Managing Contextual Preferences

Kostas Stefanidis’, Evaggelia Pitoura and Panos Vassiliadis

Department of Computer Science, University of loannina, GR-45110 loannina, Greece.

Abstract

To handle the overwhelming amount of information currently available, personalization systems allow users to specify through
preferences which pieces of data interest them. Most often, users have different preferences depending on context. In this paper,
we introduce a model for expressing such contextual preferences. Context is modeled using a set of hierarchical attributes, thus
alowing context specification at various levels of detail. We formulate the context resolution problem as the problem of selecting
appropriate preferences based on context for personalizing a query. We al so propose algorithmsfor context resol ution based on data
structures that index preferences by exploiting the hierarchical nature of the context attributes. Finally, we evaluate our approach
from two perspectives. usability and performance. Usability evaluates the overheads imposed to users for specifying context-
dependent preferences, as well as their satisfaction from the quality of the results. Our performance results focus on context

resol ution using the proposed indexes.

Key words. Preferences, Personalization, Context.

1. Introduction

Personalized information delivery aims at addressing the ex-
plosion of the amount of data currently available to an increas-
ingly wider spectrum of users. Instead of overwhelming the
users with al available data, personalization systems provide
users with only the data that is of interest to them. Preferences
have been used as a means to address this challenge. To this
end, a variety of preference models have been proposed most
of which follow either a qualitative or a quantitative approach.
With the qualitative approach (such asthework in[1, 2]), pref-
erences between two pieces of data are specified directly, typ-
icaly using binary preference relations. For instance, using
a qualitative model, users may explicitly state that they pre-
fer visiting archaeological sites than science museums. With
the quantitative approach (e.g., [3, 4, 5]), users employ scoring
functions that associate a numerical score with specific pieces
of data to indicate their interest in them. For instance, a pref-
erence in archaeologica sites may be expressed by assigning
high scores to such places.

However, most often users have different preferences under
different circumstances. For instance, the current weather con-
ditions may influence the place one wants to visit. For exam-
ple, when it rains, a museum may be preferred over an open-air
archaeological site. Context is a genera term used in severa
domains, such as in machine learning and knowledge acquisi-
tion [37, 39]. Our focus here is on how context can be used in
conjunction with relational databases to personalize the results

*Corresponding author. Tel.:+302651098858.
E-mail addresses: kstef @cs.uoi.gr (Kostas Stefanidis),
pitoura@cs.uoi.gr (Evaggelia Pitoura),
pvassil @cs.uoi.gr (Panos Vassiliadis).

Preprint submitted to Information Systems

of queries. In this respect, we consider as context any informa-
tion that can be used to characterize the situations of an entity,
where an entity isaperson, place, or object that isrelevant to the
interaction between a user and an application [6, 7]. Common
types of context include the computing context (e.g., hetwork
connectivity, nearby resources), the user context (e.g., profile,
location), the physical context (e.g., noise levels, temperature)
andtime[8, 9].

In this paper, we propose enhancing preferences with
context-related information. Preferences express user interest
on specific pieces of information stored in arelational database.
There has been a variety of context models [40]. We follow a
data-centric approach by representing context as a set of context
parameters that take values from multi-level domains. These
parameters capture information that is not part of the database,
such asthe user location or the current weather. A specific con-
text state or situation corresponds to an assignment of values
to context parameters. By allowing context parameters to take
valuesfrom hierarchical domains, different levels of abstraction
for the captured context data are introduced. For instance, the
context parameter user location may take values from a city,
country or continent domain. Preferences are enhanced with
context descriptors that specify the context states under which
they hold with varying levels of detail.

Each database query is also associated with one or more con-
text states through context descriptors. The context state of a
query may, for example, be the current state at the time of its
submission. Furthermore, a query may be explicitly enhanced
with context descriptorsto allow exploratory queries about hy-
pothetical context states. A central problem that we address in
this paper is preference selection, that is, given a set of pref-
erences and a query, determining which of the preferences are

August 7, 2011

the most relevant to the query. We focus on context aspects
and consider as relevant those preferences whose context states
are related to those of the query. We call context resolution the
problem of selecting preferences based on context. We con-
sider that the context state of a preferenceis related to a query
context state, if it is the same or more general than the query
context state. Thisis captured through a cover relation defined
over context states that relates context states expressed with dif-
ferent levels of detail. For instance, with cover, we relate a con-
text state in which location is expressed at the level of country
with a context state in which location is expressed at the level
of continent. We also propose a number of distance metricsthat
capture similarity among context states. This allows selecting
asmaller number of the qualifying preferencesthus controlling
the degree of personalization.

We introduce algorithms for context resolution that build
upon two data structures, namely the preference graph and the
profile tree, that index preferences based on their associated
context states. The preference graph explores the partia or-
der of context states induced by the cover relation to organize
them in some form of alattice. A top-down traversal of the
graph supports an incremental specialization of a given context
state, whereas a bottom-up traversal an incremental relaxation.
The profiletree offers a space-efficient representation of context
states by taking advantage of the co-occurrence of context val-
ues in preferences. It supports exact matches of context states
very efficiently through a single root-to-leaf traversal.

Our focus is on managing context for preferences, i.e., ex-
pressing, storing and indexing contextual preferences. In gen-
eral, preferences may be collected using various ways. Pref-
erences may be provided explicitly by the users or constructed
automatically, for instance, based on the past behavior of the
same or similar users. Such methods for the automatic con-
struction of preferences have been the focus of much current
research (e.g., [10]) and are beyond the scope of this paper. A
practical way to create profiles that we have used in our exper-
imentsis to assemble a number of default profiles and then ask
the users to update them appropriately.

Note that, in this paper, we take a system or designer point
of view, in that, our aim is managing context efficiently. An-
other important aspect is bringing the user in the front-stage,
for example, by expanding the user interaction with the system,
acquiring user feedback and supporting incremental adaptation.

We have evaluated our approach along two perspectives:
usability and performance. Our usability experiments con-
sider the overhead imposed to the users for specifying context-
dependent preferences versus the quality of the personalization
thus achieved. We used two databases of different sizes. The
sizes of the database have two important implications for us-
ability. First, they affect the number of preferences. Then, and
most importantly, they require different methods for evaluating
the quality of results. Our performance experiments focus on
our context resolution algorithmsthat employ the proposed data
structuresto index preferencesfor improving responsetime and
storage overheads.

In anutshell, in this paper, we

e propose a model for annotating preferences with contex-
tual information; our hierarchical model of context allows
expressing contextual preferences at various levels of de-
tail,

¢ formulate the problem of context resolution, as the prob-
lem of selecting appropriate preferences for personalizing
aquery based on context,

e present data structures and algorithms for implementing
context resolution and

e evauate our approach in terms of both usability and per-
formance.

The rest of this paper is structured as follows. In Section 2,
we present our context and preference model, while in Sec-
tion 3, we formulate the context resolution problem. In Sec-
tion 4, we introduce data structures used to index contextual
preferences and algorithms for context resolution. Sections 5
and 6 present our usability and performance eval uation resullts,
respectively. Section 7 describes related work and finally, Sec-
tion 8 concludesthe paper with asummary of our contributions.

2. Contextual Preferences

In this section, we present first, our model of context, then
we introduce context descriptors for specifying context states
and finally, contextual preferences, e.g., preferences annotated
with context information.

In the rest of this paper, we use the following two databases
as our running examples.

Movie Database. The movie database (MD) maintains infor-
mation about movies. Its schema consists of a single database
relation with schema: Movies (mid, title, year, director, genre,
language, duration).

Point-of-Interest Database. The point-of-interest database
(PID) maintains information about interesting places to
visit. Its schema consists of a single database relation with
schema: Points_of _Interest (pid, name, type, location, open-air,
hours_of _operation, admission_cost).

2.1. Context Model

We model context using a finite set of specia-purpose at-
tributes.

Definition 1 (Context environment). Let X bean application.
The context environment, CE, of X isa set of n attributes, CEx
={C1,Cy,...,Cy}, n> 1, whereeach attribute C;, 1 <i < n, is
called a context parameter.

For example, for the movie database, we consider three con-
text parameters as relevant, namely, accompanying_people,
mood and time_period. That is, its context environment is
CEmp = {accompanying_people, mood, time_period}. Prefer-
ences about movies depend on the values of these context pa-
rameters. For instance, a high preference score may be associ-
ated with movies of the genre cartoons, for users accompanied

by their children and alow preference score for those accompa-
nied by their friends. The context environment for the point-of-
interest database is CEpjp = {user_location, weather, accom-
panying_people}. For instance, a point of interest of type zoo
may be a more preferable place to visit than a brewery when
accompanied by family and an open-air place like Acropolisa
better place to visit than a non open-air museum, when weather
is good.

To alow flexibility in defining context specifications, we
model context parameters as attributes that can take valueswith
different granularities. In particular, each context parameter has
multiple levels organized in a hierarchy schema. Let C be a
context parameter with m levels, m > 1. We denote its hierar-
chy schemaasL = (L, ..., Lm). L1 iscaled the lowest or most
detailed level of the hierarchy schema and L, the top or most
genera one. We define a total order among the levels of each
hierarchy schema L suchthat L; < ... < Ly and use the no-
tation L; < L; between two levelstomean L; < Lj or Lj = L;j.
Fig. 1 depicts the hierarchy schemas of the context parameters
of our running examples. For instance, the hierarchy schema
of context parameter user location has four levels: city (L1),
country (L), continent (L3) and the top level ALL (L4).

Each level Lj, 1 < j < m, is associated with a domain of
values, denoted domy,(C). For any two levels Lj, Lk, j # K,
domy, (C) n dom, (C) = {}. We require, for all parameters, that
their top level hasasinglevalue All, i.e., dom_(C) = {All}. We
define the domain, dom(C), of C as: dom(C) = UT‘zldoij (©).
A concept hierarchy is an instance of a hierarchy schema. Sim-
ilarly to[11], aconcept hierarchy of a context parameter C with
mlevelsisrepresented by atreewith mlevelswith nodesat each
level j, 1 < j < m, representing values in dom, (C). The root
node (i.e., level m) represents the value All. Fig. 1 depictsthe
concept hierarchies of the context parametersof our running ex-
amples. For instance, for the context parameter user location,
Greece is a value of level country. Such concept hierarchies
may be constructed using, for example, the WordNet [13] or
other ontologies.

The relationship between the values at the different levels of
a concept hierarchy is achieved through the use of afamily of
ancestor functions anctlk [12], 1 < j < k < m. The functions

anctj*l, 1 < j < m, assign each vaue of the domain of L; to
avalue of the domain of Lj.;. An edge from a node at level
L; to anode at level L., in the concept hierarchy represents
that the latter is the ancestor of the former. Given three levels
Lj, Lk and L, 1 < j < k < | < m, the function anct'j is equal

to the composition anctj% ° anct'k. Findly, desctlJ v),1<1<

j < m, gives the level | descendants of v € dom(C), that is,
des;ctlj (v) = {x € dom,(C) | anctlj (X) = v}. For example, for the
concept hierarchiesin Fig. 1, ancti(Athens) = Greece whereas
desc;?(weekend) = {Sa, Su}.

A context state corresponds to an assignment of values to
context parameters.

Definition 2 (Context State). A context state cs of a context
environment CEx = {Cy,C,,...Cy} is an n-tuple of the form

(C1,Cp, ..., Cn), Wwhereci € dom(Cj), 1 <i <n.

For instance, (friends, good, holidays) and (friends, All,
summer _holidays) are context states for our movie example.
The set of al possible context states, called world CW, is the
Cartesian product of the domains of the context parameters:
CW = dom(C;) x dom(Cy) x ... x dom(Cy,).

2.2. Context Descriptors

Context states can be specified through context descriptors.
Specifically, asingle parameter context descriptor specifiesval-
ues of one context parameter.

Definition 3 (Single parameter context descriptor). Asingle
parameter context descriptor cod(C) of a context parameter C
is an expression of the form cod(C) = C € {vy,..., v}, where
Vg € dom(C), 1L<k<I.

For example, for the context parameter time_period, asingle
parameter context descriptor can be time_period € {Christmas}
or time_period € {Christmas, Easter, summer _holidays}. Let
cod(C) be the single context descriptor C; € {vi,...,V}, we
shall use the notation Context(cod(C;)) = {v1,...,Vi}.

Context states are specified using multi-parameter context
descriptors that combine single parameter ones.

Definition 4 (Multi-parameter context descriptor). Let CEy
= {Cy1,Cy,...C,} be a context environment. A multi-parameter
context descriptor is an expression of the form /\"‘:0 cod(Cj)), 1
<k<n, whereij € {1, 2, ...,n}, cod(C;)) is a single context
parameter descriptor for Cj; and there is at most one single
parameter context descriptor for each C;j, .

A multi-parameter context descriptor specifies a set of con-
text states. These states are computed by taking the Cartesian
product of the contexts of all the single parameter context de-
scriptorsthat appear in the descriptor. If amulti-parameter con-
text descriptor does not contain descriptors for al context pa-
rameters, we assume that the values of the absent context pa-
rameters are indifferent. In particular, if a context parameter
C; ismissing from a multi-parameter context descriptor, we as-
sume the implicit condition C; € {All} to be part of the descrip-
tor.

Definition 5 (Context of a multi-parameter context descriptor).

Let CEx = {Cq1, Cy, ..., C,} be a context environment and
cod = A% cod(Ci), 1 < k < n, be a multi-parameter
context descriptor. The set of context states of cod, denoted
Context(cod), isS1 X Sz X ... x Sy, wherefor L <i <n, S
= Context(cod(C;)), if cod(C;) appearsin cod and S; = {All},
otherwise.

For the movie example, consider the multi-parameter con-
text descriptor (accompanying people € {friends, family} A
time_period € {summer _holidays}). This descriptor defines the
following two context states. (friends, All, summer _holidays)
and (family, All, summer _holidays).

accompanying_people time_period
ALL All ALL All

relationship friends farrI%one date interval

weather f
ALL All

AN

working_days weekend holidays

A AN

occasion M Tu W Th F Sa Su summer Christmas Valentine’s T

user_location mood
ALL All ALL All

continent Europe ... emotion good bad

, country Greece ...

holidays

characterization good bad

N

conditions mild warm hot freezing cold

city Athens Thessaloniki ...

Figure 1: Hierarchy schema and concept hierarchy of accompanying people, weather, time period, user location and mood.

2.3. Contextual Preference Model

We annotate preferences with context descriptors that spec-
ify the context states under which a preference holds. Regard-
ing preference specification, there are, in general, two different
approaches. a quantitative and a qualitative one. In the quanti-
tative approach (e.g., [3]), preferences are expressed indirectly
by using scoring functions that associate a numeric score or
degree of interest with each item. In the qualitative approach
(e.q., [1, 2]), preferences between two items are specified di-
rectly, typically using binary preference relations. Context de-
scriptors can be used with both a quantitative and a qualitative
approach. Here, we use a simple quantitative preference model
to demonstrate the basic issues underlying contextualization.

In particular, we assume that preferences for specific tuples
of adatabase are expressed by providing a numeric score which
is area number between 0 and 1. This score expresses a de-
gree of interest, where value 1 indicates extreme interest and
value O indicates no interest. Interest is expressed for specific
values of attributes of a database relation, for instance, for the
various attributes (e.g., genre, language) of our movie database
relation. Thisis similar to the general quantitative framework
of [3]. Formally, a contextua preferenceis defined as follows:

Definition 6 (Contextual Preference). Given a database
schema R(Aq, Ay, ..., Aq), a contextual preference pon Risa
triple (cod, Pred, score), where

1. cod isa multi-parameter context descriptor,

2. Pred is a predicate of the form Ay, 6,a, A A, 6, &, A
... A A G &, that specifies conditions 6;; on the values
g; € dom(A;) of attributes A, 1 <iij < d, of Rand

3. scoreisareal number between 0 and 1.

The meaning of such a contextual preference is that in the
set of context states specified by cod, the database tuples
that satisfy the predicate Pred are assigned the indicated in-
terest score. In this paper, we assume that 0 € {=,<,>,
<, >, #} for the numerical database attributes and 6 € {=, #}
for the remaining ones. As an example, take the instance of
our movie database shown in Fig. 2. The contextua pref-
erence ((accompanying_people € {alone} A mood € {bad} A
time_period € {weekend, holidays}), genre = horror, 0.8) ex-
presses the fact that when in a bad mood, alone at a weekend
or during a holiday, horror movies are preferred with interest
score 0.8.

Note that preferencesthat hold irrespectively of the values of
the context parameters, i.e., non contextual preferences, may be
expressed using an empty context descriptor, whose context is
context state (All, All, ..., All).

By using multi-parameter context descriptors, one can ex-
press preferences that depend on the values of more than one
context parameter. Furthermore, hierarchies allow the specifi-
cation of preferences at various levels of detail. For instance,
one can specify preferences at the country, city or both levels.

Finaly, we define profile P as follows:

Definition 7 (Profile). Given an application X, a profile P is
the set of all contextual preferences that hold for X.

An example profilefor the movie databaseis shownin Fig. 3.
The context Context(P) of a profile P is the union of the
contexts of all context descriptors that appear in P, that is,
Context(P) = ujContext(cod;), for each (cod;, Pred;, score) €
P.

3. Contextual Preference Selection

In this section, we consider the problem of selecting appro-
priate contextual preferencesfrom a profile so asto personalize
agiven query. Our focusis on the context part. First, we define
contextual queries. Then, given a contextual query, for a con-
textual preference to be selected, its context must be the same
with or more general than the context of the query. Thisisfor-
malized by the cover relation between context statesthat relates
context states expressed at different hierarchy levels. Among
such qualified candidate preferences, we select the ones whose
context is the most similar to the context of the query based on
two proposed distance metrics between context states. Oncethe
appropriate preferences are selected, the query can be extended
to take the selected preferences into account, as in the case of
non-contextual preferences (e.g., [14, 15]).

3.1. Contextual Queries

Contextual queriesare queriesannotated with informationre-
garding context.

Definition 8 (Contextual Query). A contextual query Q is
a query enhanced with a multi-parameter context descrip-
tor denoted cod® which specifies its context, Context(Q) =
Context(cod?).

| mid | title

| year | director | genre [language | duration |

ty Casablanca 1942 Curtiz Drama | English 102
ty Psycho 1960 | Hitchcock | Horror | English 109
t3 Schindler’'sList | 1993 | Spielberg | Drama | English 195

Figure 2: Database instance.

The context descriptor may be postulated by the application
or be explicitly provided by the users as part of their queries.
Typicaly, inthefirst case, the context implicitly associated with
a contextual query corresponds to the current context, that is,
the context surrounding the user at the time of the submission
of the query. To capture the current context, context-aware ap-
plications use various devices, such as temperature sensors or
GPS-enabled devices for location. Methods for capturing con-
text are beyond the scope of this paper.

Besides this implicit context, we also envision queries that
are explicitly augmented with multi-parameter context descrip-
tors by the users issuing them. For example, such descriptors
may correspond to exploratory queries of the form: what is a
good film to watch with my family this Christmas or what are
the interesting points not to be missed when | visit Athens with
my friends next summer.

The context associated with a query may correspondto asin-
gle context state, where each context parameter takes a specific
valuefromits most detailed domain. However, in some cases, it
may be only possible to specify the query context using rough
values, for example, when the context values are provided by
sensor devices with limited accuracy. In such cases, a context
parameter may take a single value from a higher level of the
hierarchy or even more than one value.

3.2. The Cover Relation

Let us first consider a simple example related to the movie
database. Assume a contextual query Q enhanced with the
context descriptor cod®? = (accompanying_people € {friends)
A mood € {good} A time_period € {summer holidays}). If
a preference with exactly the same context descriptor ex-
ists in the profile, preference selection is straightforward,
i.e, this preference is selected. Assume now, that this
is not the case. For example, take a profile P that con-
sists of three preferences: p; = ((accompanying_people €
{friends} A mood € {good} A time_period € {holidays}), Pred;,
score;) and p2 = ((accompanying_people € {friends} A mood
€ {good} A time_period € {All}), Pred,, score;) and ps
= ((accompanying_people € {friends} A mood € {good} A
time_period € {working_days}), Preds, scores). Intuitively, in
the absence of an exact match, we would like to use those pref-
erences in P whose context descriptor is more general than the
query descriptor, in the sense that its context “covers’ that of
the query.

Definition 9 (Covering context state). A context state cs' =
(cl,cl,....ct) € CW covers a context state cs* = (c3,¢3, ...,
c2)eCWifVk 1<k<nci=clorc = anctj(cﬁ) for some
levels L < Lj.

In the example above, the context states of p; and p, cover
that of q, whereas those of p3 do not.

It can be shown that the cover relation imposes apartial order
among context states.

Theorem 1. The cover relation over context statesis a partial
order.

Proor. We must show that the cover relationis (i) reflexive(i.e.,
cs coverscs), (ii) antisymmetric (if cs® covers cs? and ¢s? cov-
erscst, thencs! = ¢s?) and (iii) transitive (if cs! coverscs? and
cs? covers cs®, then cs! coverscs®).

(i) Reflexivity is straightforward.

(if) Assume for the purpose of contradiction that the anti-
symmetric property does not hold. In this case, there
is a certain parameter Cy for which ¢} = anctj (c?) and
cﬁ = anct‘i (c&). But this cannot happen due to the total
order of levelsin ahierarchy.

(iii) Assume that cs! covers cs? (1) and cs? covers cs® (2).
From (1), Vk,1<k<n,ci=ciorcl = anctj (), Li < L
(3). Respectively, from (2), Yk, 1 < k < n, cZ = ¢ or ¢
= anctij (cﬁ), Li < Lj (4). Therefore, from (3), (4), we get
that, Yk, 1< k<n,ci=clorcl = ancti"(cﬁ), Li < Lj, that
is, cst coverscs®.0l

Going back to our example, athough the context states of
both p; and p, cover those of the query Q, p; is more closely
related to the descriptor of the query and it isthe onethat should
be used. Next, we formalize this notion of the most specific
state or tight cover.

Definition 10 (Tight cover). Let P be a profile and cs® be a
context state. We say that a context state cs® € Context(P) isa
tight cover of cst in P, if and only if:

(i) cs? coverscs! and

(i) =3 cs® e Context(P), cs® # ¢s?, such that cs? covers cs®
and cs® coverscst.

In general, there may be more than one tight cover of a
query context state. For example, consider again the previous
query context descriptor cod? and assume now that P includes
afourth preference, p4 = ((accompanying_people € {friends}
A mood € {All} A time_period € {summer_holidays}), Predy,
scorey). Both the context states of p; and p4 aretight covers of
the query context state.

We can now provideaformal definition of context resolution,
that is, of the process of selecting appropriate preferences from
a profile based on context.

Definition 11 (Context Resolution Set). Given a profile P
and a contextual query Q, a set RS of context states, RS C
Context(P), is called a context resolution set for Q if (a) for
each context state csQ € Context(Q), there exists at least one
context state cs in RS such that cs is a tight cover of cs® in P
and (b) csbelongsto RS only if thereisa cs® e Context(Q) for
which csisatight cover in P.

After identifying such a set of context states, we use the con-
textual preferences associated with the corresponding descrip-
tors for personalizing the query. Note that for a specific query
Q and profile P, there may be no context resolution set. In this
case, query Q is executed as aregular query, without using any
preferences.

As shown above, for aquery context state, there may be more
than one tight cover. For a set of context states to qualify as
a context resolution set, it must include at least one of them.
Thus, there may be more than one context resolution sets de-
pending on which of the tight covers of each query context state
they include.

In the next section, we provide a systematic way of select-
ing for a given query context state which of its tight covers to
include in a context resolution set by defining distances among
context states. Such distances can be to used to select exactly
one, i.e., the most similar, tight cover of each query state, thus,
creating the smallest context resolution sets. They can aso be
used to includein the context resolution set more than onetight
cover per query context state, for example, by selecting among
the tight covers of aquery context state, the k (k > 1) most sim-
ilar to it. This provides a means for controlling the degree of
personalization. Using too many preferences may lead to over-
specializing a query, whereas using too few preferences may
result in too general results. Our usability study indicates that
using exactly one tight cover produces slightly more satisfying
results than using more than one tight cover.

3.3. Distances between Context Sates

To select the most appropriate among a number of tight cov-
ers, we introduce a distance metric between context states. The
motivation is to choose the most specific among the candidate
context states, that is, the context states defined in the most de-
tailed hierarchy levels. We define first the level of a context
state as follows.

Definition 12 (Levelsof a context state). Let cs = (cy,Co,
..,Cn) be a context state. The hierarchy levels that corre-
spond to this state are level s(cs) = [Lj,,Lj,,...,L;,] suchthat
G € dom._ji C),i=1,...,n.

The distance between two levels is defined as their path dis-
tance in their hierarchy schema

Definition 13 (L evel distance). Let C be a context parameter
with m levels. The level distance, dist.(L;,L;), between two
levelsL; and Lj, 1 <i, j < m, isdefined as:

dist, (Li, Lj) =1j—il.

We can now define a level-based distance between two con-
text states.

Definition 14 (Hierarchy statedistance). Let cs' = (cf,

c,...,CH) and cs® = (€2, ¢35, ..., c2) be two context states with

levels(cst) = [I4, 12, ..., 14 and levels(cs?) = [I2, 12, ..., 12]. The

hierarchy state distance, disty (cst, cs?), is defined as:
disty(cst, cs?) = 37, dist (1%, 12).

[

For example, let cs! = (Athens, cold, alone) be a query con-
text state and cs®> = (Europe, cold, alone) and cs® = (Athens,
bad, alone) be two context states in the profile. It holds:
disty(cst, cs?) = 2 and disty(cst, cs®) = 1. Both ¢s? and cs®
cover cst, but cs® and cs® do not cover each other. If we as-
sume that both cs? and cs® are tight covers of cst, then, using
the hierarchy state distance, we would choose the preference
associated with cs®.

We show next, that the hierarchy state distance produces an
ordering of context states that is compatible with the cover par-
tial order in the sense expressed by the following property.

Property 1. Let cs = (cj,c},...,ch) be a context state. For
any two different context states cs? = (c2, c3,...,c2) and cs® =
(c,c3,....cY), cs? # cs®, such that cs? covers s and cs® cov-
erscs!, if cs® coverscs?, then disty (cst, ¢s®) > disty(cst, cs?).

Proor. Let levels(csl) = [ILIL,...,1Y, levels(c®?) =
[12,12,...,12] and levels(cs®) = [|%,|§,...,|ﬁ]. ¢From Def.
9, since cs? coverscst and the fact that the level of any ancestor
of ¢; islarger than the level of ¢, it holdsthat 12 > I, Vi, 1 <i
<n(1). Similarly, since cs® coverscs!, it holds that I > I, Vi,
1<i<n(2) and sincecs® coverscs?, it holdsthat I? > I2, Vi,
1<i<n(3). From (1), (2) and (3), weget I3 > 12 > I}, Vi, 1 <i
<n(4). Sincecs’® # ¢, for at least one j, 1 < j < n, it holds
that I® > 1% (5). Thus, from (4), (5) and Def. 14, it holds that

disty(cst, cs®) > disty(cst, ¢s?). O

Property 1 states that between two context states that cover
cst, if one of them is a tight cover, then it is the one with the
smallest hierarchy state distance between them.

The context state with the minimum hierarchy state distance
is not necessarily unique. For instance, assume that we want
to select the context state that is the most similar to cs! =
(friends, good, summer _holidays) between cs? = (All, warm,
holidays) and cs® = (friends, All, All). For these context states,
disty(cst, cs?) = disty(cst, ¢s®) = 3. Toresolve such ties, again
we choose those context states that are more specific but now in
terms of the values of the detailed (lowest) level of the hierar-
chy that they include. The motivation is that context values that
have few detailed values as descendants are more specific than
those that have many such values. Clearly thisis not truefor all
domains. But, in the absence of any other application-specific
information, we assume that a value that covers many detailed
valuesis more genera than one that covers fewer ones.

For two values of two context states corresponding to the
same context parameter, we measure the fraction of the inter-
section of their corresponding lowest level value sets over the
union of these two sets and consider as a better match, the

“smallest” context state in terms of cardinality. Formally, this
is expressed through the Jaccard distance.

Definition 15 (Jaccard distance). Let C be a context param-
eter with m levels. The Jaccard distance, dist;(co, Cp), of two
context values ¢, and ¢y, ¢, € dom,(C) and ¢, € dom,(C), 1
<i, j <m, isdefined as:

Idesct! (co) N desty (cp)

: o
Idescy’ (co) U desty) (cp)

It is easy to show that values at higher levelsin the hierarchy
have larger Jaccard distances than their descendants at lower
levels, as the following lemma states:

Lemmal. Let C be a context parameter with m levels and
Co, Cp, Cq be three values of C, such that ¢, € dom(C),
Cp € dom(C) and ¢, € dom(C), Lj < Lk < L, 1 < k]
<m Ifcq= anc! (cp) and ¢, = anc'[T(co), then dist;(Co, Cg) >
dist;(Co, Cp).

Proor. By definition,

L Ly
. |desc, ! (co) N desc* (cp)l
disty(co,Cp)=1- —p— 2 —

3(Co- Gp) desty] (co) U descl co)
and

L Ly
. desc, (co) N desc! (cq)l

dist;(co, =1-—a2 > "u®

3(Co: Co) Idesct’l(co)udesct'l(cq)l
In both fractions, the numerator reduces to descti(co) due to
the transitivity property of the ancestor functions (i.e., al de-
scendants of ¢, at the detailed level are also descendants of ¢,

and cg). The denominator of the first fraction is descti(cp),
whereas the denominator of the second fraction is desc '['1 (cg) 2

descti(cp), again dueto the transitivity property of the ancestor
function. Therefore dist;(Co, Cg) > dist;(Co, Cp). T

The Jaccard distance between two context statesis defined as
follows.

Definition 16 (Jaccard state distance). Let cs® = (c}, c3, ...,
ch) and cs? = (c2,c2, ..., c2) betwo context states. The Jaccard
state distance, dist;(cst, cs%), is defined as:

distys(cst, cs?) = 3L, dist;(ct,).

1>~

For example, the Jaccard state distance of context states
cst = (friends, good, summer _holidays) and cs? = (All, All,
holidays) is equal to: dist;(cst, cs?) = 2. Now, returning to our
previous example for cst = (friends, good, summer _holidays)
and the two candidates states, cs? = (All, All, holidays) and cs®
= (friends, All, All), with the same hierarchy state distance,
it holds that distjs(cst, cs?) = 2 and distjs(cst, cs®) = 31/22.
Therefore, the state that is considered the most similar to cs! is
state cs®.

It is easy to prove a property similar to Property 1, that is:

Property 2. Let cst = (cl,c},...,ch) be a context state. For
any two different context states cs? = (c3, ¢, . ..,c2) and cs® =
(c3,c3,....c), cs? # cs®, such that cs? covers cst and cs® cov-
erscst, if cs® coverscs?, thendists(cst, cs) > distjs(cst, ¢s?).

Proor. Letlevel(cst) =[11,13,...,13], level(cs?) =[13,15,...,12]
and level(cs®) = [13,13,...,13]. From the proof of Property 1,
we have that I3 > 12 > I, Vi, 1 < i < n. FromLemmal, v
ct, ¢, ¢} 1<i<n, weget that disty(ct,c®) > disty(cl, c?)
(1), because that distance becomes larger as the context values
belong to higher hierarchy levels. From (1) and Def. 16, we get

that distjs(cst, cs®) > distjs(cst, ¢s?). O

There may be still ties. In this case, we can randomly select
any of thetight covers.

The Hierarchy and the Jaccard state distances provide a
generic means for ordering tight covers. If there is additional
semantic information about the context parametersand their do-
mains, more precise distances can be defined, for example, by
using weights. For instance, a weighted version of the Hierar-
chy state distance (Definition 14) is given by: disty(cs!, cs?) =
>hawi dist (11, 12). where the weight w; associated with con-
text parameter C; is an indication of its importance. For ex-
ample, if we know that user location is the determining factor
for choosing a point of interest, we can assign weight 1 to this
context parameter and O to the other two.

3.4. Preference Application

After determining a context resolution set RS, the related
preferences are selected for personalizing the query. In par-
ticular, the preference set PS c P is formed, where PS =
{(cod;, Pred;, score) | csl e Context(cod;) for cs! € RS}. The
preferencesin PS can be used either (a) to reformulate the orig-
inal query Q to include them (e.g., [5, 14]) or (b) after the ex-
ecution of the origina query Q, to rank itsresults. A complete
treatment of query personalization is beyond the scope of this
paper. In the following, we focus on context-related issues. In
doing so, we follow the latter approach of ordering the results
of Q.

In particular, werank each tuplet intheresult r of Q based on
the score of the preferencein PS applicableto t. A preference
p = (cod, Pred, score) is applicable to a tuple t, if t satisfies
predicate Pred. We shall use the notation Pred[t] to denote that
tuplet satisfies predicate Pred.

In general, more than one of the selected preferences may
be applicable to a specific tuple t in the result r. In this case,
we need to decide how to combine the scores of the applica
ble preferences for assigning afinal scoretot. Let us consider
first the special case in which the predicates of the applicable
preferences are related by subsumption.

Definition 17 (Predicate Subsumption). Given two predi-
cates Pred; and Pred,, Pred; subsumes Preds, if and only if,
VY ter, Predi[t] = Predy[t]. Inthis case, we say that Pred; is
more specific than Pred,.

For example, take the movierelation in Fig. 2 and the profile
in Fig. 3. The predicate of p4 subsumes that of preference ps.
When atuplet satisfies predicates that one subsumes the other,
to compute a score for t, we consider only the preferences with
the most specific predicates because these are considered spe-
cialization or refinements of the more general ones. In all other

p; = ((accompanying-people € { friends}), genre = horror, 0.8)
p2 = ((accompanying_people € { friends}),

director = Hitchcock, 0.7)
ps = ((accompanying- people € {alone}), genre = drama, 0.9)
ps = ((accompanying- people € {alone}),

(genre = drama A director = Spielberg), 0.5)

Figure 3: Example profile.

cases, we use the preference with the highest score, considering
preferences to be indicators of positive interest.

Definition 18 (Tuple Score). Let P be a profile, cs a context
stateandt € r atuple. Let P’ C P be the set of preferences
pi = (cod;, Pred;, score) such that cs € Context(cod;), Predi[t]
holds and — 3 p; = (cod;, Pred;, score;) € P’ such that cs ¢
Context(cod;), Pred;[t] holds and Pred; subsumes Pred;. The
score of tincsis: score(t, cs) = maxpep SCOre;.

For example, take context state (friends, All, All) and prefer-
ences ps and p4. Tuplets satisfies the predicates of both prefer-
ences pz and ps. Since the predicate of p, subsumes the pred-
icate of ps, t3 is assigned the score of ps. The motivation is
that p3 expresses a degree of interest to drama movies in gen-
eral, whereas p4 refines ps by expressing a degree of interest
in drama movies directed by Spielberg in particular. Since tu-
plets isadrama movie directed by Spielberg, it is assigned the
corresponding score, that is, the score of p4. Now, take context
state (family, All, All) and preferences p1 and p, whose predi-
cates are not related by subsumption. Inthiscase, t3 isassigned
the largest between the two scores.

Definition 18 specifies how to compute the score of a tuple
under a specific context state. However, the result of context
resolution for a query Q may include more than one context
State.

Definition 19 (Aggregate Tuple Score). Let P be a profile,
CS ¢ Context(P) be a set of context statesand t € r a tuple.
The score of tin CSis: score(t, CS) = maXcscs Score(t, s).

It is straightforward (by Definition 19) that:

Property 3. Let cs be a context state and CS a set of context
states. If cs € CS, then for anyt € r, score(t, CS) > score(t, cs).

This means that the score of a tuple computed using a set of
context states is no less than the score of the tuple computed
using any of the context states belonging to this set.

Our main motivation for selecting the highest among the ap-
plicable scoresis that we treat preferences as indicators of pos-
itive interest. By using the highest score, we may overrate a
tupleintheresult, potentially creating some form of afalse pos-
itive, but we never miss any highly preferred tuplein any of the
matching context states. Other choices for aggregating the ap-
plicable scores, include taking the minimum or average score.
Taking the minimum score corresponds to a conservative ap-
proach, where a tuple must be highly preferred in al context
states. Taking the average score is a compromise between the

cs”: (All, All, All), Weo

cst: (friends, good, summer holidays), W.q
cs?: (family, good, summer holidays), W,
cs’: (friends, All, holidays), W.e

cs*: (family, All, holidays), W«

cs: (family, All, All), W,

cs?: (All, All, holidays), W.s

Figure 4: Context states with score sets.

potential overrating and underrating respectively caused by the
maximum and minimum aggregates. However, there is no di-
rect relation between the computed aggregated score and any of
the intended scores as expressed by the applicable preferences.
Note that our context resolution definition and the related algo-
rithms are orthogonal to the selection of an aggregation method.

4, Data Structuresand Algorithms

In this section, we focus on the efficient computation of con-
text resolution sets. First, we consider the problem of finding
the tight cover of a single query context state. One way to
achieve thisis by sequentially scanning all context states of all
preferencesin P. To improve response time and storage over-
heads, we consider indexing the preferencesin P based on the
context states in Context(P). To this end, we introduce two al-
ternative data structures, namely the preference graph and the
profile tree. We show how these structures can be used to find
tight covers of a single state and compute context resolution
sets. Finally, we present more efficient algorithms for locating
tight covers of more than one query context state.

In the following, we call score set of a context state cs
the set W, = {(Pred;, score) | (cod;, Pred;, score) € P and
cs € Context(cod;)}, that is, the set of predicates and the related
interest scores of al preferences that include the context state
csintheir context descriptor. A context state cs in Context(P)
is an exact match of a context state csQ in Context(Q), if cs =
csQ. If an exact match for cs@ exists, this is clearly the unique
tight cover of cs® in Context(P).

4.1. Preference Graph

The preference graph exploits the cover relation between
context states.

Definition 20 (Preference Graph). The preference graph
PGp = (Vp, Ep) of a profile P is a directed acyclic graph such
that a node v = (cs, Wgs) € Vp for each context state cs €
Context(P) and an edge (v;, vj) € Ep, if the context state of v;
isatight cover of the context state of v;.

For exampl e, for the movie database and the profile with con-
text states shown in Fig. 4, the preference graph depicted in
Fig. ba is constructed. Note that, when there is at least one
preference with context state (All, All, .. ., All), the graph hasa
singleroot.

The preference graphis acyclic, since the cover relation over
context states is a partial order (Theorem 1). The size of PGp
depends on the number of distinct context statesin P.

VD
(A, All, All), Wes?

V,
6‘ ((All, Al holidays), Wcs® ((Family, All, All), Wcs® ‘

S]

\%
3‘ ((friends, All, holidays), Wcs® 4‘ ((family, All, holidays), Wcs*

\ I

Vv,

Vs‘

V1

((friends, good, summer holidays), Wcs' ((family, good, summer holidays), Wcs®*

(a) Preference graph

V1
2 v3 4

VS VE V7 VU V‘)

accompanying people

V.
mood

summer holidays | || holidays summer holidays holidays AH‘

holidays Al ‘ time period

Wes' Wes® Wes* Wes*

Wes® Wes® || Wes'

(b) Profile tree

Figure 5: Aninstance of (a) a preference graph and (b) a profile tree.

Given a context state cs and a profile P, the PG_Resolution
Algorithm (Algorithm 1) finds the states in Context(P) that are
tight coversof csthrough atop-down traversal of the preference
graph PGp of P starting from the nodesin Vp with noincoming
edges. Algorithm 1 returns asiits result, the set of nodes whose
context stateis atight cover of the input context state cs. It also
returnsthe Hierarchy state distance between the context state of
each such node and cs. These distances can be used to select
among the tights covers of cs those that are the most similar to
cs. Search stops at anode, if it is aleaf node or if its context
state does not cover cs. A node is included in the result only
if it is aleaf node whose context state covers cs or the context
states of all of its children do not cover cs.

For example, consider the preferencegraphin Fig. 5aand the
input context state cs® = (family, All, Christmas). Search starts
from the root node whose context state is cs® = (All, All, All).
Since cs” covers cs®, search proceeds to nodes with context
states cs® = (All, All, holidays) and cs® = (family, All, All).
Both these states cover cs®, so the nodes with context states
cs® = (friends, All, holidays) and cs* = (family, All, holidays)
are visited. Context state cs® does not cover cs®, so search at
this node stops, while cs* covers cs?, so the node with context
state ¢s* = (family, good, summer _holidays) is visited. Context
state cs” does not cover cs®, and since v, isthe only child of vq,
v, with context state cs* = (family, All, holidays) is returned.

Theorem 2 (Correctness). Let PGp be the preference graph
of a profile P and Q a contextual query. If the PG Resolution
Algorithmis applied to all context states cs? € Context(Q), the
context states of the nodes returned by the algorithm constitute
a context resolution set for Q.

Proor. The correctness of the algorithmis based on the follow-
ing observation. Let cs' be the context state of anode v € Vp.
Then cs' is atight cover of a context state cs®, if and only if,
cs’ covers cs and (i) v is a leaf node or (ii) v is an internal
node and none of its children covers cs®. This holds because,
in both cases, there is no other context state cs € Context(P)
that is covered by cs’ and covers cs®, since if there were one,
then there should be an edgein Ep from node v to the node with
context state cs. [J

Let us now discuss the complexity in the case of an exact
match. Let CEx be a context environment with n context pa
rameters Cq, Cy, ... Cy with hy, hy, .. ., hy levels, respectively.

Let cs? beaquery context state and cs® be the context state of a
node with no incoming edges, i.e., one of the nodesfrom where
search for csQ starts. Let us compute the maximum length of
any search path from any cs® to csQ. In the worst case, all
values in cs? belong to the most detailed hierarchy levels and
cs® = (All, All, ..., All). Thelength of a path in this case is at
most h; + hy + ... + hy — n. To see this, take any edge in the
search path from say anode with context state cs' to anodewith
context state cs!. In the worst case, exactly one valuein cs' is
replaced in cs! by avalue of one of its immediate descendants
in the corresponding concept hierarchy.

Hybrid Traversal. The PG_Resolution Algorithm follows a
top-down approach, starting from the nodes with the most gen-
eral context states and moving towards nodes with less specific
context states. Alternatively, we can follow a bottom-up ap-
proach and traverse the graph starting from the nodes with the
most specific context states (i.e., the leaf nodes) and moveup to
nodeswith moregeneral states. Inthiscase, at each search path,
search stops when the first node whose context state covers the
query context state is met, sincethisis atight cover. Intuitively,
the bottom-up traversal is expected to outperform the top-down
one for query context states that include relatively specific val-
ues, that is, for query context states whose values belong to the
lower levels of their corresponding concept hierarchies. Based
on this simple observation, we consider the following heuristic
for selecting the appropriate type of traversal.

We associate with each context state cs a level score [s(cs)
that corresponds to the average hierarchy level of its val-
ues. Specifically, let cs be a context state with levels(cs) =
[11,12, ..., 1], thenls(cs) = X1 Ii/n. For example, for the con-
text state cs® = (family, All, All), we havels(cs®) = (1+2+3)/3=
2. For each preference graph, we computealevel scorel p(PG p)
that isequal to the averagelevel score of itsnodes. Let ng bethe
number of nodes of PGp, IS(PGg) = Yyev, IS(cs)/ne, where
cs isthe context state of node v;. For example, the level score
of the preference graph in Fig. 5ais 1.67.

For each query context state cs®, we use a top-down traver-
sal, if 1s(cs?) > Ip(ng) and a bottom-up traversal, otherwise.
The motivation is that if the query context state has level score
greater (resp. smaller) than the level score of the graph, then
the matching state of cswill probably appear high (resp. low) in
the graph. For example, for the query context state cs® = (fam-
ily, All, holidays), with Is(cs®) = 1.67, atop-down traversal is
used, whereas for cs% = (family, good, holidays) with 1s(cs)

Algorithm 1 PG_Resolution Algorithm
Input: A preference graph PGp = (Vp, Ep), an input context state
cs.
Output: A ResultSet of (v;, d) pairs, such that v = (cs, WS;) € Vp,
cs isatight cover of csand d = disty(cs, €9).

Begin
ResultSet = 0;
tmpVp = 0;

for all nodesv; € Vp do
if vi has no incoming edges then
tmpVe = tmpVp U {Vvi};
end if
end for
whiletmpVp not empty do
for dl v; € tmpVp do
if cs coverscsthen
if vi has no outgoing edges then
ResultSet = ResultSet U {(v;, disty(cs, c9))};
else
if Yvjs. t. (vi,V;) € Ep, cs; does not cover csthen
ResultSet = ResultSet U {(v;, disty(cs, €9))};
ese
for dl vy s. t. (i, Vy) € Ep and vy unmerked do
tmpVp = tmpVp U {vg};
mark Vq;
end for
end if
end if
end if
tmpVp = tmpVe — {Vi};
end for
end while
End

= 1.33, abottom-up traversal is used starting from nodesv; and
Vo.

4.2. Profile Tree

Let CEx be acontext environment with n context parameters
Ci, 1<i < n. Wesay that avalue c e dom(C;) appearsin acon-
text state cs = (cy, C2, ..., Giy .. ., Cn), if G = C. The profile tree
explores any common prefixes of context states in the profile,
where the length k prefix of (c1, 2, ..., Ck ..., Cn) IS(C1, C, . . .,
Cx)- In particular, a profile tree has n+1 levels. Each one of the
first n levels corresponds to one of the context parameters. We
use C;, to denote the parameter mapped to level i, tj € {1,2, ..,
n}. Thelast level, level n + 1, includes the leaf nodes.

Definition 21 (Profile Tree). Let CEx = {C1,Co,...,Ch} bea
context environment with n context parameters. The profile tree
Tp of aprofile Pisatreewith n+1 levels constructed as fol lows.

(i) Eachinternal node at level k, 1 < k < n, contains a set of
cells of theform[val, pt] whereval e dom(Cy,) and ptisa
pointer to a node at the next tree level, i.e, level k + 1.

(ii) Eachleaf nodeat level n+ 1 contains a score set.

(iii) At the first level of the tree, there is a single root node
that containsa [c, p] cell for each value c e dom(Cy,) that
appearsin a context state cs € context(P).

10

(iif) Atlevel k, 1 < k < n, there is one node, say node v,, for
each [co, po] cell of each node at level k — 1. Node v,
includes a [c, p] entry for each value c € C;, that appears
in a context state cs such that cs € Context(P) and ¢, also
appearsin cs. The corresponding pointer po pointsto vy,

(iv) Thereis a leaf node, say node v, for each [c, p] cell of a
node at level n. Pointer p pointsto thisleaf node. Let cs=
(¢, Ciy - - -, Ci,) be the context formed by the values of the
cells on the path from the root nodeto v,. The leaf node v,
contains the score set W of the context state cs = (¢, Co,
.+ Cn).

For example, for the movie database, and the profile with
context states shown in Fig. 4, the profile tree depicted in
Fig. 5b is constructed. Note that there is exactly one root-to-
leaf path for each context state csin Context(P). For example,
the context state (friends, good, summer _holidays) corresponds
to the path from the root to the left-most leaf node. Each leaf
node maintains the score set of its corresponding context state.

The size of the profile tree Tp of a profile P depends on the
number of common prefixes of the context statesin Context(P).
It al'so depends on the assignments of context parametersto tree
levels. Let mj, 1 < i < n, be the cardinality of the domain of
parameter Cy,, that is, of the parameter assigned to tree level i.
The maximum number of cellsismy x (1+mpx (1+. .. (1+mp))).
This number is as small as possbhlewhenm; < m, < ... <
my, thus, in general, it is better to place context parameters that
have domains with small cardinalitiesin the upper levels of the
profile tree.

Given a context state c¢s and a profile P, the PT_Resolution
Algorithm (Algorithm 2) finds the context states in Context(P)
that cover cs through a top-down breadth-first traversal of the
profiletree Tp. At each level i, Algorithm 2 maintains al paths
of length i whose context state is either the same or covers the
prefix (cy, C,,. .., Cy) Of the input context state. For each can-
didate path, its Hierarchy state distance from the corresponding
prefix of csisaso maintained. Algorithm 2 returns as its result
the score sets of the leaf nodes at level n + 1 and the Hierarchy
state distances of the corresponding context states from cs.

For example, for the profile tree of Fig. 5b and input context
state cs¥ = (family, All, Christmas), we start from the root node
and follow the pointers of the cells containing the values family
and All (i.e., the same or ancestor values of family) to nodes
vz and v, respectively. At the next level (level 2), we follow
the pointer associated with value All, from node v3 to node vg
and from node v4 to node vy. At the next level (level 3), we
follow the pointers associated with values holidays and All at
both nodes vg and vg that lead to leaf nodes with score sets
Weet, Wees and Wees, We0, respectively. Thus, the score sets of
context states cs”, cs?, ¢s® and cs® are returned, which are the
context states in P that cover cs<.

Lemma?2. Let Tp be the profile tree of a profile P and cs® a
context state. The PT_Resolution Algorithm with input Tp and
s returns the set of score sets that correspond to the set of
context states CR such that CR ¢ Context(P) and cs € CR, if
and only if, cs covers csQ.

Algorithm 2 PT_Resolution Algorithm
Input: A profiletree Tp, an input context state cs= (C1, C; . . . Cp).
Output: A ResultSet of (W, d) pairs such W is the score set
of aleaf node in Tp whose context state c§ covers cs and d =
disty(cs, cs).
SN, SN’: setsof (v, d) pairs, where visatree node and d adistance
value.
Initially: SN = {(Rp, 0)}, where Ry istheroot of Tp. SN’ =0
anc(c/, c) returnstrueif value ¢’ is an ancestor of value c
lev(c): thelevel of context value ¢
p.next: the node pointer p pointsto
Begin
for level i = 1tondo
for dl pairs (v, d) € SN do
for al cells(y, p) of nodev do
if y == ¢, or (anc(y, ¢;)) then
if i <nthen
SN’ = SN'U {(p.next, d + dist, (lev(c), lev(y))};
eseif i = nthen
W = p.next;
ResultSet = ResultSet U {(W,. d)};
end if
end if
end for
end for
SN = SN/;
SN’ =0;
end for
End

Proor. Let cs= (Cy, C2, ..., Cn) € CR Foreachi,1<i<n,
from the way the paths are formed, we have either ¢; = ¢2 or ¢
= anct'k(ciQ), for somelevels L < L;. Thus, from Definition 9,
if cs e CR, then cs covers cR. Assume now for the purpose of
contradiction, that thereisacs € Context(P) such that cs covers
csR but cs¢ CR. Sincecscoverscs®, thenVi,1<i<n, ¢ = ciQ
orgi = anc'['k(ciQ). Then, at each level i, the corresponding value
should have been included as a candidate path and cs should
have beenin CR. (J

To compute the tight covers of each query context state cs?,
cs? e Context(Q), we sort all returned context states for cs® on
the basis of their Hierarchy state distance from cs® and select
the one with the minimum such distance. If there are more
than one such state, we select the context state with the smallest
Jaccard state distance from csQ. If there are till ties, we select
one of them at random. We call this algorithm, PT Resolution
Algorithmwith Sorting.

For instance, for the covering context states of csQ = (fam-
ily, All, Christmas), computed by the PT_Resolution Algo-
rithm in our previous example, it holds: disty(cs®, cs?) = 3,
disty(cs?, cs?) = 1, disty(cs®, ¢s®) = 2 and disty (cs®, ¢sf) = 2.
Thus, context state cs* = (family, All, holidays) is selected as
the tight cover of cs®?.

Theorem 3 (Correctness). Let Tp be the preference graph of
a profile P and Q a contextual query. If the PT _Resolution
Algorithm with Sorting is applied to all context states cs® e

11

Context(Q), the score sets returned by the algorithm corre-
spond to context states that constitute a context resolution set

for Q.

Proor. Let cs! bea context state returned by the algorithm. For
the purpose of contradiction, let as assumethat cst is not atight
cover of any query context state cs®. From Lemma 2, cs' cov-
erscs?. Sincecs' isnot atight cover of cs?, there exists another
context state cs?, ¢s® # cst, such that cs? e Context(P), ¢s? cov-
ers cs? and cs? covers cst. From Property 1, disty(cs'c®) >
disty(cs?, ¢Q) (1). From Lemma2, since cs? coverscs?, cs? is
returned by the PT_Resolution Algorithm. From (1), cs? should
have been the context state returned after sorting, which contra-
dicts our assumption that cs? is returned. O

Let cs? be a query context state. Let us now consider the
complexity of the algorithm. Assume that each context param-
eter Gy, ti € {1, 2, ... n}, has h, hierarchy levels and that there
areval(Cy) distinct valuesin the profile. In the case of an exact
match, i.e, that is, if there is a context state cs in Profile(P),
such that, cs= cs®, then we can use the profiletreeto locate this
state very efficiently. At each level i, we search for value ¢y, and
descend to the next level, following the corresponding pointer.
Thus, thereis just a single candidate path. At each level i, we
just visit one node, search for the cell with value ¢y, in it and
follow the corresponding pointer. Thus, we visit as many nodes
as the height of the profile tree. At each level i, we need to
search at most val(Cy,) cells. Note that this can be improved,
if we keep the values in the cells of each node sorted. Then,
we can use binary search for locating the value ¢, in the corre-
sponding node. For the general case of looking for all covers,
for each value c;,, we need to consider aso its ancestorsin the
concept hierarchy. Thus, the number of cells that are consid-
ered for each query context state is at most val(Cy,) + val(Cy,) X
hy, + val(Cy,) X hy, X hy, + ...+ val(Cy,) X hg—1 X ... X hy,.

Enhanced Profile Tree. We present anumber of improvements
of context resolution using the profile tree. For notational sim-
plicity, assume that each parameter C; is mapped to level i, that
ist=i,vl<i<n Letes?=(c?,c3,...,c%c2,,....c3) be
aquery context state.

The first improvement is with regards to the test at the last
internal level, i.e, level n. In this case, for the corresponding
value, i.e, ¢S, instead of consideri ng al valuesin the tree node
that are equal to or more genera than CS, we select the most
specific among them, i.e, the value that correspondsto the lower
hierarchy level. For instance, for our example query, cs% =
(family, All, Christmas), at the last level, we select holidays
and discard All. Now, the returned context states are cs, and
CcSs. This improvement uses the fact the context state formed
using the most specific valueis atight cover of al other context
states that would be formed by including less specific values.

The second improvement is applicable to the case of select-
ing just the most similar tight cover. In this case, we can reduce
further the number of candidate paths maintained. In this case,
we can prune those paths under construction for which there
is at least another sub-path that has smaller distance to the one
searched, independently of the rest of the values of the path.

Assume, that at level i of the tree, we have two candidate sub-
pathswith values sp* = (spi, .. ., sp!) and sp? = (sp3,, sp?).
If for the Hierarchy state distances between the states cs®
(SP1,...,SPt Cisa, ..., Co) and cs? = (spz, ..., spA All,..., All)
and the query context state cs?, it holds that disty(cst, cs9) >
dist(cs?, csR), then we can safely prune sub-path spt. The rea-
son is that, even if, for the rest of the values of sp*, we could
find in the tree values equal to that of the query (best case sce-
nario), its distance from the context query state would still be
greater than that of sp? evenif we could not find anything better
than All for the remaining values of sp? (worst case scenario).

Finaly, to speed up context resolution, we add cross edges,
called hierarchical pointers, among context values that belong
to a specific node. In particular, we link each value with itsfirst
ancestor that exists in the node, thet is, the value that belongs
to the first upper level of the corresponding hierarchy. For in-
stance, for the profile tree of Fig. 5b, we add cross edges from
good to All at level mood and edgesfrom holidaysto All at level
time period. The values within each node are sorted according
to the hierarchy level to which they belong. Now, instead of
searching within each node for the more general values of each
context value, we just follow the hierarchical pointers of the
tree to locate them.

4.3. Resolution for Multiple Context States

In the previous sections, we have used the preference graph
and the profile tree to locate tight covers of each context state
cs e Context(Q) individually. In this section, we propose al-
gorithms for locating tight covers of more than one query con-
text state. The ideais to use a corresponding to a preference
graph or profile tree representation for Context(Q). The only
differenceis that there are no score sets.

4.3.1. Using the Preference Graph
Let us consider first a preference graph based representation
of Context(Q).

Definition 22 (Query Graph). The query graph Gg =
(Vo, Po) of a contextual query Q is a directed acyclic graph
such that a nodev e Vg for each context state cs € Context(Q)
and an edge (vi,vj) € Pg, if the context state of v; is a tight
cover of the context state of v;.

Our approach is based on the following observation.

Lemma 3. Let P be a profile and cs! and cs be two context
states such that cs! covers cs?. Let ¢s? € Context(P) be a tight
cover of cs' in P and let z be the corresponding node in the
preference graph PGp of P. Then, none of the predecessors of
zin PGp corresponds to a context state that is a tight cover of
cs?

Proor. For the purpose of contradiction, assume that thereis a
node v with context state cs' in PGp such that vis a predecessor
of z and its context state cs’ is atight cover of cs?. Sincev is
a predecessor of z, cs’ covers cs? (1). Since cs? coverscs! and
cs! coverscs?, ¢ coverscs® (2). From (1), (2), cs' can not be
atight cover of ¢s?. O

12

We use Lemma 3 as follows. Let cs® be a query context
state of a node in Go with no incoming edge. We form a set
S(cs?) ¢ Context(Q) with the context states that ¢sQ covers.
Assume that we use the PG_Resolution Algorithm to locate a
tight cover of csQ in P, say the context state of node v. Then,
when looking for tight covers for the context states in S(cs®),
we can ignore all predecessors of vin PGp. We use the query
graph Gq to compute S(cs®). From the definition of the query
graph, a context state cs € S(cs9), if and only if, there exists
apath in G from the node with context state cs® to the node
with context state cs.

We further improve the above procedure by processing nodes
in S(cs®) gradually asfollows. Wefirst locate all context states
in Context(Q) that are tight covers of cs® (these are the context
states for which thereis an edgein G from the node that corre-
sponds to context state cs@ to their corresponding node). Let cs
be such a context state. We use the PG_Resolution Algorithmto
locate atight cover of cs excluding the predecessors of thetight
covers of cs¥. Then, we proceed similarly for cs. That is, we
find all tight covers of cs and use the PG _Resolution Algorithm
to locate a tight cover for them excluding the predecessors of
the tight covers of cs. This procedure repeats until we locate
tight covers of al context states in Context(P). We call this
algorithm, QG_Resolution Algorithm.

4.3.2. Using the Profile Tree

The context states in Context(Q) are represented by a data
structure similar to the profile tree, that we call query tree. The
only differenceisthat theleaf nodes are empty; thereisno score
set associated with the root-to-leaf paths. The mapping of the
context parameters to the levels of the query tree is the same
with the mapping of context parametersto the levels of the pro-
file tree. For simplicity, assume that ¥V i, 1 < i < n, context
parameter C; is mapped to level i of both the profile and the
query tree.

The QT_Resolution Algorithm (Algorithm 3) processes pairs
of nodesthat belong to the samelevel, i.e., valuesthat belong to
the same context parameter. Each pair consists of a node of the
guery tree and a node of the profile tree. Initially, there is one
pair of nodes, (Rq, Re, 0), where R and Rp are the root nodes
of the query and the profile tree respectively (level i = 1). For
each value in any cell of the query node Rgq that is equal to a
value in any cell of the profile node Rp or belongs to a lower
hierarchy level, we create a new pair of nodes at the next level
(i + 1). After checking all values of all pairs at a specific level,
we examine the pairs of nodes created for the immediately next
level and so on. At level n + 1, we retrieve from the profile
tree the associated score set. Observe that the QT _Resolution
Algorithmtestsfor all query statesin asingle pass of the profile
tree.

Lemma4. Let Tp be the profile tree of a profile P and Tq the
query tree of a query Q. The QT _Resolution Algorithm returns
the set of score sets that correspond to the set of context states
CR such that CR ¢ Context(P) and (i) cs € CR, if and only if,
cscoverscs?, cse e Context(Q) and (i) ¥ ¢s® e Context(Q) 3
cse CR, such that cs covers cs®.

Algorithm 3 QT _Resolution Algorithm

Input: A profiletree Tp, aquery tree T
Output: A ResultSet of (W, d) pairs such that Ws is the score
set of aleaf node in Tp whose context state cs covers at least one
context state csR in Context(Q) and d = di sty (cs, csR).
SN, SN’ sets of (vg, vp, d) tuples, where v isanode in Tg, vy isa
nodein Tp and d adistance value.
Initially: SN = {(Rq, Rp, 0)}, where Ry, Re are the root nodes of Tq
and Tp, respectively. SN’ =0
anc(c’, ¢), lev(c), p.next asin Algorithm 2
Begin
for level i = 1tondo
for al tuples (vq, Vg, d) € SN do
for all cells (x, pg) of node vq do
for @l cells (y, pp) of node v do
if x ==y or (anc(y, X)) then
if i < nthen
SN’ SN U {(pq.next, pp.next, d +
dist, (lev(X), lev(y)))};
dseif i = nthen
W = pp.next;
ResultSet = ResultSet U {(W, d)};
end if
end if
end for
end for
end for
SN = SN’;
SN’ =0;
end for
End

Proor. As in Lemma 2, the proof follows from the fact that
al pairs of values of the corresponding context parameters are
considered by the algorithm. (O

5. Usability Evaluation

The goal of our usahility study isto justify the use of contex-
tual preferences. In particular, the objective is to show that for
a reasonable effort of specifying contextual preferences, users
get more satisfying results than when there are no preferences
or when the available preferences do not depend on context.

We used two databases of different sizes. (a) a rela
tively small point-of-interest database and (b) arelatively large
movie database. The point-of-interest database consists of
nearly 1000 real points-of-interest of the two largest cities in
Greece, namely Athens and Thessaloniki. The context parame-
ters are accompanying_people, time_period and user location.
For the movie database, our data comes from the Stanford
Movie Database [16] with information about 12000 movies.
The context parameters are accompanying people, mood and
time_period. Note that the context parameters are the same
as those used in our running examples with the exception of
time_period used in place of weather in the point-of-interest
database.

The sizes of the databases have two important implications
for usability. First, they affect the size of the prdfile, i.e, the

13

number of preferences. Second, they require different methods
for evaluating the quality of results. Specificaly, while for the
small point-of-interest database, we can ask users to manually
provide the best results, for the large movie database, we need
to use other metrics[17].

We conducted an empirical evaluation of our approach with
20 users;, 10 different users were used for each of the two
databases. For al users, it was the first time that they used the
system. We evaluated our approach along two lines: overhead
of profile specification and quality of results.

5.1. Profile Specification

To ease the specification of preferences, we created a number
of default profiles for each database based on three characteris-
tics: (a) age (below 30, between 30-50, above 50), (b) sex (male
or female) and (c) taste (broadly categorized as mainstream or
out-of-the-beaten track). For each of the 12 possible combina-
tions of the values of the above characteristics, we created one
profile with contextual -preferences and one profile with non-
contextua preferences, i.e., preferencesthat hold independently
of the values of the context parameters. One contextual and one
non-contextual profile was pre-assigned to each user based on
his/her age, sex and taste. Users were allowed to modify the de-
fault profiles assigned to them by adding, deleting or updating
preferences.

We counted the number of modifications (insertions, dele-
tions, updates) of preferences of the default profile. We also
reported how long (in minutes) it took users to specify/modify
their profile. Since for al users this was their first experi-
ence with the system, the reported time includes the time it
took the user to get accustomed with the system. These re-
sults are reported in Table 1 for points-of-interest and Table 2
for movies, while Table 3 summarizes them. For the point-of-
interest database, each default non-contextual profile has about
100 preferences, while each default contextua profile nearly
650 preferences, while for the movie database, the sizes are 120
and 1100, respectively.

The general impression is that predefined profiles save time
in specifying user preferences. Furthermore, having default
profiles makes it easier for someone to understand the main
idea behind the system, since the preferences in the profile act
as examples. With regards to time, there was deviation among
the time users spent on specifying profiles. some users were
more meticulous than others, spending more time in adjusting
the profiles assigned to them. As expected, the specification of
contextual profiles is more time-consuming than the specifica
tion of non-contextual ones, since such profiles have a larger
number of preferences and are more fine-grained. The size of
the database also affects the complexity of profile specification
basically by increasing the number of preferences and thus, the
required modifications. However, the increase of the total time
spent is not necessarily proportional to the number of modifica-
tions, since thistime, as explained, aso includesthe time to get
acquainted with the system (Table 3).

Table 1: Point-of-Interest Dataset: Overhead of Profile Specification per User

Userl User2 Usr3 User4 User5 Usar6 User7 User8 User9 User 10

Non Contextual Profile

Num of updates 15 14 8 11 15 16 19 12 10 10

Update time (mins) 13 8 5 6 6 9 16 7 9 8
Contextual Profile

Num of updates 22 31 12 28 24 32 38 13 18 25

Update time (mins) 30 45 20 30 30 40 45 15 20 25

Table 2: Movie Dataset: Overhead of Profile Specification per User

Userl User2 User3 User4d User5 User6 User7 User8 User9 User 10

Non Contextual Profile

Num of updates 37 14 29 10 22 31 29 15 17 12

Update time (mins) 18 7 14 6 9 19 16 6 8 8
Contextual Profile

Num of updates 67 49 52 91 37 72 69 41 46 37

Update time (mins) 32 28 28 55 17 44 36 22 27 46

Table 4: Point-of-Interest Dataset: Quality of Results per User

Userl User2 User3 User4d User5 User6 User7 User8 User9 User 10

No Preferences 10% 0% 0% 0% 0% 10% 5% 0% 0% 5%
Non-Contextual Preferences 10% 10% 0% 5% 5% 10% 15% 5% 5% 5%
Contextual Preferences
Exact Match 100% 90% 90% 95% 90% 100% 100% 85% 100% 100%
Non Exact Match
Top-1 tight cover 100% 95% 90% 85% 90% 100% 100% 85% 90% 100%
Top-3 tight covers 95% 90% 85% 95% 95% 90% 100% 75% 85% 95%

Table 5: Movie Dataset: Quality of Results per User

Userl User2 User3 User4 User5 Usar6 User7 User8 User9 User 10

No Preferences Precision(20) 25% 20% 35% 35% 20% 30% 20% 35% 15% 30%
Highly Preferred Movies 10% 0% 10% 15% 15% 10% 10% 20% 15% 5%
Overal Score 3 3 3 2 4 3 3 3 2 1
Non-Contextual Preferences Precision(20) 20% 30% 40% 60% 60% 60% 35% 30% 40% 25%
Highly Preferred Movies 0% 5% 25% 20% 30% 35% 20% 15% 25% 15%
Overal Score 2 3 4 6 6 6 4 3 4 2
Contextual Preferences
Exact Match Precision(20) 75% 85% 75% 65% 85% 70% 85% 85% 90% 85%
Highly Preferred Movies 70% 70% 75% 60% 65% 70% 75% 75% 85% 70%
Overal Score 8 9 8 8 7 8 8 8 9 9
Non Exact Match
Top-1 tight cover Precision(20) 75% 85% 65% 55% 65% 65% 70% 85% 85% 70%
Highly Preferred Movies 50% 70% 60% 45% 40% 60% 65% 60% 5% 55%
Overdl Score 6 9 7 7 6 8 8 8 8 7
Top-3 tight covers Precision(20) 65% 75% 60% 55% 65% 60% 70% 85% 85% 70%
Highly Preferred Movies 45% 65% 55% 50% 45% 40% 55% 55% 70% 50%
Overal Score 6 8 7 7 6 6 7 8 8 7

14

Table 6: Average Quality of Results

Point-of-Interest Dataset Movie Dataset
Precision(20) Precision(20) | Highly Preferred Movies | Overall Score
No Preferences 3% 26.5% 11% 27
Non-Contextual Preferences 7% 40% 19% 4
Contextual Preferences
Exact Match 95% 80% 71.5% 8.2
Non Exact Match
Top-1 tight cover 93.5% 72% 58% 74
Top-3 tight covers 90.5% 69% 53% 7

Table 3: Average Profile Specification Overhead

Point-of-Interest Dataset | Movie Dataset
Non Contextual Profile
Num of updates 13 216
Update time (mins) 8.7 111
Contextual Profile
Num of updates 24.3 56.1
Update time (mins) 30 335

5.2. Quality of Results

In this set of experiments, our goal is to evaluate the qual-
ity of the results of contextual queries. Queries were exe-
cuted: (i) without using any of the preferences, (ii) using the
non-contextual preferencesand (iii) using the contextual prefer-
ences. When using contextual preferences, we consider queries
for which: (iii-a) thereis an exact match, (iii-b) there is no ex-
act match and the most similar (top-1) tight cover is used and
(iii-c) thereis no exact match and the three most similar (top-3)
tight coversare used. For computing similarity, we used the Hi-
erarchy state distance, to resolve ties, the Jaccard state distance
and if there were still ties, random selection.

We asked the users to evaluate the quality of the results.
Since the point-of-interest database has a small number of tu-
ples, we asked the users to rank the results of each contextual
query manualy. Then, we compare the ranking specified by
the users with what was recommended by the system. We re-
port the percentage of the top-20 results computed by the sys-
tem that also belonged to the top-20 results given by the user,
or precision(20). As shown in Table 4, this percentage is gen-
eraly high. However, sometimes the choices of the user did
not conform even to their own preferences as shown in the case
of queries with an exact match. In this case, athough the con-
text state of the preference used was an exact match of the con-
text state of the query, still some users ranked their results dif-
ferently than what the related preference indicated. Note that
in general, users that customized their profile by making more
modifications (e.g., User 6 in Table 1) got more satisfactory re-
sults than those that spent less time during profile specification
(e.g., User 3in Table 1). Exact match queries provide the best
results, while non exact match ones provide only slightly worse
results. That is, if there are no preferences whose context state
isequal tothat of the query, preferenceswhose context stateisa
tight cover can be used. Furthermore, for such non exact match

cases, using just the most similar (top-1) tight cover provides
dlightly better results than using more (top-3) similar tight cov-
ers. Since using just one cover is also more efficient, this seems
to be the best choice for a context resolution set.

For the movie database, due to the large number of tuples, it
was not possible for the users to manually rank all results. In-
stead, users were asked to evaluate the quality of the 20 higher
ranked movies in the result. For characterizing the quality of
the results, users marked each of the 20 movieswith 1 or O, in-
dicating whether they considered that the movie should belong
to the best 20 ones or not, respectively. The number of 1s corre-
sponds to the precision of the top-20 movies, or precision(20).
Furthermore, users were asked to give a specific numerical in-
terest score between 1 and 10 to each of the 20 movies. This
scorewasintherange[1, 5], if the previous relevance indicator
was 0 and in therange[6, 10], otherwise. We report the number
of movies that were rated highly (interest score > 7). Finaly,
users were asked to provide an overall score in the range [1,
10] to indicate their degree of satisfaction of the overall result
set. Table 5 depicts the detailed per user scores attained for the
movie database. Again, our results show that using contextual
preferencesimproves quality considerably.

When compared to the point-of-interest database (Table 6),
precision is lower. One reason for that is the following. In
the movie database, the users were not aware of the whole re-
sult set; they were just presented with the top 20 moviesin the
result. Thus, they “left room” in their choices for better results
that could belying in the dataset that was not presented to them.

6. Performance Evaluation of Preference Selection

In the section, we present an experimental eval uation of pref-
erence selection using the proposed data structures, namely the
preference graph, the profile tree and their enhancements. We
used both real and synthetic profiles. As real profiles, we used
the ones specified by the users in our usability study for the
movie and the point-of-interest databases.

We have generated synthetic profiles with various character-
isticsand sizes. We consider preferenceswith 2, 3 and 4 context
parameters. Context parameters have domains with different
cardinalities, namely, asmall domain with 10 values, amedium
domain with 100 values and a large domain with 1000 values.
Small and medium domains correspond to context parameters
such asmood or accompanying _people, whereaslarger domains

15

Table 7: Input Parameters for Synthetic Profiles

Parameter Range Default
Number of contextual preferences 500 - 10000 5000
Number of context parameters 2,34 3
Datadistribution uniform, zipf
a=0-2 a=1
Cardinality of context domains 10, 100, 1000
Hierarchy levels 2-8 4
Perc. of values at the detailed level 75% - 25% 75%
Perc. of values at the other levels 25% - 75% 25%

to parameters such as user_location or time_period. We aso
consider hierarchieswith 2 up to 8 levels and different distribu-
tions of the domain values among the levels. Since the prefer-
ence graph and the profil etree take advantage of co-occurrences
of context states and prefixes of context states respectively, their
size depends on the distribution of context valuesin the context
states that appear in the profile. To populate a profile with con-
text states, we consider for the context values both a uniform
and a zipf data distribution with different values of a. The con-
text states for the queries are generated similarly. Table 7 sum-
marizes the parameters used for creating the synthetic profiles.

We report results regarding (a) the size of the corresponding
data structures and (b) the complexity of preference selection
using the proposed data structures. The results are averaged
over 50 executions.

6.1. Storage

Inthis set of experiments, we evaluate the space requirements
(in number of cells) for storing context states using the profile
tree and the preference graph as opposed to storing them se-
quentialy (no index). For the profile tree, this depends on the
mapping of context parametersto tree levels. Thus, we created
profile trees for all possible mappings of context parameters to
levels of the trees.

Synthetic data. First, we consider profiles of different sizes,
that is, with different number of contextual preferences. We cre-
ated aprofiletreefor al six different mappings of parametersto
tree levels. Let S stand for the small, M for the medium and L
for the large domain. We denote with (S, M, L) the mapping in
which S isassignedto thefirst level of thetree, M to the second
and L to the third one. Similarly, we use (S, L, M), (M, S, L),
(M,L,S), (L, S, M) and (L, M, S) to denote the remaining map-
pings. The mapping of parameters with large domains lower in
the tree resultsin smaller trees as expected (Fig. 6a, 6b). In the
following experiments, we use this mapping for the profiletree,
unless specified otherwise. For a zipf distribution witha = 1
(Fig. 6b), for both the profile tree and the preference graph, the
total number of cellsis smaller than that for the uniform distri-
bution (Fig. 6a), because “hot” values appear more frequently
in preferences, i.e., more preferences have overlapping context
states. Overall, the profile tree is smaller than the preference
graph, since it takes advantage of repetitions of prefixes of con-
text states, whereas the preference graph considers repetitions
only of whole context states.

16

)

Number of cells (in thousands)

no index graph (AMTLATL ATMALT MATLTAL (MTALTLA) (TAMLAT) (TMA)(LTA)

Figure 8: Size for the case of real profiles.

We also keep the size of the profile fixed to its default value
and vary the values of the other parameters. In Fig. 7a, we
present results for various values of a; the larger the value of
a, the larger the difference between the size of the profile tree
and the preference graph, since alarger number of overlapping
prefixesis created. Fig. 7b depicts our results for profiles with
different number of context parameters, specifically for 2 pa-
rameters with an M and an L domain, for 3 parameters and an
S, M and an L domain and for 4 parameterswithan S, M, M
and an L domain. As expected, the size of the data structures
increases with the number of the context parameters, since the
number of overlapping context state and prefixes reduces. Note
that the size of the data structures does not depend on the as-
signments of context values to hierarchy levels or the number
of hierarchy levels.

Real data. For the movie database, let A stand for accom-
panying_people, M for mood and T for time_period. As be-
fore, weuse (A, M, T), (A, T, M), (M,A T),(M, T, A), (T, A, M)
and (T, M, A) for the possible mappings of parameters to tree
levels. Accordingly, for the point-of-interest database, let A
stand for accompanying_people, T for time_period and L for
user_location. Then, (A, T, L), (A, L, T), (T, A, L), (T, L, A),
(L, A, T) and (L, T, A) denote the different mappings of param-
eters to tree levels. As shown in Fig. 8, both the preference
graph and the profile require less space than storing preferences
sequentially, since each context state and respectively prefix is
stored only once. For the profile tree, the mappings that result
in trees with smallest sizes are, as expected, the ones that map
the context parameterswith large domainsto levelslower in the
tree, namely, mappings (A, M, T) and (M, A, T) for the movie
database and mappings (A, T, L) and (T, A, L) for the point-
of-interest database. However, all trees occupy less space than
storing preferences sequentially.

6.2. Preference Selection

In this set of experiments, we evaluate the performance of
preference selection (in term of cell accesses). Thisdependson
whether there is a context state in the profile that is exactly the
same with the query context state. Thus, we study these two
cases (i.e., exact and non exact match) separately. In the case of
sequential scan (i.e., no index), for exact matches, the profileis
scanned until the matching context stateis found, while for non
exact matches, the whole profile is scanned. With the profile

PXOOD¥Xd+

L noindex

Number of cells (in thousands)

Number of context states (in thousands)

@

Number of cells (in thousands)

BXOODm*d+

no index

KD X

o L L L 1
4 6 8

Number of context states (in thousands)

(b)

Figure 6: Size for synthetic profiles of different sizes with (a) uniform and (b) zipf with a = 1 data distributions.

20 T T T
(SML) -+

graph -~
noindex &

Number of cells (in thousands)

15
Paramater a

@

Number of cells (in thousands)

25 T T

[

20

15

10

Number of context parameters

(b)

Figure 7: Size for synthetic profiles generated with different (a) a values and (b) numbers of context parameters.

tree, exact match queries are resolved by a simple root-to-leaf
traversal, while for non exact matches, multiple candidate paths
are maintained.

We consider first a single query context state. We evalu-
ate the performance of preference selection for different profile
sizes (Fig. 9aand 9b). Note that the profile tree returns cover-
ing context states, thus, to compute tight covers, the extra step
of sorting these context states based on their distances to the
query context state is required. The cost of sorting is not re-
ported in these experiments. Note that sorting is only required
in the case of non-exact matches. In general, excluding sort-
ing, the profile tree is more efficient than the preference graph.
The preference graph performs similarly for both exact and non
exact matches. In Fig. 9c, we aso evaluate the heuristic for
the preference graph. In particular, we compare the top-down,
bottom-up and the hybrid traversal. Overall, the bottom-up ap-
proach requires more cell accesses than the top-down approach,
since in general, there are more nodes at the lower levels than
in the upper ones. In the following, we use the enhanced profile
tree and the hybrid traversal for the preference graph.

Besides the profile size, we aso consider how the other pa-
rameters affect performance. In Fig. 10, we consider a zipf dis-
tribution with different a values for exact (Fig. 10a) and non
exact (Fig. 10b) matches. Larger a values result in fewer cell
accesses, since the resulting data structures are smaller. Fig. 11
reports results when different percentages of context values are
assigned to hierarchy levels; the larger the number of values at
the higher levels, the smaller the number of cell accesses. The

17

T T
enhanced tree -+
heuristic graph -

no index -4

Number of cells (in thousands)

+ L +
4 5 6
Number of hierarchy levels

Figure 13: Cell accesses for finding preferences related to queries for synthetic
profiles with different numbers of hierarchy levels for non exact match.

reason isthat, in this case, for the preference graph, context res-
olution stops at higher levels and for the profile tree, there are
less covering context states and thus candidate paths. Fig. 12
shows results for profiles with different numbers of context pa
rameters. We use profiles with 2, 3 and 4 context parameters
with domains as in Fig. 7b. The number of cell accesses in-
creases as the number of context parameters increases, mainly,
because the size of the data structures increases. The number
of hierarchy levels affects only non exact matches (Fig. 13). In
this case, more cell accesses are required, since we search for
additional, more general context values, exact matches do not
directly depend on the number of levels.

Theresultsfor thereal profiles are depicted in Fig. 14. Over-
all, again the profile tree provides the most efficient preference

7 7
' ' ' ' profile tree -5 ' ' ' ' profile tree —— top-down —+— ' ' ' ' '
enhanced tree -->--- enhanced tree & 10 | bottom-up -->--- B
6 L preference graph —%— _| 6L preference graph —x— combined -
no index —&— no index &
@ @ @
2 e B sl 4
S 5fF g S5 g
i1 @ @
3 3 3
2 3 3
£ £ £
T 4r b c 4r 7 £ 6 1
2 2 2 X
3 3} 4 3 3L @ 4 3
e
£ 2r 1 £ 2f 1 E - e
= 5 5
z z o z
2+ X 4
1k B 1k B -
e
& R
0 P 0 i i 1 1 1 0 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

Number of context states in profile (in thousands) Number of context states in profile (in thousands)

@ (b) (©
Figure 9: Cell accesses for locating preferences related to queries using the profile tree, the enhanced profile tree and the preference graph, and when no index is
used, for synthetic profiles for (a) exact match and (b) non exact match and (c) for the top-down, bottom-up and the heuristic approach in the case of the preference
graph for non exact match (results for exact match are similar for the graph).

Number of context states in profile (in thousands)

10 T T T 18 T T T
enhanced tree -+ enhanced tree -+
heuristic graph X 61 heuristic graph -~]
no index & no index &

g °r 1 @ 14f 1
8]
2 2
g 8

g S 12F b
2 3
£ ef 1 £

£ X, g 0 1
2 2

3 8 sf 1
5 AT x. b 5

g 3 6F 4

g 2 x

£ 5

Z 2 x i z 4t x]

2F X B

0 . : 0 T i
0 0.5 1 15 2 0 0.5 1 15 2

Parameter a Parameter a

@ (b)
Figure 10: Cell accesses for locating preferences related to queries for synthetic profiles generated with different a values for (a) exact match and (b) non exact
match.

10 T 18 T
enhanced tree 1 enhanced tree
heuristic graph heuristic graph

no index 16 - no index
& 1 1 g
3 7
T | e e O
2 2
g § 12 g
3 3
£ 6fF 1 5
£ c 10 —
2 o2
8 8 s B
KT S S S,) 4 5
2 | g2 6} i
H ' £
2 ! H
2r ' 1 ‘T T
! | 2r i 1
o L L L 0 L S P —
2575 50-50 7525 2575 50-50 75-25

Percentage of context values at the detailed and the other levels Percentage of context values at the detailed and the other levels

@ (b)
Figure 11: Cell accesses for finding preferences related to queries for synthetic profiles having different percentages of context values between the detailed and the
other hierarchy levels for (a) exact match and (b) non exact match.

Figure 12: Cell accesses for locating preferences related to queries for synthetic profiles with different numbers of context parameters for (a) exact match and (b)

non exact match.

. T
enhanced tree C——1 20 + enhanced tree — ... J
10 | heuristic graph £==223 B heuristic graph & 3
i 10 inde;
g g
g °r § s ; 1
s T 0 i
g i i i
2 i o H
s ; £ :
£ 6f R .) £ ;
@ ; ! r H
3 | : | 3 W[e ; ; J
8 ; | 38 | |
3 oer : - § 5 s 5
o} H i | | o | :
£ — ! | | 2 : [
£ P i i £ : ; 3
z i ; - ! 2 5r : : ! 7
r | [| - — |
Lo P 3 | P |
b P : P P :
0 HE HE L 0 I HE: L =
2 3 2 2 3 .

Number of context parameters

@

18

Number of context parameters

(b)

18

T T T T T T
Points-of-Interest ———1
16 F Movies £222773 i

14 | 4

12 —

08 | -

0.6

Number of cells (in thousands)

04 F [q

02 [i

e L [I

graph ni tree graph

0 L
ni tree

@

Number of cells (in thousands)

18 F " T T T T T
: Points-of-Interest ———1 -

Movies £222773
16 _ 4

14 —

12 —

0.8 —
06 [—

04 4

o2 | | = B
o P s N M e B

L
ni tree graph ni tree graph

(b)

Figure 14: Cell accesses for finding preferences related to queries using the enhanced profile tree (denoted with tree), the heuristic approach for the preference graph

(denoted with graph), and when no index is used (denoted with ni).

selection, if we ignore the overhead of sorting.

Next, we compare the performance of searching for more
than one matching context states for queries with varying
number of context states using the QT _Resolution and the
QG_Resolution algorithms. Fig. 15 depicts our results for exact
(Fig. 15a) and non exact (Fig. 15b) match queries. Both op-
timizations result in more efficient resolution than considering
each context state individually.

Theresults for the real profiles are shownin Fig. 16. Werun
this experiment for exact match queries (Fig. 16a) and for non
exact ones (Fig. 16b), with query descriptors consisting of 20
context states. Using the proposed algorithms reduces access
timein al cases.

7. Related Work

In this paper, we use context to confine database querying
by selecting as results the best matching tuples based on user
preferences that depend on context. We review first research on
preferences, then on context and finally, on contextual prefer-
ences.

The research literature on preferences is extensive. In par-
ticular, in the context of database queries, there are two differ-
ent approaches for expressing preferences: a quantitative and a
qualitative one. In the quantitative approach (e.g., [3, 4, 18]),
preferences are expressed indirectly by using scoring functions
that associate a numeric score with every tuple of the query an-
swer. In this work, we have adapted the general quantitative
framework of [3], sinceit is easier for users to employ than the
qualitative one. In the quantitative framework of [5, 14], user
preferencesare stored as degrees of interest in atomic query ele-
ments (such asindividual selection or join conditions) instead of
interests in specific attribute values. Our approach can be gen-
eralized for thisframework as well, by making the degree of in-
terest for each atomic query element depend on context. In the
qualitative approach (for example, [1, 2, 19]), the preferences
between tuples in the answer to a query are specified directly,
typically using binary preferencerelations. Thisframework can
aso be readily extended to include context.

There has been much work on developing a variety of con-
text infrastructures and context-aware middleware and applica-

19

tions (such asthe Context Toolkit [20] and the Dartmouth Solar
System [21]). However, although there is much research on
location-aware query processing in the area of spatio-temporal
databases, integrating other forms of context in query process-
ing is less explored. In the context-aware query processing
framework of [22], there is no notion of preferences, instead
context parameters are treated as normal attributes of relations.
Recently, context has been used in information filtering to de-
fine context-aware filters which are filters that have attributes
whose values change frequently [23].

Storing context data using data cubes, called context cubes,
is proposed in [24] for developing context-aware applications
that use archive sensor data. In this work, data cubes are used
to store historical context data and to extract interesting knowl-
edge from large collections of context data. The Context Rela-
tional Model (CR) introduced in [25], is an extended relational
model that allows attributes to exist under some contexts or to
have different values under different contexts. CR treats context
as afirst-class citizen at the level of data models, whereas in
our approach, we use the traditional relational model to capture
context as well as context-dependent preferences. Context as a
set of dimensions (e.g., context parameters) is also considered
in [26] where the problem of representing context-dependent
semistructured data is studied, while in [27], an overview of a
Multidimensional Query Language is given, that may be used
to express context-driven queries. A context model is also de-
ployed in [28] for enhancing web service discovery with con-
textual parameters. In [29], the current contextua state of a
system is represented as a multidimensional subspace within or
near other situation subspaces.

Extending the typical recommendation systems beyond the
two dimensions of users and itemsto include further contextual
information is studied in [30]. Contextual information is mod-
eled using a number of parameters with hierarchical structure
[31, 30]. Using context is shown to improve the prediction of
customer behavior.

There has been some recent work on contextual preferences.
In[32], authors consider ranking database results based on con-
textual qualitative preferences. Context parameters are part of
the database schema, while in our approach, context parame-
tersare considered to be outside the database. Furthermore, our

30

T T T T T
p, 20 states in parallel —+—
p, 20 single states ---
p, 50 states in parallel ---
p. 50 single states
g, 20 states in parallel -
g, 20 single states - B
9, 50 states in parallel ---®-::~
g, 50 single states --=4"--

x

*

25 -

omo
I

20

5 Y

Number of cells (in thousands)

Number of context states in profile (in thousands)

@

Number of cells (in thousands)

30 T T —T T T
p, 20 states in parallel —+—
p, 20 single states ---

x

*

p, 50 states in parallel ---
, 50 single states

g, 20 states in parallel -

g, 20 single states -

g, 50 states in parallel --

g, 50 single states.-~

25 -

20

Feomy
N

10 |

4 5 6 7 8
Number of context states in profile (in thousands)

(b)

Figure 15: Cell accesses for finding preferences related to queries using the query tree and the query graph for synthetic profiles for (a) exact match and (b) non

exact match. With p we denote the profile tree and with g the preference graph.

Number of cells (in thousands)
w
T
L

1t P

NN A A A

il
20 20 parallel 20 20 parallel 20 20 parallel 20 20 parallel

@

Number of cells (in thousands)

1 H I i 1 1 1 N

H .
20 20 parallel 20 20 parallel 20 20 parallel 20 20 parallel

(b)

Figure 16: Cell accesses for finding preferences related to queries using the query tree and the query graph for real profiles for (a) exact match and (b) non exact

match.

context parameters have a hierarchical nature that we explore
in context resolution. A knowledge-based context-aware query
preference model is proposed in [33], where context parameters
are treated as normal attributes of relations. Contextual prefer-
ences, called situated preferences, are also discussed in [34]. In
this approach, a context state is represented as a situation. Sit-
uations are uniquely linked through an N:M relationship with
preferences expressed using the qualitative approach. Again,
the context model is not hierarchical.

Finally, note that a preliminary abridge version of this pa
per appearsin [35]. The preference graph, computing scores,
multi-state resolution, various other enhancements and most of
the experiments are new here. In other previous work [36], we
have addressed the same problem of expressing contextual pref-
erences. However, the model used there for defining prefer-
ences includes only a single context parameter. Interest scores
of preferences involving more than one context parameter are
computed by a simple weighted sum of the preferences ex-
pressed by single context parameters. Here, we extend context
descriptors, so that contextua preferences involve more than
one context parameter and al so, associate context with queries.
Context resolution is also new here. In [38], we focus on the
efficient execution of contextual queries. In particular, we are
interested in creating groups of similar preferences for which
we pre-compute rankings of database tuples.

20

8. Conclusions

Thefocus of this paper is on annotating database preferences
with contextual information. Context is modeled using a set of
context parameters that take values from hierarchical domains,
thus, alowing different levels of abstraction for the captured
context data. A context state corresponds to an assignment of
values to each of the context parameters from its correspond-
ing domain. Database preferences are augmented with context
descriptors that specify the context states under which a pref-
erence holds. Similarly, each query is related with a set of
context states. We consider the problem of identifying those
preferences whose context states as specified by their context
descriptorsare the most similar to that of agiven query. We call
this problem context resolution. To realize context resolution,
we propose two data structures, namely the preference graph
and the profile tree, that allow for a compact representation of
the context-dependent preferences.

To evaluate the usefulness of our model, we have performed
two usability studies. Our studies showed that annotating pref-
erences with context improves the quality of the retrieved re-
sults considerably. The burden of having to specify contex-
tual preferencesis reasonable and can be reduced by providing
users with default preferences that they can edit. We have aso
performed a set of experiments to evaluate the performance of
context resolution using both real and synthetic datasets. The
proposed data structures were shown to improve both the stor-

age and the processing overheads. In general, the profile treeis
more space-efficient than the preference graph. It also clearly
outperforms the preference graph in the case of exact matches.
The main advantage of the preference graph is the possibility
for an incremental refinement of a context state. In particular,
a each step of the resolution algorithm, we get a state that is
closer to the query one. This is not possible with the profile
tree.

There are many directions for future work. Oneisto extend
our model so asto support non strict hierarchies. Although the
cover relation is il valid in this case, this will require a revi-
sion of our definitions of distances between context states and
possibly small modifications of the proposed data structures.
Another direction for future work is preference application. In
our current work, we assume that preferences are applied after
the execution of a query to rank its result. Re-writing the query
to incorporate contextual preferencesisapromising alternative.

References
(1
(2
(3]
(4

J. Chomicki, Preference formulas in relational queries, ACM Trans.
Database Syst. 28 (4) (2003) 427-466, |SSN 0362-5915.

W. Kiefdling, Foundations of Preferences in Database Systems, in: VLDB,
311-322, 2002.

R. Agrawal, E. L. Wimmers, A framework for expressing and combining
preferences, SIGMOD Rec. 29 (2) (2000) 297-306, | SSN 0163-5808.

V. Hristidis, N. Koudas, Y. Papakonstantinou, PREFER: A System for the
Efficient Execution of Multi-parametric Ranked Queries, in: SIGMOD,
259-270, 2001.

G. Koutrika, Y. loannidis, Personalized Queries under a Generalized Pref-
erence Model, in: ICDE, 841852, 2005.

A. K. Dey, Understanding and Using Context, Personal Ubiquitous Com-
put. 5 (1) (2001) 4—7, ISSN 1617-4909.

M. Bazire, P. Brézillon, Understanding Context Before Using It, in: CON-
TEXT, 29-40, 2005.

G. Chen, D. Kotz, A Survey of Context-Aware Mobile Computing Re-
search, Tech. Rep. TR2000-381, Dartmouth College, Computer Science,
URL ftp://ftp.cs.dartmouth.edu/TR/TR2000-381.ps.Z, 2000.
C. Bolchini, C. Curino, E. Quintarelli, F. A. Schreiber, L. Tanca, A data-
oriented survey of context models, SIGMOD Rec. 36 (4) (2007) 19-26.
B. Mobasher, R. Cooley, J. Srivastava, Automatic personalization based
on Web usage mining, Commun. ACM 43 (8) (2000) 142-151.

M. Ester, J. Kohlhammer, H.-P. Kriegel, The DC-Tree: A Fully Dynamic
Index Structure for Data Warehouses, in: |CDE, 379-388, 2000.

P. Vassiliadis, S. Skiadopoulos, Modelling and Optimisation |ssues for
Multidimensional Databases, in: CAiSE, 482497, 2000.

G. A. Miller, WordNet: alexica database for English, Commun. ACM
38 (11) (1995) 3941, ISSN 0001-0782.

G. Koutrika, Y. E. loannidis, Constrained Optimalities in Query Person-
alization, in: SIGMOD, 73-84, 2005.

W. Kiefdling, G. Kostler, Preference SQL - Design, Implementation, Ex-
periences, in: VLDB, 990-1001, 2002.

(9]
(€]
(7
(8l

(9
(10
(11]
(12
(13]
(14]
(19]

[16]
movies/movies.html.

C. Buckley, E. M. Voorhees, Retrieval evaluation with incomplete infor-
mation, in: SIGIR, 25-32, 2004.

C. Li, K. C.-C. Chang, |. F. llyas, S. Song, RankSQL: Query Algebra
and Optimization for Relational Top-k Queries, in: SIGMOD, 131-142,
2005.

P. Georgiadis, |. Kapantaidakis, V. Christophides, E. M. Nguer,
N. Spyratos, Efficient Rewriting Algorithms for Preference Queries, in:
ICDE, 1101-1110, 2008.

D. Salber, A. K. Dey, G. D. Abowd, The Context Toolkit: Aiding the
Development of Context-Enabled Applications, in: CHI, 434-441, 1999.
G. Chen, M. Li, D. Kotz, Design and implementation of alargescale con-
text fusion network, in: MobiQuitous, 246-255, 2004.

(17]
(18]

(19]

(20]

(21]

Stanford Movie Database, URL http://kdd.ics.uci.edu/databases/

21

(22]
(23]

[24)

(29]

(26]

(27]

(28]

[29]

(30

(31]

(32]

(33]

(34]
(39]

(36]

(37]
(38]

(39]

(40]

L. Feng, P. M. G. Apers, W. Jonker, Towards Context-Aware Data Man-
agement for Ambient Intelligence, in: DEXA, 422-431, 2004.

J.-P. Dittrich, P. M. Fischer, D. Kossmann, AGILE: adaptive indexing for
context-aware information filters, in: SIGMOD, 215-226, 2005.

L. D. Harvel, L. Liu, G. D. Abowd, Y.-X. Lim, C. Scheibe, C. Chatham,
Context Cube: Flexible and Effective Manipulation of Sensed Context
Data, in: Pervasive, 51-68, 2004.

Y. Roussos, Y. Stavrakas, V. Pavlaki, Towards a Context-Aware Relational
Model, in: CRR, 5-8, 2005.

Y. Stavrakas, M. Gergatsoulis, Multidimensional Semistructured Data:
Representing Context-Dependent Information on the Web, in: CAiSE,
183-199, 2002.

Y. Stavrakas, K. Pristouris, A. Efandis, T. K. Sellis, Implementing aQuery
Language for Context-Dependent Semistructured Data, in: ADBIS, 173—
188, 2004.

C. Doulkeridis, M. Vazirgiannis, Querying and Updating a Context-
Aware Service Directory in Mobile Environments, Web Intelligence
(2004) 562-565.

A. Padovitz, S. W. Loke, A. Zaslavsky, Towards a Theory of Context
Spaces, PerCom 00 (2004) 38.

G. Adomavicius, R. Sankaranarayanan, S. Sen, A. Tuzhilin, Incorporat-
ing contextual information in recommender systems using a multidimen-
sional approach, ACM Trans. Inf. Syst. 23 (1) (2005) 103-145.

C. Pamisano, A. Tuzhilin, M. Gorgoglione, Using Context to Improve
Predictive Modeling of Customersin Personalization Applications, |EEE
Trans. Knowl. Data Eng. 20 (11) (2008) 1535-1549.

R. Agrawal, R. Rantzau, E. Terzi, Context-sensitive ranking, in: SIG-
MOD, 383-394, 2006.

A. H. van Bunningen, L. Feng, P. M. G. Apers, A Context-Aware Pref-
erence Model for Database Querying in an Ambient Intelligent Environ-
ment, in: DEXA, 3343, 2006.

S. Holland, W. Kiefdling, Situated Preferences and Preference Reposito-
ries for Personalized Database Applications, in: ER, 511-523, 2004.

K. Stefanidis, E. Pitoura, P. Vassiliadis, Adding Context to Preferences,
in: ICDE, 846-855, 2007.

K. Stefanidis, E. Pitoura, P. Vassiliadis, A Context-Aware Preference
Database System, International Journal of Pervasive Computing and
Communications 3 (4) (2007) 439-460.

P. Brézillon, Context in Artificial Intelligence: I. A Survey of the Litera-
ture, Computers and Artificial Intelligence 18 (4) (1999).

K. Stefanidis, E. Pitoura, Fast contextual preference scoring of database
tuples, in: EDBT, 344-355, 2008.

C. Bolchini, C. Curino, G. Orsi, E. Quintarelli, R. Rossato, F. Schreiber,
L. Tanca, And what can context do for data?, Commun. ACM 52 (11)
(2009) 136-140.

T. Strang, C. Linnhoff-Popien, A Context Modeling Survey, in: Workshop
on Advanced Context Modelling, Reasoning and Management, 2004.

