
Simplifying Entity Resolution on Web Data
with Schema-agnostic, Non-iterative Matching

Vasilis Efthymiou
ICS-FORTH

Greece
vefthym@ics.forth.gr

George Papadakis
Univ. of Athens

Greece
gpapadis@di.uoa.gr

Kostas Stefanidis
Univ. of Tampere

Finland
kostas.stefanidis@uta.fi

Vassilis Christophides
INRIA-Paris & Univ. of Crete

France & Greece
vassilis.christophides@inria.fr

Abstract—Entity Resolution (ER) aims to identify different
descriptions in various Knowledge Bases (KBs) that refer to
the same entity. ER is challenged by the Variety, Volume and
Veracity of descriptions published in the Web of Data. To
address them, we propose the MinoanER framework that fulfills
full automation and support of highly heterogeneous entities.
MinoanER leverages a token-based similarity of entities to define
a new metric that derives the similarity of neighboring entities
from the most important relations, indicated only by statistics.
For high efficiency, similarities are computed from a set of
schema-agnostic blocks and processed in a non-iterative way that
involves four threshold-free heuristics. We demonstrate that the
effectiveness of MinoanER is comparable to existing ER tools
over real KBs exhibiting low heterogeneity in terms of entity
types and content. Yet, MinoanER outperforms state-of-the-art
ER tools when matching highly heterogeneous KBs.

I. INTRODUCTION

Entity Resolution (ER) is a core task for applications inte-
grating data that pertain to entities (e.g., persons, places). In
the Web of Data, ER allows for interlinking data that describe
the same real-world entity, but are located in different Knowl-
edge Bases (KBs) [1], [2]. Two are the core ER problems: (a)
how can we effectively compute the similarity of Web entities,
and (b) how can we efficiently resolve descriptions of entities
published by different KBs. Both problems are challenged by
the Variety, Volume and Veracity of the Web of Data. Variety
is mainly due to the high diversity of entity types described by
numerous vocabularies in different domains covered by KBs.
Volume concerns both the number of KBs and the number
of published entity descriptions. Veracity stems from various
forms of inconsistencies, noise or errors in entity descriptions,
due to the limitations of the automatic extraction techniques
or of the crowd-sourced contributions.

The above Big Data properties call for novel ER frameworks
that relax a number of assumptions underlying the state-of-the-
art methods. The most important one is related to the notion
of similarity that better characterizes entity descriptions in the
Web of Data - we define an entity description to be a URI-
identifiable set of attribute-value pairs, where values can be
literals, or the URIs of other descriptions, this way forming an
entity graph. Clearly, Variety renders inapplicable all schema-
based similarity measures, which compare specific attribute
values. We thus argue that similarity evidence of entities can
be obtained by looking at the bag of strings contained in
descriptions, regardless of the corresponding attributes.

As this value-based similarity of entity pairs may still
be weak, due to high heterogeneity, we need to consider
additional sources of matching evidence; for instance, the
similarity of neighboring entities, which are interlinked via
various semantic relations. In state-of-the-art systems, like [3],
[4] and [5], this is done through an iterative process that relies
on domain knowledge for the equivalence of relations between
neighboring entities. In contrast, we argue that no iterative
process is needed to assess the impact of neighbor similarity
in a candidate pair, while an estimation of which entity
relations in this neighborhood are important to consider can be
guided by simple data statistics. Another assumption that needs
relaxation is the use of schema-based blocking for addressing
Volume by reducing the candidate pairs to similar descriptions.
Most existing works, like [3] and [5], rely on blocking keys
known in advance, a requirement that is unrealistic for loosely
structured and highly heterogeneous entities published on the
Web. We argue that schema-agnostic blocking methods (e.g.,
Token Blocking [6]) should be preferred, as they achieve high
recall without considering the attribute names.

Overall, the main requirements for Web-scale ER are: (i)
do not rely on a given schema, (ii) do not rely on domain
experts for aligning relations and matching rules, (iii) avoid
late convergence through a non-iterative process. Currently,
no existing framework simultaneously accomplishes all these
requirements. To cover these requirements, we present the Mi-
noanER framework, which leverages a schema-agnostic set of
blocks to define a new metric assessing the similarity of a set
of neighboring entity pairs linked via important relations to the
entities of a candidate pair. Rather than requiring an a priori
knowledge of the entity types or of their correspondences, we
rely on simple statistics over two KBs to recognize the most
important entity relations involved in their neighborhood, as
well as, the most distinctive attributes that could serve as
names of entities beyond the rdfs:labels, which are not
always available in descriptions. Both similarity metrics can be
computed using exclusively block statistics (e.g., block size).

Additionally, MinoanER involves a specific number of pre-
defined heuristic steps (H1-H4), instead of the data-driven
convergenece of existing systems ([3], [4], [5]). First, it identi-
fies matches based on their name (H1). This is a very effective
method that can be applied to all descriptions, regardless of
their values or neighbor similarity, by automatically specifying

distinctive names of entities from data statistics. Then, the
value similarity is exploited to find matches with many com-
mon and infrequent tokens, i.e., strongly similar matches (H2).
When value similarity is not high, nearly similar matches are
identified based on both value and neighbors’ similarity using
a threshold-free rank aggregation function (H3) as opposed to
existing works that combine different matching evidence into
an aggregated score. Finally, reciprocal evidence of matching
is exploited as a verification of the returned results: only
entities mutually ranked in the top positions of their unified
ranking lists are considered matches (H4).

We demonstrate the benefits of MinoanER through an
experimental comparison against the state-of-the-art methods
over 4 established benchmark datasets that involve real KBs.

II. RELATED WORK

Value-based similarities, like Jaccard, usually assess the de-
scriptions similarity based on their attribute values. Our value
similarity is a variation of ARCS [6], [7] that drops any schema
information and considers descriptions as a bag of words.
Compared to ARCS, we focus more on the number than the
frequency of common tokens between two descriptions.

Relational similarities additionally consider neighbor simi-
larity. For example, [3] and [5] consider the similarity of “com-
patible” neighbors, linked with pre-aligned relations, while
[4] considers only neighbors linked via relations with similar
labels. Our approach does not aggregate different similarities
in one score; instead, it uses a disjunction of the different
evidence coming from the values, neighbors and names of
the descriptions. The most important neighbors are detected
automatically from dataset statistics.

Based on the nature of the matching decision, ER can
be characterized as pairwise or collective. In pairwise ER
(e.g., [8]), we only need to know the value similarity of
descriptions to decide if they match. Collective ER (e.g., [9])
iteratively updates the matching decision for entities by dy-
namically assessing the similarity of their neighbors. We
propose a static collective approach, in which all sources of
similarity are assessed only once per candidate pair through a
specific number of steps.

In more detail, [3] starts with seed matches having identical
entity names. Then, it propagates the matching decisions
on the compatible neighbors of existing matches. Unique
Mapping Clustering is applied for detecting matches. First, it
places all pairs into a priority queue, in decreasing (relational)
similarity. At each iteration, the top pair is considered a match,
if none of its entities has been already matched and their
similarity exceeds a threshold t. For every new matched pair,
the similarities of the neighbors are recomputed and their
position in the priority queue is updated. The process ends
when the top pair has a lower similarity than t. [4] differs
by considering as compatible neighbors those connected with
relations having similar names, which rarely holds in the Web
of Data. [5] is a similar approach, introducing the following
heuristic: if two matched descriptions e1, e

′
1 are connected

via aligned relations r, r′ and all their entity neighbors via
r, r′, except e2, e′2, have been matched, then e2, e

′
2 are also

considered matches. Three are the main differences of our
work to [3], [4] and [5]. First, our matching process iterates
over a set of blocks, instead of the initial KBs. Second, we
employ statistics to automatically discover distinctive entity
names and important relations. Third, we exploit different
sources of matching evidence (values, names and neighbors)
to statically identify candidate matches already from blocking.

Finally, [10] uses a probabilistic model to identify matches,
based on previous matches and the functional nature of entity
relations. A relation is considered functional if, for a source
entity, there is only one destination entity. If r(x, y) is a
function in a KB and r(x, y′) a function in another KB, then
y, y′ are considered matches. Unlike our approach, PARIS
cannot deal with structural heterogeneity.

III. MINOANER MATCHING PROCESS
We now describe the heuristics comprising the non-iterative

matching process of MinoanER in the order they are applied.
Name Heuristic (H1). The matching evidence of H1 relies
on entity names. As such, we consider the literal values of the
k attributes in every description with the highest importance.
We define the importance of a predicate p in a KB E as the
harmonic mean of its support, i.e., the portion of entities in E
that contain p, and discriminability, i.e., the ratio between the
distinct objects associated with p and the entities that contain
p in their description. H1 treats the entire entity names as
blocking keys to create a set of blocks, BN . Every block with
one entity from each input KB indicates a pair of matching
entities. This way, H1 assumes that two entities match, if they,
and only they, have the same name. All candidates matched
by H1 are not examined by the remaining heuristics.
Value Heuristic (H2). The rationale in H2 is that two
entities match, if they, and only they, share a common
token, or if they share many infrequent tokens. Basically, H2
identifies pairs of descriptions with high value similarity. For
two entities ei ∈ E1, ej ∈ E2, this similarity is defined as:
valueSim(ei, ej)=

∑
t∈tokens(ei)∩tokens(ej)

1
log2(EFE1

(t)·EFE2
(t)+1)

,
where EFE(t) = |{el|el ∈ E ∧ t ∈ tokens(el)}| stands for
“Entity Frequency”, i.e., the number of entities in E having
token t in their values. For high efficiency, H2 applies Token
Blocking to the input KBs, yielding a set of blocks BT . Then,
it goes through the blocks of every entity ei of the smaller in
size KB that hasn’t been matched by H1, to derive its value
similarity with all co-occurring entities of the other KB. From
all co-occurring entities, it keeps ej , which corresponds to
the highest value similarity, vmax. If vmax ≥ 1, H2 considers
the pair (ei, ej) to be a match. Matches identified by H2 will
not be considered in the sequel.
Rank Aggregation Heuristic (H3). This heuristic identifies
further matches for candidates whose value similarity
is low (vmax<1), yet their neighbor similarity could be
relatively high. In this respect, the order of candidates
rather than their absolute similarity values are used. In
essence, H3 defines the neighbor similarity of two entity
descriptions ei ∈ E1, ej ∈ E2 as: neighborNSim(ei, ej) =∑
nei∈topNneighbors(ei),nej∈topNneighbors(ej)

valueSim(nei, nej),

where topNneighbors(ei) stands for the best neighbors of
ei, i.e., those associated with it through one of the N relations
with the maximum importance score. On this basis, H3 goes
through every description that has not been matched yet
and sorts the entities co-occurring with it in the blocks of
BT in two lists: one in decreasing order of value similarity
and one in decreasing non-zero neighbor similarity. Then, it
aggregates the two lists by considering the normalized ranks
of their elements: assuming the size of a list is K, the first
candidate gets the score K/K, the second one (K − 1)/K,
while the last one 1/K. Overall, each co-occurring entity
of ei takes a score equal to the weighted summation of its
normalized ranks in the two lists, as determined through
the trade-off parameter θ ∈ (0, 1): the value similarities are
weighted with θ and the neighbor ones with with 1-θ. At the
end, we keep for ei, its top-1 candidate match ej , i.e., the
one with the highest aggregate score. Intuitively, H3 matches
ei with ej , when there is no better candidate for ei than ej .
Reciprocity Heuristic (H4). It aims to clean the matches
identified by H1, H2 and H3 by exploiting reciprocity, i.e.,
based on the rationale that two entities are unlikely to match,
when one of them does not even consider the other to be a
candidate for matching. Intuitively, H4 aims to improve the
precision of our algorithm by enforcing the requirement that
two entity descriptions match, only if both of them “agree”
that they are likely to match. H4 essentially iterates over
every matched pair < ei, ej > that has been detected by the
above heuristics and discards it if ei does not include ej in its
top-K value or neighbor similarity candidates, or vice versa.

In a nutshell, every heuristic can be formalized as a function
that receives a pair of entities and returns true (T) if the entities
match according to the heuristic’s rationale, or false (F)
otherwise, i.e.,: Hn : E1 × E2 → {T, F}. In this context, we
formally define the MinoanER matching process as follows:

Definition 1. The non-iterative matching of two KBs E1,
E2, denoted by the Boolean matrix M(E1, E2), is defined as a
filtering problem of the pruned disjunctive blocking graph G:
M(ei, ej) = (H1(ei, ej)∨H2(ei, ej)∨H3(ei, ej))∧H4(ei, ej).

The time complexity of MinoanER is dominated by the
comparisons in the input blocks BN ∪ BT . In the worst-
case, this results in one computation for every pair of entities,
i.e., O(|E1| · |E2|). In practice, though, we bound the number
of computations by removing excessively large blocks that
correspond to highly frequent tokens (e.g., stop-words). Fol-
lowing [6], this is carried out by Block Purging, which ensures
that the resulting blocks involve two orders of magnitude
fewer comparisons than the brute-force approach, without any
significant impact on recall.

IV. EXPERIMENTAL EVALUATION

Experimental Setup. All experiments were performed us-
ing Java 8 on a server with Intel(R) Xeon(R) E5-2630 v4
@ 2.20GHz and 64 GB RAM, runnng Ubuntu 16.04.2 LTS.
Preliminary experiments have indicated that the following
parameter configuration yields robust performance for Mi-
noanER across all datasets: K=15 (candidate matches per

TABLE I
DATASET STATISTICS.

Restau- Rexa- BBCmusic- YAGO-
rant DBLP DBpedia IMDb

E1 entities 339 18,492 58,793 5,208,100
E2 entities 2,256 2,650,832 256,602 5,328,774
E1 triples 1,130 87,519 456,304 27,547,595
E2 triples 7,519 14,936,373 8,044,247 47,843,680
E1 av. tokens 20.44 40.71 81.19 15.56
E2 av. tokens 20.61 59.24 324.75 12.49
E1/E2 attributes 7 / 7 114 / 145 27 / 10,953 65 / 29
E1/E2 relations 2 / 2 103 / 123 9 / 953 4 / 13
E1/E2 types 3 / 3 4 / 11 4 / 59,801 11,767 / 15
E1/E2 vocab. 2 / 2 4 / 4 4 / 6 3 / 1
Matches 89 1,309 22,770 56,683

entity from values and neighbors), N=3 (most important
relations per entity), k=2 (most distinct attributes per KB
whose values serve as names), and θ=0.6 (trade-off between
value- vs neighbor-based candidates).

Datasets. We use 4 benchmark datasets (Table I) with enti-
ties from real KBs commonly used in the literature. All KBs
contain relations between the described entities. Restaurant1,
a popular dataset published by OAEI2, contains restaurants
descriptions and their addresses from two different KBs. Rexa-
DBLP3 contains publications descriptions and their authors.
The ground truth contains matches between both publications
and authors. BBCmusic-DBpedia [11] contains descriptions of
musicians, bands and their birthplaces, from BBCmusic and
the BTC2012 version of DBpedia4. In our experiments, we
consider only entities appearing in the ground truth, as well
as their immediate in- and out-neighbors. YAGO-IMDb [10]
contains descriptions of movie-related entities (e.g., actors,
directors, movies) from YAGO and IMDb5.

Baselines. We compare MinoanER against four state-of-the-
art methods, [3], [10], [4], [5], and a custom baseline method,
BSL. BSL receives the same input as MinoanER, i.e., the
sets of blocks BN and BT , and compares every pair of co-
occurring descriptions. The resulting similarities are processed
by Unique Mapping Clustering. Unlike MinoanER, BSL
disregards all evidence from neighbors, relying exclusively
on value similarity. Yet, it optimizes its performance with
respect to F1 through: (i) The schema-agnostic representation
of the values in every entity. BSL uses token n-grams for
this purpose, n ∈ {1, 2, 3}, representing every resource by
the token uni-/bi-/tri-grams in its values. (ii) The weighting
scheme that assesses the importance of every token. We
consider TF and TF-IDF weights. (iii) The similarity measure:
Cosine, Jaccard, Generalized Jaccard and SiGMa [3]. (iv) The
similarity threshold that prunes the entity pairs processed by
Unique Mapping Clustering. We use all thresholds in [0, 1)
with a step of 0.05. We consider 420 different configurations
for BSL per dataset, reporting the one with the highest F1.

1http://oaei.ontologymatching.org/2010/im
2http://oaei.ontologymatching.org
3http://oaei.ontologymatching.org/2009/instances
4datahub.io/dataset/bbc-music, km.aifb.kit.edu/projects/btc-2012/
5www.yago-knowledge.org/, www.imdb.com/

TABLE II
BLOCK STATISTICS.

Restaurant Rexa- BBCmusic- YAGO-
DBLP DBpedia IMDb

|BN | 83 15,912 28,844 580,518
|BT | 625 22,297 54,380 495,973

||BN || 83 6.71·107 1.25·107 6.59·106

||BT || 1.80·103 6.54·108 1.73·108 2.28·1010

|E1| · |E2| 7.65·105 4.90·1010 1.51·1010 2.78·1013

Precision 4.95 1.81·10−4 0.01 2.46·10−4

Recall 100.00 99.77 99.83 99.35
F1 9.43 3.62·10−4 0.02 4.92·10−4

Results. Table II reports the performance of the blocks
used by BSL and MinoanER. The number of comparisons
in token blocks (||BT ||) is at least 1 order of magnitude larger
than those of name blocks (||BN ||), even if the latter may
involve more blocks (|BN |>|BT | over YAGO-IMDb). In fact,
the comparisons suggested by names seem to depend linearly
on the number of input descriptions, whereas the comparisons
suggested by tokens seem to depend quadratically on that
number. Nevertheless, the overall comparisons in BT ∪ BN

are at least 2 orders of magnitude lower than the Cartesian
product |E1| · |E2|, even though recall is consistently higher
than 99%. Yet, both precision and F1 remain rather low.

Table III reports the performance of MinoanER and the
baselines. For every method, we report precision, recall and
F1 with respect to the descriptions in the first KB appearing
in the ground truth. [10] is openly available, so we ran it on
Rexa-DBLP and BBCmusic-DBpedia. For the remaining tools,
we report their performance from the original publications -
[5] is openly available, but without instructions.

Table III shows that MinoanER offers competitive perfor-
mance when matching KBs with few attributes and entity
types, even if it requires no domain-specific input, while
achieving the best performance over highly heterogeneous
KBs. It achieves 100% F1 in Restaurant, which is 3% higher
than SiGMa, 9% higher than PARIS, and ∼20% higher than
LINDA and RiMOM. BSL also achieves perfect F1, due to
the strongly similar matches in this dataset. In Rexa-DBLP,
MinoanER also outperforms all existing ER methods. It is 2%
better than SiGMa in F1, 4.6% better than PARIS, 20% better
than RiMOM, and 6% better than BSL. Given that BBCmusic-
DBpedia is the most heterogeneous dataset with respect to
schema and values, PARIS struggles to identify the matches,
with BSL performing significantly better, but still poorly in
absolute numbers. In contrast, MinoanER succeeds in identi-
fying 89% of matches with 91% precision, achieving a 90%
F1. In YAGO-IMDb, MinoanER achieves similar performance
to SiGMa (91% F1), with more identified matches (91% vs
85%), but lower precision (91% vs 98%). Compared to PARIS,
its F1 is 1% lower, due to 3% lower precision, despite the 1%
better recall. Finally, BSL exhibits the worst performance, due
to the very low value similarity of matches in this KB.

Comparing the performance of MinoanER (Table III) to that
of its input blocks (Table II), precision raises by several orders
of magnitude at the cost of slightly lower recall. The lower
recall is caused by missed matches with very low value and

TABLE III
EVALUATION OF MINOANER COMPARED TO EXISTING METHODS.

Restau- Rexa- BBCmusic- YAGO-
rant DBLP DBpedia IMDb

SiGMa [3]
Prec. 99 97 - 98
Recall 94 90 - 85
F1 97 94 - 91

LINDA [4]
Prec. 100 - - -
Recall 63 - - -
F1 77 - - -

RiMOM [5]
Prec. 86 80 - -
Recall 77 72 - -
F1 81 76 - -

PARIS [10]
Prec. 95 93.95 19.40 94
Recall 88 89 0.29 90
F1 91 91.41 0.51 92

BSL
Prec. 100 96.57 85.20 11.68
Recall 100 83.96 36.09 4.87
F1 100 89.82 50.70 6.88

MinoanER
Prec. 100 96.74 91.44 91.02
Recall 100 95.34 88.55 90.57
F1 100 96.04 89.97 90.79

neighbor similarities, whose portion is larger for BBCmusic-
DBpedia and YAGO-IMDb.

V. CONCLUSION

To resolve highly heterogeneous Web entities, MinoanER6

relies on schema-agnostic similarity metrics that consider the
content and neighbors of the entities. For high efficiency, these
similarities are extracted from a set of blocks and processed by
a non-iterative process that involves four threshold-free heuris-
tics. The experimental results show that our approach achieves
at least equivalent performance with state-of-the-art ER tools
over KBs exhibiting low heterogeneity, but outperforms them
to a significant when matching highly heterogeneous.

REFERENCES

[1] K. Stefanidis, V. Christophides, and V. Efthymiou, “Web-scale blocking,
iterative and progressive entity resolution,” in ICDE, 2017.

[2] V. Christophides, V. Efthymiou, and K. Stefanidis, Entity Resolution in
the Web of Data. Morgan & Claypool Publishers, 2015.

[3] S. Lacoste-Julien, K. Palla, A. Davies, G. Kasneci, T. Graepel, and
Z. Ghahramani, “Sigma: simple greedy matching for aligning large
knowledge bases,” in KDD, 2013.

[4] C. Böhm, G. de Melo, F. Naumann, and G. Weikum, “LINDA: dis-
tributed web-of-data-scale entity matching,” in CIKM, 2012.

[5] C. Shao, L. Hu, J. Li, Z. Wang, T. L. Chung, and J. Xia, “Rimom-
im: A novel iterative framework for instance matching,” J. Comput. Sci.
Technol., vol. 31, no. 1, pp. 185–197, 2016.

[6] G. Papadakis, G. Koutrika, T. Palpanas, and W. Nejdl, “Meta-blocking:
Taking entity resolutionto the next level,” IEEE Trans. Knowl. Data
Eng., vol. 26, no. 8, pp. 1946–1960, 2014.

[7] V. Efthymiou, G. Papadakis, G. Papastefanatos, K. Stefanidis, and
T. Palpanas, “Parallel meta-blocking for scaling entity resolution over
big heterogeneous data,” Inf. Syst., vol. 65, pp. 137–157, 2017.

[8] L. Kolb, A. Thor, and E. Rahm, “Dedoop: Efficient deduplication with
hadoop,” PVLDB, vol. 5, no. 12, pp. 1878–1881, 2012.

[9] I. Bhattacharya and L. Getoor, “Collective entity resolution in relational
data,” TKDD, vol. 1, no. 1, 2007.

[10] F. M. Suchanek, S. Abiteboul, and P. Senellart, “PARIS: probabilistic
alignment of relations, instances, and schema,” PVLDB, vol. 5, no. 3,
pp. 157–168, 2011.

[11] V. Efthymiou, K. Stefanidis, and V. Christophides, “Big data entity
resolution: From highly to somehow similar entity descriptions in the
web,” in IEEE Big Data, 2015.

6Source code is available at: http://csd.uoc.gr/∼vefthym/minoanER.

