two neural networks. The first one is the candidate generation
network, it takes events from the users YouTube activity history as input and
retrieves a small subset (hundreds) of videos from a large corpus. The second one,
the banking network, it accomplishes this task by assigning a score to each video
according to the desired objective function, using a rich set of features describing
the video and user. The highest scoring videos are presented to the user, ranked
by their score [5]. For new user without any interactions with the system, the
system will show the most trending videos based on the user’s location. This
mechanism is more like the Steam platform. It will classify users with many
tags. For instance, if you have viewed many technology videos, you may gain a
tag says technology fans and you may get as well other tags like nature fans or
fans of a pop star, if you watch videos of that type. The steam platform is doing
the same thing as well. If you played a lot of free games, they are highly likely
to introduce other free game rather than those very expensive fee-paying ones
to you.

3 The Dataset

To do deep analysis with Steam users gameplay, a sufficient amount of data is
needed. For our analysis, 100,000 users will be used. The open-source data com-
pany with educational datasets should be the best choice, namely, Kaggle.com.



Table 1: Dataset information.
Type Size Description

Users 11350 The number of users

Games 5155 The number of games

Games per user 17.62 The number of games owned by a user in average

Gaming time (in hours) 0.1-11754 The time a user spends on a game

Year of publish 2007-2017 The year the game published in

According to the Terms and Use of Kaggle.com, Steam’s dataset can be down-
loaded for academic use, obeying any ethics issues. We found three different
datasets from Kaggle. The first one [26] includes user IDs, the games that they
purchased and the hours they had spent playing the game. The second dataset
[12] includes the game titles combined with their prices and release dates. The
third one only includes the game titles initially, however, for the hybrid recom-
mendation system that we are aiming to create, we want to add the game genres
into the mix.

A web crawler based on Python language was created to collect game genres
from public game profiles. Steam URLs are of the form /gameID/gameName,
and we had no access to gameIDs in our data. After realized that using the Steam
webpage would be far too inconvenient due to game name in the URL being in-
consistent with the name provided in the data, the next attempt was made using
a website containing information on all Steam games, SteamDB. Much to our
dismay, only trials and errors are learned because this website actively blocks
all crawling scripts, although we did manage to find the source that this website
is using and ended up using that instead[1]. The gameIDs along with the game
genres would then be added to the third dataset. However, many games (2030
cases) have missing genres due to several reasons: Some of them were old and
thus removed from the current Steam store. Others could not be found because
their names were spelled differently in the sources that we were comparing.

Table 1 shows the basic information about the dataset. If the whole dataset
is changed into a user-game table, the known data (the user-game pair) only fills
0.34% of the whole table. The data itself is very sparse so any analysis based on
the raw data is inefficient and inaccurate. Features should be extracted from the
dataset for more research.

4 The Method

All available datasets are in a csv-format. Python libraries, like Numpy and
Pandas, are used to organize the data. In the first dataset, there was an empty
column that we removed. All the cases with missing genres are excluded.

Next, we transform the initial three datasets into four different tables.

Table 1: User-Game Table. We will first create the user-game table, which is a
table containing users along with their ratings for the games based on the time



they had spent playing the game. Our rating system is an interval from 1 to 5,
and it was calculated by dividing the playing time into 5 equally parts [29]. For
example, a given user would get a rating of 5 for a given game if the time the
user had spent playing the game belonged in the top-20% out of all the users.

Table 2: User-Genre Table. We will then create the user-genre table by taking
the average of all the ratings for games that belong in the same genre [8]. For
example, let us assume that a user has game1 and game2. Game1 belongs to
genre1 and genre2, game2 belongs to genre2. The rating this user would obtain
for genre1 would be the rating they got for game1. Likewise, the score for genre2
would be the mean of game1 and game2. The formula can be generalized as
follows:

score(user i, genre j) =

∑
g∈Gn

gameg rating

n
(1)

where n equals the number of games that useri has in genrej , and Gn is the set
of n games that useri has in genrej .

Table 3: User-Price Table. We started by defining three price ranges:

– Free to Play games.

– Games that are below 20$, but not free.

– Games that are above or equal to 20$.

First, we calculate the number of games that a user has in each price range. The
rating for that price range would then be the mean of all the ratings for games
in that price range, e.g., if a given user had 4 games, game1(free), game2(<20$),
game3(≥20$) and game4(≥20$), then the rating this user has for free games
would be the rating for game1, the rating for games under 20$ would be the
rating for game2 and the rating for games over 20$ would be the average of
rating game3 and rating game4.

Table 4: User-Release Year Table. It should be noted that the data we had only
had release dates ranging from 2007 to 2017, which may cause some bias in our
results, though Steam does remove older titles from the store regularly. They
remain playable if the user had purchased them but cannot be bought from the
store anymore. We categorized these release dates into three categories:

– Older than 2010.

– Games released between 2010 and 2015.

– Newer than 2015.

In this case, the rating system works exactly like in the previous user-price table,
which is to say, the rating for a certain interval is the mean of all the ratings the
user had given for games that belong in that interval.



Overall Aggregation. Pearson correlation is used to measure the similarities be-
tween the users and the similarities between the games. A score of 1 would equal
total similarity and -1 would mean that the entities being compared are total
opposite of each other. The Pearson correlation similarity of two users x, y is
defined as:

simil(x, y) =

∑
i∈Ixy

(rx,i − r̄x)(ry,i − r̄y)√ ∑
i∈Ixy

(rx,i − r̄x)2
√ ∑

i∈Ixy

(ry,i − r̄y)2
(2)

where Ixy is the set of items rated by both user x and user y, ra,b the rating
assigned to game b by user a, and r̄a the mean of the ratings for user a.

After obtaining the similarity matrices, the system is able to produce rec-
ommendations of similar users for any given user. The same is true for games.
This is accomplished using the prediction formula which is the same as what we
use to calculate the correlation of two users. But the explanation should be the
Pearson correlation similarity of two items x, y is defined as that, and where Ixy
is the set of users give rate to both game x and game y.

Next, let us explain the system with a practical example: Bob does not own
the game Dota2. Dota2 belongs to several genres: Action, Free to Play and
Strategy. As is apparent from the genres, it is free. It was released in 2013. The
final rating that Bob receives for Dota2 is the mean of five different ratings:

– The mean rating for Dota2 given by top-5 most similar users.
– The mean rating is given by Bob for top-5 most similar games.
– The rating Bob gave for games released between 2010 and 2015.
– The mean rating Bob gave for Action, Free to Play and Strategy-games.
– The rating Bob gave for games that are Free to Play.

5 Experiments

We evaluated the accuracy of our results by randomly selecting 10% of the data
as the test set. The remaining 90% of the data would be used as the training set.
We would randomly select one rating from a user and delete it. Subsequently, we
would try to predict the deleted value using the training set. These predictions
were then analyzed through MAE and NMAE [9]:

MAE =

∑
i∈N

|pi − qi|

n
(3)

NMAE =
MAE

Rmax −Rmin
(4)

50 independent tests with random seeds have been done to select the different
testing set and training set. The testing results were transformed into charts for
better understanding (see, Figures 1 and 2).



Fig. 1: MAE scores in 50 iterations.

It can be seen from the charts, the average of MAE is around 6 which stands
for the average of prediction is about 2.45, and the average of NMAE is around
0.33 which means our model has an accuracy around 67% on predicting. Which
means, every time the user is viewing a video game product, this system will
automatically recommend five other video games according to the current game
and the preference of the current user. Among the five recommended games,
more than 2 of them (actually 2.45 out of 5) will meet the interest of the user.
Meanwhile, if the system recommend a game to the user, it is 67% sure that the
user will interested in this game or even purchase.

Another test is about how the accuracy change when user and game collab-
orative filtering, game genre, price and publishing year are considered one by
one (see, Figure 3). In this test, the system tries to predict the game that the
user likes best or in other words, the games with longest playtime. We randomly
select 10% of the data as the test set as well. The remaining 90% of the data
would be used as the training set. For all the users in testing set, the playtime
information is hidden, we can only know the names of the games they owned,
but we do not know how long they spent on the games. The game which a user
spent the longest time on is defined as his or hers favourite game. The accuracy
is calculated as:

accuracy =
Nc

N
,

where Nc represent the number of users that predicted correctly and N is the
number of users contained in testing set.

If the system recommends games taking into account similarities between
users, which in turn means similarities between the games the users own, we
calculate similarities using the Pearson correlation (see, Section 4).

With this mechanism (UserFC), the average accuracy is about 13.5%. The
second step is take both similar users and similar games into concern. For each



Fig. 2: NMAE scores in 50 tests.

game in the library, calculates the sum of the similarities between the game and
all the other games owned by the user. The game with the highest sum score
is seen as the game that should be recommended from GameCF. If the UserCF
and GameCF give out different games to recommend, just choose the one more
popular in all the other users. Then find out the favourite genre, price range
and year range of the user, and recommend a game with highest score satisfying
one feature above, we proceed as follows. The accuracy of the selected game is
just the favourite game of the user going from 13.5% to 22.8%. Among the five
factors, the price contribute the most and the publish year is the least important.
The result shows that even though from every aspect a game seems that it suits
the user very well, but if the price is too expensive, the user will not choose the
game.

6 Conclusion

A recommender system can be considered as an information filtering system that
seeks to predict the preference a user would have for a data item. In this paper,
we focus on the Steam, a widely used digital distribution platform for games.
Specifically, we target at producing an enhanced recommender for Steam that
uses data, such as playing time, game price and game release date, genres and
users preferences for making suggestions.

Based on our first experimental results, we investigate that the big sparsity
of our dataset appears to be an important reason for making the results not as
good as expected. This is caused by two reasons. The first reason is the raw data
itself that is too sparse and cannot be modified. The second one is data loss
when different tables are joint together. For instance, a user has 10 games, but
we only have information about 5 out of 10. Then, only those 5 games contribute
to the analysis, which is still related to data sparsity.



Fig. 3: The accuracy changes.

Another reason is related to the fact, that on the particular domain, it is
sometimes random if a user owns a suitable game or not. A game might be very
suitable to the taste of one user, no matter what system you use to test, but the
fact is that this user does not own the game. He or she might have already had
this game on another platform or will meet the game in the future and then own
it.

Among the 5 factors listed in the paper, a recommendation based on simi-
lar user and similar games seems more reliable which is so-called collaborative
filtering. Meanwhile, the price of a game is a factor considered by most of the
users tested. The age of the game and the genres seems to be not so important to
many users. As we know, the genres are classified by tags contributed by other
users and not supervised by Steam platform or game publisher. Misclassification
sometimes happens on Steam. It could be a potential reason making genre fac-
tor not influential. To generalize, we opt in our future work to assign different
weights to different factors, depending on their importance, instead of having all
factors that equally effect on the final hybrid rating.

We also tried to generate rules from our results using the IBM’s SPSS soft-
ware tool. Using the Scikit library of Python, we were able to generate some
rules, some even with very high accuracy, but the general issue was their low
coverage (around 0,01% at best). Thus, we discarded these rules due to over-
fitting. We leave this as future work, and we will consider in our next steps,
alternative ways for generating rules.
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