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Introduction 

Preferences guide human decisions 

e.g., “which ice-cream flavor to buy?”  

e.g., “which investment funds to choose?”  

Preferences have been studied in philosophy,  
psychology, economics, etc 

e.g., in philosophy: reasoning on values, desires, duties 

TODAY’s topic: Preferences in Databases 
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Introduction 

Why considering preferences in databases? 

What are the challenges? 

What next? 

What has been done so far? 
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Why Preferences in Databases? 

Empty-answer problem 

Too-many-answers problem 

The Boolean database answer model: all or nothing! 

Databases on the Web: 7,500TB (19TB is the surface Web)! 

• National Climatic Data Center (NOAA) 

• NASA EOSDIS 

• Alexandria Digital Library 

• JSTOR Project Limited   

• US Census  

• Amazon.com 

• …  
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Why Preferences in Databases? 

The Boolean database answer model: all or nothing! 

Empty-answer problem 

Too-many-answers problem 

Databases on the Web: 7,500TB (19TB is the surface Web!) 

Unknown schema 

Unknown contents 

On the Web: Too much information 

Information Overload 

User diversity 
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Why Preferences in Databases? 

Movies directed by 

Spielberg in 2009? 

Incorporating preferences can help return non-empty answers 

Movie 
Collection 

None! 
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Why Preferences in Databases? 

Movies directed by 

Spielberg in 2009? 

I like adventures 

I like Spielberg 

Movie 
Collection 

Inglourious Basterds 
Star Trek 

Indiana Jones 

Incorporating preferences can help return non-empty answers 

A 2008 
Spielberg  

movie 
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Why Preferences in Databases? 

Movie 
Collection 

Incorporating preferences can help return focused answers 

movies movies 

K-19 
Analyze this 

Bananas 
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Why Preferences in Databases? 

Movie 
Collection 

Incorporating preferences can help return focused answers 

movies movies 

W. Allen 
adventure 

comedy 
not W. Allen 

K-19 
Bananas 

Analyze 
this 

adventure 

W.Allen 
movie 

comedy  
not by W. Allen 
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Tutorial Overview 

Preference Representation 

Preference Composition 

Preferential Query Processing 

Preference Learning 
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Tutorial Overview 

Example 
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Tutorial Overview 

Preference Representation 

Preference Composition 

Preferential Query Processing 

Preference Learning 

Formulation 

Granularity 

Context 

Aspects 
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Formulation 

Qualitative approaches 

Quantitative approaches 
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Formulation: Qualitative Approaches 

Preferences between tuples in the answer to a query  
are specified directly using binary preference relations 

[Chomicki 2003; Kiessling 2002] 

Given a relation R:  
A preference relation B is a subset of R×R  

a B b between tuples a and b of R => a is preferred over b  

Binary preference relations 
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Formulation: Qualitative Approaches 

Reflexive: a B a,   ∀ a in R  

Irreflexive ¬(a B a),   ∀ a in R  

Symmetric a B b => b B a,   ∀ a, b in R  

Transitive (a B b) ∧ (b B c) => (a B c),   ∀ a, b, c in R  

Asymmetric (a B b) => ¬(b B a),   ∀ a, b in R  

Antisymmetric   (a B b) ∧ (b B a) => (a = b),   ∀ a, b in R  

Negative transitive ¬(a B b) ∧ ¬(b B c) => ¬(a B c),   ∀ a, b, c in R  

Connective (a B b) ∨ (b B a) ∨ (a = b), ∀ a, b in R  

Properties of binary relations 
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Formulation: Qualitative Approaches 

a b c d e f Tuples in R 

a 

b 

c 

d 

e 

f 

Connective 

Irreflexive 

Asymmetric 

Transitive 

Total Order 

Types of binary relations 
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Formulation: Qualitative Approaches 

a b c d e f Tuples in R 

a c 

b e 

d 

f 

Irreflexive 

Asymmetric 

Transitive 

Strict Partial Order 

Types of binary relations 
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Formulation: Qualitative Approaches 

a b c d e f Tuples in R 

a c 

b e 

d f 

Negative transitive 

Irreflexive 

Asymmetric 

Transitive 

Weak Order 

Types of binary relations 
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Formulation: Qualitative Approaches 

A logical formula PF expresses the constraints two tuples must  
satisfy so that one is preferred over the other 

[Chomicki 2003; Georgiadis et al. 2008] 

ti ≻PF tj  ti[genre] = tj[genre] ∧ ti[duration] < tj[duration] 

Casablanca is preferred over Schindler’s list 

Logical formulas 
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Formulation: Qualitative Approaches 

A formal language for formulating preference relations  
using constructors 

[Kiessling 2002] 

HIGHEST(A)       {ti ≻ P_new tj  iff ti > tj}; 

AROUND(A, z)      {ti ≻ P_new tj iff abs(ti - z) < abs(tj - z)}; 

Preference Constructors 
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Formulation: Qualitative Approaches 

POS(genre, {horror}) 

NEG(year, {1960})    

EXP(title, {(Casablanca), (Psycho), (Schindler’s list)}) 

Preference Constructors 

A formal language for formulating preference relations  
using constructors 

[Kiessling 2002] 
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Formulation: Quantitative Approaches 

Preferences for tuples are expressed using functions that 
assign a score 

[Agrawal et al. 2000] 

ti ≻ P tj for a preference function fP  fP(ti) > fP(tj)  

(with exceptions [Guo et al. 2008] ) 

Preference Functions 
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Formulation: Quantitative Approaches 

fP(ti) = 0.001 × ti[duration] 

0.102 

0.109 
0.109 

Preference Functions 

Example 
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Formulation: Quantitative Approaches 

Preferences for tuples are expressed by specifying constraints  
for the tuples and assigning scores in these constraints 

[Koutrika et al. 2004; Stefanidis et al. 2007] 

Preference (Condition, Score): 

Condition: A1 θ1 v1 ∧ A2 θ2 v2 ∧ … ∧ An θn vn  

movie.genre = ‘drama’, 0.9 

movie.year > 1990,  0.8 

Score belongs to a predefined numerical domain 

Degrees of Interest 
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Formulation 

Represents a gap in our knowledge 

ti ~ tj  ¬(ti ≻ PR tj) ∧ ¬(tj ≻ PR ti)   qualitative  

Tuples that cannot be compared in some fundamental way 

    fP(ti) = fP(tj)                    quantitative  

Incompleteness 

Indifference 

Incomparability 
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Formulation 

If a preference relation ≻ PR is weak order, then  
indifference is an equivalence class 

a c 

b e 

d f 

A binary relation is an equivalence class  
if it is reflexive, symmetric and transitive  

r1 

r2 

r3 

r1 

r2 

r3 

Equivalence classes 

26 

G. Koutrika, E. Pitoura and K. Stefanidis 



Formulation 

a 

b e 

d 

a dominates e and b 

e and b are indifferent 

c f 

b and c are indifferent 

BUT: e dominates c 

The indifference relation fails to capture 
incomparable versus equally important tuples 

Incomparability 

Example 
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Formulation 

Qualitative vs Quantitative 

In a quantitative way: I like comedies a lot! 
Qualitative cannot capture priority, importance, feeling 

In a qualitative way: between two movies of the same kind,  
                               I prefer the shortest 
Quantitative is more restricted  

t3 is preferred over t1 and t2 is incomparable 

Example 
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Preference Representation 

Preference representation dimensions 

Formulation  

Granularity 

Context 

Aspects 

Granularity 
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Granularity 

Preferences expressed directly for tuples and their values 

movie.genre = ‘drama’,         0.9 

Tuple Preferences 

movie.mid = cast.mid and  
cast.aid = actor.aid and  
actor.name = ‘J. Roberts’,      0.7 

[Koutrika and Ioannidis 2010] 

30 

G. Koutrika, E. Pitoura and K. Stefanidis 



Granularity 

Preferences expressed based on the properties of a group of tuples 
as a whole 

     [Zhang and Chomicki 2008] 

I want to see three movies of the same director 

Set Preferences 
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Granularity 

They can set priorities among tuple preferences expressed 
over the values in the corresponding attributes  

Pdirector ≻ Pgenre 

Attribute Preferences 

[Georgiadis et al 2008] 

They can set priorities among the attributes to be displayed in the  
results  

{title, genre, language}, 1 

{year, director, duration}, 0.3 

[Miele at al 2009] 
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Granularity 

They are expressed on relationships between two types of entities 
or two particular entities 

A director has directed many movies 

Julia Roberts has acted in Ocean’s Eleven 

(movie.mid = play.mid, 1)    [Koutrika, Ioannidis 2004] 

Relationship Preferences 
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Granularity 

One more example… 
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Preference Representation 

Preference representation dimensions 

Formulation  

Granularity 

Context 

Aspects 

Context 
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Context 

Context is any information that can be used to characterize 
the situation of an entity 

An entity is a person, place, object that is considered relevant to the  
interaction between a user and an application, including the user 
and the application themselves  

       [Dey 2001] 

User preferences can be part of the user context! 

We study how context determined when user preferences hold 
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Context (in preferences) 

Context is any external to the database information 
that can be used to characterize the situation of a user or  
any internally stored information that can be used  
to characterize the data per se 

37 

G. Koutrika, E. Pitoura and K. Stefanidis 



Context 

(C, P), where C defines the context and P defines the preference 

Contextual Preferences 

C    internal contextual preferences 
 e.g., for dramas, I prefer movies directed  by Spielberg 

      external contextual preferences 
 e.g., when with friends, I prefer to watch horror movies 
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Context 

Internal Contextual Preferences 

Given a relation with attributes A1, … Ad, an internal context is: 
  ∧j∈L(Aj=vj), L  ⊆ {A1, … Ad}  

{director = ‘Spielberg’ ≻ director = ‘Curtiz’  | genre = ‘drama’}  

Example 
[Agrawal et al 2006] 

t3 is preferred over t1 
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Context 

Internal Contextual Preferences 

Example [Chomicki 2003] 

ti ≻ PF tj   (ti[genre] = tj[genre] ∧ ti[genre] = ‘drama’ ∧                 
          ti[director] = ‘Spielberg’ ∧ tj[director] = ‘Curtiz’ )  ∨ 
                  (ti[genre] = tj[genre] ∧ ti[genre] = ‘thriller’ ∧                 
          tj[director] = ‘Spielberg’ ∧ ti[director] = ‘Curtiz’ )  
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Context 

External Contextual Preferences 

Given a set of contextual parameters C1, … Cn, an external context is: 
a n-tuple (c1, … cn), where ci ∈ Ci  

Example [Stefanidis et al. 2007; Miele et al. 2009] 

CP1: (Time_period = ‘All’,          genre = ‘adventure’) 
CP2: (Time_period = ‘Holidays’, language = ‘Greek’) 
CP3: (Time_period = ‘Holidays’, director = ‘Hitchcock’) 
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Preference Representation 

Preference representation dimensions 

Formulation  

Granularity 

Context 

Aspects Aspects 
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Aspects 

It shows the degree of desire expressed in a preference 

Weak preferences 

Strong preferences 

Intensity 
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movie.genre = ‘cartoons’, 0.4 

movie.genre = ‘comedy’, 0.9 



Aspects 

Necessity 

It shows whether a preference should be met 

Hard/mandatory preferences 

Soft/optional preferences 
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When with friends, I do not want to see a drama movie 

An optional preference for director W. Allen 



Aspects 

Feeling 

It shows how one feels about something  

Positive preferences 

Negative preferences 

45 

G. Koutrika, E. Pitoura and K. Stefanidis 

movie.genre = ‘drama’, 0.9 

movie.genre = ‘horror’, -0.5 



Preference Representation: Summary 

Formulation Granularity Context 

Q
u
alitative 

Q
u
an

titative 

T
u
p
le 

R
elatio

n
 

A
ttrib

u
te 

R
elatio

n
sh

ip
 

C
o
n
tex

t-free 

In
tern

al 

Ex
tern

al 

[Agrawal and Wimmers 2000]       

[Agrawal et al. 2006]      

[Bunningen et al. 2006; 2007]       

[Chomicki 2002; 2003]       

[Georgiadis et al. 2008]       

[Holland and Kiessling 2004]      

[Kiessling 2002]          

[Koutrika and Ioannidis 2004; 
2005] 

       

[Miele et al. 2009]        

[Stefanidis et al. 2006; 2007]        

[Zhang and Chomicki 2008]    sets  

Preference representation approaches w.r.t. preference formulation, 
granularity and context 
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Preference Representation: Summary 

Preference representation approaches w.r.t preference aspects 
(T=tuple, C=relation, A=attribute, R=relationship) 

Aspects 

Intensity Necessity Feeling Complexity Attitude Elasticity 

Stro
n
g
 

W
eak

 

H
ard

 

So
ft 

Po
sitive 

N
eg

ative 

In
d
ifferen

t 

Sim
p
le 

C
o
m

p
o
u
n
d
 

Presen
ce  

A
b
sen

ce 

Ex
act 

Elastic 

[Agrawal and Wimmers 2000] T T - T T - T T T T T T T 

[Agrawal et al. 2006] T T - T T - - T T T - T - 

[Bunningen et al. 2006; 2007] T T - T T - - T T T T T - 

[Chomicki 2002; 2003] T T - T T - T T T T T T - 

[Georgiadis et al. 2008] TA TA A T TA - TA T T TA - TA - 

[Holland and Kiessling 2004] T T - T T T - T T T T T T 

[Kiessling 2002] T T - T T T - T T T T T T 

[Koutrika and Ioannidis 2004; 
2005] T T TR TR T T T TR TR T T T T 

[Miele et al. 2009] TA TA A TA TA - - TA TA TA T TA - 

[Stefanidis et al. 2006; 2007] T T - T T - - T T T T T 

[Zhang and Chomicki 2008] T T - T T - T T T T T T - 
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Tutorial Overview 

Preference Representation 

Preference Composition 

Preferential Query Processing 

Preference Learning 

Qualitative Composition 

Quantitative Composition 

Heterogeneous Composition 
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Qualitative Composition 

 Composition mechanisms defined over preference relations 
–  Prioritized Composition 

o E.g., Px is considered more important than Py 

–  Pareto Composition 

o Equally important preference relations 

–  Pair-wise Comparisons Composition 
–  Set-oriented Composition 

o Intersection, Union, Difference 

 In following, we assume composition of two preferences Px and Py; 
generalizing to n > 2 preferences is straightforward 
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Qualitative Composition 

 Let Px, Py be two preference relations defined over the relational 
schema R 

–  The prioritized preference composition relation ≻Px&Py is defined 
over R, such that, ∀ti, tj of R, ti ≻Px&Py tj, iff: 

 (ti ≻Px tj) ∨ (ti ~Px tj ∧ ti ≻Py tj) 

Prioritized Composition 
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Qualitative Composition 

 Example: 

 P1: dramas over horrors 

 P2: long movies over short ones 

 For ti, tj, ti≻P1&P2tj, iff: (ti[genre] = ‘drama’ ∧ tj[genre] = ‘horror’) ∨  

    (ti[genre] ≠ ‘drama’ ∧ ti[duration] > tj[duration]) ∨ 

    (tj[genre] ≠ ‘horror’ ∧ ti[duration] > tj[duration]) 

 t3 is preferred over t1 

 t1 is preferred over t2  

Prioritized Composition 
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Qualitative Composition 

 Prioritized composition over different relational schemas 

 For Px, Py defined over R, R’ with attribute domains dom(A), dom(A’) 

–  The lexicographical preference composition relation ≻Px&Py 
defined over R×R’, is a subset of dom(A)×dom(A’), such that,   

   (ti, t’i) ≻Px&Py (tj, t’j), iff: (ti ≻Px tj) ∨ (ti ~Px tj ∧ t’i ≻Py t’j)  

ti, tj are tuples of R and t’i, t’j tuples of R’ 

 [Chomicki 2003]:  

–  Total and weak orders are preserved by the prioritized and 
lexicographical composition 

–  Strict partial order is not 

Lexicographical Composition 
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Qualitative Composition 

 For Px, Py defined over R 

–  The pareto preference composition relation ≻Px⊗Py is defined over 
R, such that, ∀ti, tj of R, ti ≻Px⊗Py tj, iff:  

 (ti ≻Px tj ∧ ¬(tj ≻Py ti)) ∨ (ti ≻Py tj ∧ ¬(tj ≻Px ti)) 

 Intuitively, under pareto composition, a tuple dominates another if 
it is at least as good (i.e., not worse) under one preference and 
strictly better under the other 

Pareto Composition 
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Qualitative Composition 

 Example: 

 P1: dramas over horrors 

 P2: long movies over short ones 

 For ti, tj, ti ≻P1⊗P2 tj, iff: (ti[genre] = ‘drama’ ∧ tj[genre] = ‘horror’ ∧ 
                  ti[duration] ≥ tj[duration]) ∨  

       (ti[duration] > tj[duration] ∧ tj[genre] ≠ ‘drama’) ∨ 

       (ti[duration] > tj[duration] ∧ tj[genre] = ‘drama’        
       ∧ ti[genre] ≠ ‘horror’) 

 t3 is preferred over t1 

 t1, t2 are incomparable 

Pareto Composition 
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Qualitative Composition 

 Pareto composition over different relational schemas 

 For Px, Py defined over R, R’ with attribute domains dom(A), dom(A’) 

–  The multidimensional pareto preference relation ≻Px⊗Py defined 
over R×R’ is a subset of dom(A)×dom(A’), such that,  

 (ti, t’i) ≻Px⊗Py (tj, t’j), iff:  (ti ≻Px tj ∧ ¬(t’j ≻Py t’i )) ∨  

     (t’i ≻Py t’j ∧ ¬(tj ≻Px ti)) 

ti, tj are tuples of R and t’i, t’j tuples of R’ 

Multidimensional Pareto Composition 
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Qualitative Composition 

 Motivation: Voting theory [Condorcet 1785] 

 Given a set of preference relations:  

 ti is preferred over tj, iff, ti is preferred over tj for the majority of 
the preference relations 

 Other methods of voting theory: 

–  Given a set of rankings, tuples are ordered based on the number of 
times each one appears first  

–  [Borda 1781]: determine the position of a tuple by the sum of its 
positions in the initial rankings 

Pair-wise Comparisons Composition 
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Qualitative Composition 

 For Px, Py defined over the relational schema R 

–  The intersection preference relation ≻Px ∧ Py is defined over R, such 
that, ∀ti, tj of R, ti ≻Px ∧ Py tj, iff:  

ti ≻Px tj ∧ ti ≻Py tj 

–  The union preference relation ≻Px+Py is defined over R, such that, 
∀ti, tj of R, ti ≻Px+Py tj, iff:  

ti ≻Px tj ∨ ti ≻Py tj 

–  The difference preference relation ≻Px－Py is defined over R, such 
that, ∀ti, tj of R, ti ≻Px－Py tj, iff:  

ti ≻Px tj ∧ ¬(ti ≻Py tj) 

Set-oriented Composition 

57 

G. Koutrika, E. Pitoura and K. Stefanidis 



Qualitative Composition 

 Intersection example: 
 P1: dramas over horrors 

 P2: long movies over short ones 

  

 P1 ∧ P2: ti ≻P1 ∧ P2 tj, iff:  

 (ti[genre] = ‘drama’ ∧ tj[genre] = ‘horror’) ∧ (ti[duration] > tj[duration]) 

 [Chomicki 2003]:  

–  Strict partial order is preserved by intersection but not by difference or 
union 

–  None of the set-oriented composition operators preserve the weak and 
the total order 
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Preference Composition 

  

 Preference composition mechanism categories: 

–  Qualitative composition 

–  Quantitative composition 

o Combine preferences expressed as scores over a set of tuples 
and assign final scores to these tuples 

–  Heterogeneous composition 
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Quantitative Composition 

 Given: 
–  Two preferences Px, Py over R defined through preference 

functions fPx, fPy  

–  A combining function F : ℝ×ℝ→ℝ 

  

 ∀ti, tj in R, ti ≻rankF(Px,Py) tj, iff: F(fPx(ti), fPy(ti)) > F(fPx(tj), fPy(tj)) 

Definition  
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Quantitative Composition 

 To assign importance to preferences, weights can be used 

  

 Example: P1: fP1(ti)= 0.001 × ti[duration] 
         P2: fP2(ti) = 0.0001 × ti[year] 

         rankF(P1, P2): F(fP1(ti), fP2(ti)) = 0.1 × fP1(ti) + 0.9 × fP2(ti) 

 Under this preference:  score(t1) = 0.185 

     score(t2) = 0.187 

     score(t3) = 0.199 

 Also: Numerical composition over different relational schemas 
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Quantitative Composition 

 Other types of combining functions: 

–  The min and max functions 

 Three classes of combining functions: 

–  Inflationary: the preference in a tuple increases with the number 
of preferences that satisfy it 

–  Dominant: the most important preference dominates 

–  Reserved: the preference in a tuple is between the highest and 
the lowest degrees of interest among the preferences satisfied 

[Koutrika and Ioannidis 2005b] 
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Quantitative Composition 

 Let Px, Py be two preferences defined over the relational schema R 

 If Px refers to a subset of tuples that Py refers to, the more specific 
one, i.e., Px, overrides the more generic one  

[Koutrika and Ioannidis 2010] 

 Example: 

 P1: movie: (movie.genre = ‘comedy’, 0.9) 
 P2: movie: (movie.genre = ‘comedy’ and 

                movie.director = ‘Stiller’, -0.9) 

 P2 overrides P1 whenever they both apply 

Preference Overriding 
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Qualitative vs. Quantitative Composition 

 Every composition mechanism defined over preference relations 
can be applied to preferences defined using functions or degrees 
of interest 

  

 This way: 

–  Prioritized, lexicographical, pareto, intersection, union and 
difference composition are also applicable to numerical 
preferences  

Note: 
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User Attitude 

 So far, we have distinguished composition methods based on the 
tuple ranking criterion between: 

–  Qualitative  

–  Quantitative 

 Distinguish composition methods based on the user attitude: 

–  Overriding attitude: Preference Px overriding Py means that Py is 
applicable only if Px does not apply 

–  Dominant attitude: The most or least important preference 
determines the tuple ranking 

–  Combinatory attitude: Both Px and Py contribute to the tuple 
ranking 
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 Preference composition w.r.t. tuple ranking and user attitude 

Attitude 

Overriding Dominant Combinatory 

Tuple 
Ranking 

Qualitative 
prioritized, 

lexicographical 
-- 

pareto, multidimensional 
pareto, pair-wise 

comparisons, intersection, 
difference, union 

Quantitative 
syntactic 

overriding 
max, min average, weighted average, … 
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Heterogeneous Composition 

 So far, we have focused on: 

–  Mechanisms for composing preferences for tuples 

 Is this the only direction? 

 Next, we focus on: 

–  Combining preferences of different granularity 
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Heterogeneous Composition 

 Mechanisms for composing preferences of different granularity 
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Combine preferences expressed at tuple and relationship level 

Combine preferences expressed at tuple and attribute level 



Heterogeneous Composition 

 Combine preferences expressed at tuple and relationship level 

 To do this: 

 Compose implicit preferences by other composeable ones 

 Px and Py are composeable, iff:  

i.  Px is a join preference of the form Rx: (qx, dx) connecting Rx to a 
relation Ry and  

ii.  Py is a join or selection preference on Ry, i.e., Ry: (qy, dy) 

[Koutrika and Ioannidis 2005b] 

 qx and qy are conditions, dx and dy are scores, Px and Py can be viewed as queries 
that select tuples from relations Rx, Ry that satisfy qx, qy 
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Heterogeneous Composition 

 Combine preferences expressed at tuple and relationship level 

 Example: 
 Selection preference: actor: (actor.name = ‘Roberts’, 0.8) 

 Join preferences: movie: (movie.mid = play.mid, 1) 

          play: (play.aid = actor.aid, 1) 

 Implicit preference for movies with Julia Roberts: 

 movie: (movie.mid = play.mid and  

      play.aid = actor.aid and  

      actor.name = ‘Roberts’, 0.8) 
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Heterogeneous Composition 

 Combine preferences expressed at tuple and attribute level 

 Employ attribute preferences to express priorities among tuple 
preferences 

 [Georgiadis et al. 2008] 

 Example:  

 Tuple preferences: Hitchcock is preferred to Curtiz or Spielberg (PD) 

         horror movies are preferred to dramas (PG) 

 Attribute preference: the director of a movie is as important as its genre (PDG) 

 PD and PG are combined by taking the pareto preference composition PD⊗PG 

–  PDG expresses that PD and PG are equally important 

 t2 is preferred to t1 and t3 

 t1, t3 are incomparable 

71 



Preference Composition: Summary 

 Preference composition w.r.t. granularity 

Tuple Relation Attribute Relationship 

Tuple  

[Agrawal and Wimmers 2000; 
Agrawal et al. 2006; Bunningen et 
al. 2006; 2007; Chomicki 2002; 
2003; Georgiadis et al. 2008; 
Holland and Kiessling 2004; 
Kiessling 2002; Koutrika and 

Ioannidis 2004; 2005b; Miele et al. 
2009; Stefanidis et al. 2006; 2007; 

Zhang and Chomicki 2008] 

-- 
[Georgiadis 
et al. 2008] 

[Koutrika and 
Ioannidis 

2004; 2005b] 

Relation -- -- -- 

Attribute 

[Georgiadis 
et al. 2008; 
Miele et al. 

2009] 

-- 

Relationship 
[Koutrika and 

Ioannidis 
2004; 2005b] 
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Preferential Query Processing 

 Given a set of preferences: 

  How we can employ them to compute query results? 

 Goal: Exploit preferences to provide users with customized 
answers by changing the order and possibly the size of results 

73 

G. Koutrika, E. Pitoura and K. Stefanidis 



Tutorial Overview 

Preference Representation 

Preference Composition 

Preferential Query Processing 

Preference Learning 

Expand Database Queries with Preferences 

Pre-compute Rankings of Tuples 

Top-k Processing 
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Expand Database Queries 

 Three fundamental steps: 

–  Preference relatedness: determine which preferences are related 
and applicable to a query 

–  Preference filtering: identify which of the related preferences 
should be integrated into the query 

–  Preference integration: integrate the selected preferences into 
the original query to enable preferential query answering 

v 

v 

v 
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Expand Database Queries 

  

 From a set of preferences known for a user at query time: 

–  All preferences may be considered related to the query 

–  Only a subset of preferences may be considered related to the 
query 

    Which of the available preferences we will use? 

Preference Relatedness 

v 

v 
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Expand Database Queries 

Assume: 

–  A preference (C, P) 
o P is defined for C 

o C can be internal, external or null 

–  A query (CQ, Q)  

o Q is formulated over the database (internal part) 
o CQ is described by the context parameters of the external 

part of C 

– CQ may be null if no external context is specified 

Preference Relatedness 

Example: 

(C, P): (Accompanying_people = ‘friends’,  
  genre = ‘horror’) 

(CQ, Q): (Accompanying_people = ‘friends’,  
  SELECT title  
  FROM movie  
  WHERE director = ‘Hitchcock’) 
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Expand Database Queries 

 A preference (C, P) is related to a query (CQ,Q) if:  

–  The external part of C matches CQ and the internal part of C        
matches Q 

–  The preference part P is applicable to Q’s results 

 In what follows, we elaborate each part of the definition    separately: 

–  Context matching  
–  Preference applicability 

Preference Relatedness 

78 

G. Koutrika, E. Pitoura and K. Stefanidis 



Expand Queries: Preference Relatedness  

  

 Use a metric for measuring the distance, similarity or difference of 
two contexts: 

–  Vector-based approaches  
o Represent query and preference contexts as vectors and 

measure their similarity 

[Agrawal et al. 2006] 

–  Hierarchical-based approaches 

Context Matching 

v 

v 
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Expand Queries: Preference Relatedness  

 For context parameters that take values from hierarchical domains: 

–  Compare contexts expressed at different levels of abstraction 

 Given a preference (C, P) and a query with context CQ: 

–  C is related to CQ, if C is equal or more general than CQ 

 [Stefanidis et al. 2007a] 
 Example: 

 For the context parameter Time_period, the value Holidays is more 
general than the value Christmas  

Context Matching : Hierarchical Approach 
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Expand Queries: Preference Relatedness  

 Hierarchical distance 

 Distance between C and CQ: Sum of distances of the levels of all 
context parameters 

–  Distance between two levels: Minimum path between them in the 
hierarchy 

Weather 
ALL 

Weather characterization 
(bad, good) 

Conditions 
(freezing, cold, mild, warm, hot) 

Location 
ALL 

Continent 

Country 

City  

 Example: 

 The contexts (Athens, warm) and (Greece, 
good) have distance 1+1=2 

 A similar metric is used by [Miele et al. 2009] 

•  Take into account the depth of context values in the hierarchy 

Context Matching : Hierarchical Approach 
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Expand Queries: Preference Relatedness  

 Locate the related preferences using the profile tree   

–  Exploit the repetition of context values in contexts 

[Stefanidis et al. 2007a] 

Preferences (C, P): 

•  ((all, all, all), P0) 

•  ((friends, good, summer holidays), P1) 

•  ((family, good, summer holidays), P2) 
•  ((friends, all, holidays), P3) 
•  ((family, all, holidays), P4) 
•  ((family, all, all), P5) 
•  ((all, all, holidays), P6) 

friends       family      all 

good      all all good      all 

summer holidays holidays      all holidays        all holidays summer holidays 

P1 p3 p2 p4 p5 p6 p0 

Context Matching : Hierarchical Approach 
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Expand Queries: Preference Relatedness  

  

 A context parameter may be relaxed: 

–  Upwards by replacing its value by a more general one 
–  Downwards by replacing its value by a set of more specific ones 

–  Sideways by replacing its value by sibling values in the hierarchy 

 But how well C matches C’? 
–  Employ metrics that exploit the number of relaxed parameters 

and the depth of relaxations 

 [Stefanidis et al. 2007b] 

Context Matching: Relaxation Types 

v 
v 
v 
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Expand Queries: Preference Relatedness 

 With context matching, we identify: 

–  Preferences that are valid in a query context  

–  Preferences that are out of context 

 It does not guarantee that a preference can be combined with the 
query and yield an interesting, non-empty output 

 Little work has been done in this direction… 

Preference Applicability 

We consider the following cases of preference applicability: 

o       Instance applicability 

o       Semantic applicability 

o       Syntactic applicability 
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Expand Queries: Preference Relatedness 

  

 P is instantly applicable to Q if: 

 Q, combined conjunctively with P, is executed over the current 
database instance and its result set is not empty 

 Example: 

 For a Q about recent movies and a P for movies directed by Spielberg: 

–  P is instantly applicable to Q only if the database contains recent 
entries of Steven Spielberg 

Instance Applicability 
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Expand Queries: Preference Relatedness 

 For semantic applicability, additional knowledge, outside the 
database, is needed 

  

 Example: 

 For a Q about comedies: 

–  A preference for movies directed by Allen is applicable 
–  A preference for Tarkovsky is not applicable 

Semantic Applicability 
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Expand Queries: Preference Relatedness 

 For semantic applicability, additional knowledge, outside the database, is 
needed 

 When P is instantly applicable to Q, then P is also semantically 
applicable to Q 

–  The reverse does not apply 

 Example: For a Q about recent movies and a P for movies directed by 
Tarantino 

–  P is semantically applicable to Q 

–  Assuming that our database is not updated, P is not instantly applicable 
to Q 

Note: 

Semantic Applicability 
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Expand Queries: Preference Relatedness 

 A preference P is syntactically applicable to a query Q w.r.t. their 
structure 

–  That is, according to the relations, attributes and values P and Q 
contain 

 A P for the tuples of a relation R is applicable to Q, if: 
–  R is referenced in Q 

–  P is expressed over an attribute in Q 

 [Koutrika and Ioannidis 2004] 

 Examples: 

–  If Q returns movies starring Roberts, a P for Stiller is syntactically 
applicable, since a movie has many actors 

–  For a Q about movies after 2000, a P for movies before 1990 is 
conflicting 

Syntactic Applicability 

The set of semantically applicable preferences for a query is a 
superset of the syntactically applicable ones 

Note: 
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Preference Relatedness Example 

 Assume the query: 

 Q: (Time_period = ‘Christmas’, SELECT title FROM movie  

         WHERE genre = ‘horror’ AND language = ‘English’) 

 and the preferences: 

 CP1: (Time_period = ‘All’,   genre = ‘adventure’) 

 CP2: (Time_period = ‘Holidays’,  language = ‘Greek’) 

 CP3: (Time_period = ‘Holidays’,  director = ‘Hitchcock’) 

 Preference Selection: 

–  CP2 and CP3 are more closely related to Q  

–  CP2 is not applicable to Q 

–  CP3 is syntactically, instantly and semantically applicable 
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Expand Database Queries 

 Three fundamental steps: 

–  Preference relatedness: determine which preferences are related 
and applicable to a query 

–  Preference filtering: identify which of the related preferences 
should be integrated into the query 

–  Preference integration: integrate the selected preferences into 
the original query to enable preferential query answering 

v 

v 

v 
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Expand Queries: Preference Filtering 

 All preferences related to a query may be used for ranking and 
selecting the tuples returned by the query 

 Alternatively: Rank preferences based on their: 
–  Relatedness score, capturing the degree to which a preference is 

related to a query 

–  Preference score, showing their intensity 

 Subsequently, select the top preferences for ranking the query results 
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Expand Queries: Preference Filtering 

 Rank preferences based on their relatedness score 

–  Use a function to capture how well a preference context matches 
a query context 

 Use the cosine similarity to match contexts   [Agrawal et al. 2006]  

 For hierarchical contexts: 

 Employ distance metrics that combine: 

–  The number of parameters in which the contexts differ 

–  The level at which such differences occur in the context hierarchies  

[Stefanidis et al. 2007a; Miele et al. 2009] 

Filtering based on Relatedness Score 
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Expand Queries: Preference Filtering 

 Quantitative preferences are ordered in decreasing preference  
score and the top K ones are selected for expanding the query 

Filtering based on Preference Score 
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Expand Queries: Preference Filtering 

 Extract the top K related preferences from a set U 
–  These preferences are stored explicitly in U or are derived implicitly 

through preference composition 
[Koutrika and Ioannidis 2004] 

 Example: 

 Selection preference: actor: (actor.name = ‘Roberts’, 0.8) 

 Join preferences: movie: (movie.mid = play.mid, 1) 

          play: (play.aid = actor.aid, 1) 

 Implicit preference for movies with Julia Roberts:  

 movie: (movie.mid = play.mid and play.aid = actor.aid and  

      actor.name = ‘Roberts’, 0.8) 

Filtering based on Preference Score 
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Preference Selection Algorithm 

 Input: Q, preferences U, interest criterion CI 

 Output: a set PK of the top K related preferences derived from U 

 Start from the related to the query preferences QP 

 Iteratively consider additional preferences that are composeable with 
those already known 

–  At each round, pick from QP the candidate preference P with the highest 
degree of interest 

•  A selection preference is added in PK, if it satisfies CI 

•  A join preference is combined with the stored, composeable preferences to 
infer implicit preferences that can be applied to the query and satisfy CI 

–  These implicit preferences are inserted into QP 

–  The algorithm stops when no other preferences satisfying CI can be 
derived and returns PK 

 CI examples: preferences with degrees of interest greater than a threshold, at 
most x preferences could be output etc. 
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Expand Database Queries 

 Three fundamental steps: 

–  Preference relatedness: determine which preferences are related 
and applicable to a query 

–  Preference filtering: identify which of the related preferences 
should be integrated into the query 

–  Preference integration: integrate the selected preferences into 
the original query to enable preferential query answering 

v 

v 

v 
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Expand Queries: Preference Integration 

 Preferences expressed as query conditions can be naturally integrated 
into a query 
–  Query rewriting approaches leverage the power of SQL to return results 

that satisfy the user preferences 

 Use the top K preferences for query personalization 

–  Query results satisfy at least L of the K preferences 

o K: Desired degree of personalization 

o L: Minimum number of criteria that an answer should meet 
 [Koutrika and Ioannidis 2004]  

 Two different query re-writing mechanisms: 

i.  Single query: A conjunction of query conditions with the disjunction of 
all possible conjunctions of the L out of K preferences 

ii. K queries: Augment the initial query with one of the K preferences  

o Each tuple that appears at least L times is output 
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 Example: 

 Assume the query  

   Q: SELECT title FROM movie WHERE director = ‘Spielberg’ 

 and the preferences  
   P1: (genre = ‘drama’) 

   P2: (language = ‘English’)    (L =1) 

Mechanism i 

SELECT title FROM movie WHERE director = ‘Spielberg’ AND  
(genre = ‘drama’ OR language = ‘English’) 

Mechanism ii 

SELECT distinct title FROM ( 
 (SELECT distinct title FROM movie  
  WHERE director = ‘Spielberg’ AND genre = ‘drama’) 
       UNION ALL 
 (SELECT distinct title FROM movie  
  WHERE director = ‘Spielberg’ AND language = ‘English’) 
           ) 

Query Re-Writing Mechanism Example 98 



Expand Queries: Preference Integration 

 Blocks, or groups, of equivalent queries 

–  Each block consists of a set of queries that generate equally 
preferable results 

 [Georgiadis et al. 2008] 

 Example preferences: 

–  Hitchcock is preferred over Curtiz or Spielberg 

–  Horror movies are preferred over dramas 

–  The director of a movie is as important as its genre 

A Lattice-based Approach 
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Expand Database Queries: Summary 

 Three fundamental steps: 

–  Preference relatedness: determine which preferences are related 
and applicable to a query 

o All preferences 

o Context matching 
o Preference applicability 

–  Preference filtering: identify which of the related preferences 
should be integrated into the query 

o Preference relatedness 

o Preference score 

–  Preference integration: integrate the selected preferences into 
the original query to enable preferential query answering 

v 

v 

v 
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Expand Database Queries: Summary 

 A taxonomy of approaches that expand database queries with 
preferences 

Preference Relatedness 
Preference 
Filtering 

Preference 
Integration 

A
ll Preferences 

C
ontext 

M
atching 

Preference 
A

pplicability 

Preference Score 

Preference 
R

elatedness 

Top-K
 Q

ueries 

O
rder A

ll 
Q

ueries 

[Agrawal et al. 2006] internal      

[Bunningen et al. 2006] external               

[Georgiadis et al. 2008]          

[Koutrika and Ioannidis 
2004; 2005] 

               

[Miele et al. 2009] external             

[Stefanidis et al. 2007] external             
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Expand Database Queries 

  

 Preference integration  

– Employ preference operators 
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Employ Preference Operators 

 Preferences can be embedded into query languages through 
preference-related operators 

–  Select from input the set of the most preferred tuples 

 Two fundamentals approaches to handle preference operators: 

–  Operator implementation 

o Operators are implemented inside the database engine 

– Employ special evaluation algorithmic techniques 

–  Operator translation 
o Operators are translated into other, existing relational 

algebra operators 

v 

v 
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Employ Preference Operators 

 In following, we focus on: 

–  Defining preference operators 

–  Implementing preference operators 

–  Translating preference operators 

v 

v 

v 
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Employ Preference Operators: Definition 

 The winnow operator: Pick from an instance r the set of the most 
preferred tuples w.r.t. a preference relation P  

[Chomicki 2003] 

 Given an instance r of a relational schema R and a P over R: 

 The winnow operator wP(r) is 

wP(r) = {ti in r | ∄tj in r, such that tj ≻P ti} 

 Winnow can be used to select tuples from more than one relation  

–  Apply winnow to the result of queries defined over more than one 
relation 

Definition 
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Employ Preference Operators: Definition 

–  If ≻P is a total order, wP(r) includes just one tuple 

The Winnow Operator: Properties 

v a 

b 

c 

d 

e 

f 
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Employ Preference Operators: Definition 

–  If ≻P is a total order, wP(r) includes just one tuple 

–  If ≻P is a weak order, tuples in winP(r) are tuples of the top 
equivalence class of r defined by ≻ 

The Winnow Operator: Properties 

v 

v 

a c 

b e 

d f 
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Employ Preference Operators: Definition 

–  If ≻P is a total order, wP(r) includes just one tuple 

–  If ≻P is a weak order, tuples in winP(r) are tuples of the top 
equivalence class of r defined by ≻ 

–  If ≻P is a strict partial order, wP(r) is non-empty (for every finite, 
non-empty instance r of R) 

The Winnow Operator: Properties 

v 

v 

v 

a c 

b e 

d 

f 
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Employ Preference Operators: Definition 

–  If ≻P is a total order, wP(r) includes just one tuple 

–  If ≻P is a weak order, tuples in winP(r) are tuples of the top 
equivalence class of r defined by ∼ 

–  If ≻P is a strict partial order, wP(r) is non-empty (for every finite, 
non-empty instance r of R) 

–  For any two tuples ti and tj of r of wP(r), it holds that ti ≻ tj 

o ti and tj are indifferent 
[Chomicki 2003] 

The Winnow Operator: Properties 

v 

v 

v 

v 
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Employ Preference Operators: Definition 

 The skyline operator: Pick the tuples of r that are not dominated 
by any other tuple in r  

–  A tuple dominates another tuple if: 
o  It is as good or better w.r.t. a set of preferences 

o  It is better in at least one preference 

Is there any relation with pareto composition? 

 [Borzsonyi et al. 2001]: Skylines in multidimensional Euclidean spaces  

–  The dominance relationship is > or <  

–  Attributes are partitioned into DIFF, MAX and MIN 

–  Only tuples with identical values on all DIFF attributes are comparable 

o Among those, MAX attribute values are maximized and MIN values 
are minimized 
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Employ Preference Operators: Definition 

 k-dominant skyline: ti k-dominates tj if there are k dimensions, or 
preferences, in which ti is better than or equal to tj, and ti is better in at 
least one of these k dimensions 

[Chan et al. 2006] 

 k-representative skyline: select k tuples, such that, the number of tuples 
that are dominated by at least one of these k tuples is maximized 

[Lin et al. 2007] 

 ε-skyline: compute the set of tuples that are not ε-dominated by any other 
tuple 
–  Given a set of preferences, ti ε-dominates tj if it is as good, better or slightly 

worse (up to ε) w.r.t. all preferences and better in at least one preference 

[Xia et al. 2008] 

Other Definitions of Skylines 
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Employ Preference Operators: Definition 

 Winnow and skyline operators select the most preferred tuples 

 For ranking all input tuples: Apply multiple times the operators 

 Given an instance r of a relational schema R and a P over R, the 
iterated winnow operator, wini

P(r), of level i, i > 0, is: 

–  win1
P(r) = wP(r) 

–  wini+1
P(r) = wP(r - ∪i

k=1wink
P(r)) 

        [Chomicki 2003] 

 The iterated winnow operator, called Best operator, is 
independently defined by [Torlone and Ciaccia 2003] 

The Iterated Winnow Operator 
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Employ Preference Operators 

 In following, we focus on: 

–  Defining preference operators 

–  Implementing preference operators 

–  Translating preference operators 

v 

v 

v 
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Employ Preference Operators: Implementation 

 The naïve approach: Nested-Loop method 
–  Compare each tuple with every other tuple 

o Nested-Loop requires scanning the whole input for each tuple 

Within The Query Engine 
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Employ Preference Operators: Implementation 

 A more efficient implementation: Block-Nested-Loop method 

[Borzsonyi et al. 2001] 
 Input: instance r 
 Variables: window W and table T that are empty 

 At each iteration: 
–  All tuples in r are read 

–  When a tuple t is read, t is compared with all tuples in W 
1. If t is dominated by a tuple in W, then t is discarded 

2. If t dominates one or more of the tuples in W, these tuples are discarded 
and t is inserted into W 

3. If t is indifferent with all tuples in W 
–  If there is room in W, t is inserted into W 

–  Otherwise, t is stored in T 
 At the end of each iteration:  

–  All tuples added to W when T was empty are output 

–  The next iteration uses T as input 

Within The Query Engine 



Employ Preference Operators: Implementation 

 Winnow for Weak Orders   [Chomicki 2007] 

–  Advantage: All tuples in the winnow belong to a single 
equivalence class 

 An input tuple t: 
–  is dominated by all tuples in W, in which case t is discarded 

–  dominates all tuples in W, in which case the whole W is replaced by t 

–  is indifferent to all tuples in W, in which case t is added to W 

 In all cases: A single comparison of t with just one tuple in W   
   suffices  

Within The Query Engine 
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Employ Preference Operators: Implementation 

 Sort-Filter-Skyline algorithm   [Chomicki et al. 2003]  

–  Add a preprocessing step to BNL that sorts all tuples in r 
•  If ti ≻P tj, then ti precedes tj in the produced order 

   

–  Produce an order by topologically sorting the preference graph 
of r 

–  Process the tuples following this order 
o When a tuple is inserted into W, it belongs to the winnow, thus it can 

be output immediately 

  For SFS to work, ≻P must be at least a strict partial order 

Basic Idea 

Within The Query Engine 

G. Koutrika, E. Pitoura and K. Stefanidis 



Employ Preference Operators: Implementation 

 Iterated winnow operator implementation 

–  Apply one of the previous algorithms (e.g., the NL or SFS) 
multiple times 
o First, apply on r to produce win1

P(r) 

o Then, apply on (r - ∪i
k=1wink

P(r)) to produce wini+1
P(r) 

 Evaluating Best Operator algorithm  [Torlone and Ciaccia 2003] 

 BNL variation  

–  Compute wini+1
P(r) from those tuples that were found to be 

directly dominated by a tuple in wini
P(r) 
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Employ Preference Operators 

 In following, we focus on: 

–  Defining preference operators 

–  Implementing preference operators 

–  Translating preference operators 

v 

v 

v 
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Employ Preference Operators: Translation 

 Is the only solution to implement preference operators? 
–  Translate operators into existing relational algebra operators 

 [Kießling 2002] defines preference queries with two new relational operators: 
1. Preference selection operator: corresponds to the winnow operator wP(r) 
2. Grouped preference selection operator: apply preference selection within 

groups 
 Given an attribute set B: 

o Tuples are partitioned into groups with same values in B 
o The grouped preference selection operator selects the dominating 

tuples in each group 
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Employ Preference Operators: Translation 

 Preference queries expressed using operators can be translated 
into standard SQL queries 

 Preference SQL: Extent SQL with the preference constructors of 
[Kießling 2002] 

[Kießling and Kostler 2002] 

 Example: 

 SELECT ∗ FROM movies PREFERRING duration BETWEEN [170, 200] 

–  Return movies with duration in [170, 200] 
–  If such movies do not exist, return movies with duration closer 

to the interval limits 
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Employ Preference Operators: Summary 

A taxonomy of approaches employing preference operators 

Implementation Level 

Evaluation Techniques Operator Translation 

Query 
Model 

Best 
Answers 

winnow, skyline 

[Chomicki 2002; Borzsonyi et al. 2001; Tan 
et al. 2001; Kossman et al. 2002; Papadias et 

al. 2003; Yuan et al. 2005; Pei et al 2005; 
Tao et al. 2006; Chan et al. 2006; Lin et al. 

2007; Xia et al. 2008] 

preference selection, 
grouped preference 

selection 
[Kiessling 2002; 

Kiessling and Kostler 
2002] 

Ranking 
iterated winnow  

[Chomicki 2003; Torlone and Ciaccia 2203; 
Georgiadis et al. 2008; Drosou et al. 2009] 

-- 
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Expand Database Queries: Summary 

 Numerous evaluation methods for preference queries 

–  Only a few are implemented within the core of a database system 

  

 FlexPref: A framework for extensible preference evaluation in 
database systems 

 Integration with FlexPref: register the functions that implement a 
preference method 
–  Once integrated, the preference method “lives” at the core of the 

database 

[Levandoski et al. 2010] 
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Preferential Query Processing 

 Preferential query processing methods: 

–  Expand regular database queries with preferences 

–  Pre-compute rankings of database tuples based on preferences 

–  Top-k processing 

v 

v 

v 
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Pre-compute Rankings 

 Perform some pre-processing offline to make online processing 
of queries fast 

 How? 

–  Employ preferences to construct offline representative rankings 
–  At query time, select the relevant rankings and use them to 

report results 

 We organize existing approaches into: 

–  Context-based approaches 

–  Context-free approaches 
v 
v 
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Pre-compute Rankings: Context-based Approaches 

 Pre-compute representative rankings of database tuples based on 
contextual preferences 

But how the representative rankings are constructed? 

G. Koutrika, E. Pitoura and K. Stefanidis 



 [Agrawal et al. 2006]  

–  Construct a ranking for each set of preferences with the same context 

–  Maintain only a set of representative rankings 

 How to select the representative rankings? 
–  Greedy Algorithm 

o Begin from all rankings  

o Remove at each step the ranking that is the most similar to the 
remaining ones 

–  Furthest Algorithm 

o Select randomly a ranking 

o At each step, pick the ranking which is furthest from the already 
selected ones 

o Continue up to collect the desirable number of representative 
rankings 

 The distance between two rankings may be computed using either the Spearman 
footrule or the Kendall tau distance 

Pre-compute Rankings: Context-based Approaches 

v 

v 



 [Stefanidis and Pitoura 2008] 

–  Create groups of similar preferences 

–  Construct a ranking for each group 

 Which preferences are similar? 

–  Contextual clustering 

o Consider as similar the preferences with similar context 

–  Predicate clustering 
o Consider as similar the preferences with similar predicates 

and scores 

Pre-compute Rankings: Context-based Approaches 

v 

v 
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Pre-compute Rankings: Context-free Approaches 

  

 Such approaches employ materialized preference views 

–  Relational views ordered according to a preference, or scoring, 
function 

 Main goal: Locate the k results that maximize (or minimize) a 
combining preference function in a pipelined manner 

e.g., [Hristidis and Papakonstantinou 2004] 
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Pre-computing Rankings: Summary 

  A taxonomy of pre-computing rankings approaches 

Context 

Context-based Context-free 

Formulation 

Qualitative [Agrawal et al. 2006] -- 

Quantitative 
[Stefanidis and 

Pitoura 2008; You 
and Hwang 2008] 

[Hristidis and Papakonstantinou 
2004; Das et al. 2006; Yi et al. 

2003] 
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Preferential Query Processing 

 Preferential query processing methods: 

–  Expand regular database queries with preferences 

–  Pre-compute rankings of database tuples based on preferences 

–  Top-k processing 

v 

v 

v 
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Top-k Processing 

 Top-k query: provide the k most important results 

–  Assign scores to all tuples based on a scoring function or an 
aggregation of a set of functions 

–  Report the k tuples with the highest scores 

Basic Idea 
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Top-k Processing 

 Methods for compounding a set of rankings to an aggregate one: 

–  FA Algorithm       
o Do sorted access to each ranking until there is a set of k tuples, 

such that each of these tuples has been seen in each of the rankings 
o For each tuple that has been seen, do random accesses to retrieve 

the missing scores 

o Compute the aggregate score of each tuple that has been seen 

o Rank the tuples based on their aggregate scores and select the top-k 
ones 

[Fagin et al. 2001] 

–  TA Algorithm 

 Sorted access enables tuple retrieval in a descending order of their scores 

 Random access enables retrieving the score of a specific tuple in one access 

v 

v 
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Example: FA Algorithm 

 S1 = < Α 0.9,   C 0.8,   E 0.7,   B 0.5,   F 0.5,   G 0.5,   H 0.5 > 

 S2 = < B 1.0,   E 0.8,   F 0.7,   Α 0.7,   C 0.5,   H 0.5,   G 0.5 > 

 S3 = < Α 0.8,   C 0.8,   E 0.7,   B 0.5,   F 0.5,   G 0.5,   H 0.5 > 

 Which is the top-1 item? 

 Compute aggregate scores for A, B, C, E, F 

 FA is correct when the aggregate tuple scores are obtained by 
combining their individual scores using a monotone function 

Note: 
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Top-k Processing 

 Methods for compounding a set of rankings to an aggregate one: 

–  FA Algorithm 

–  TA Algorithm  
o Do sorted access to each ranking: For each tuple seen, do random 

accesses to retrieve their missing scores 
o Compute the aggregate score of each tuple that has been seen, rank 

the tuples based on their aggregate scores and select the top-k ones 

o Stop to do sorted accesses when the aggregate scores of the k 
tuples are at least equal to a threshold value  

–  Threshold value: the aggregate score of the scores of the last tuples 
seen in each ranking 

[Fagin et al. 2001; Nepal and Ramakrishna 1999; Guntzer et al. 2000] 

  
 Sorted access enables tuple retrieval in a descending order of their scores 

 Random access enables retrieving the score of a specific tuple in one access 

v 
v 
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Example: TA Algorithm 

 S1 = < Α 0.9,   C 0.8,   E 0.7,   B 0.5,   F 0.5,   G 0.5,   H 0.5 > 

 S2 = < B 1.0,   E 0.8,   F 0.7,   Α 0.7,   C 0.5,   H 0.5,   G 0.5 > 

 S3 = < Α 0.8,   C 0.8,   E 0.7,   B 0.5,   F 0.5,   G 0.5,   H 0.5 > 

 Which is the top-1 item? 
 Step1: 
 score(A) = 0.9 + 0.7 + 0.8 = 2.4 

 score(B) = 0.5 + 1.0 + 0.5 = 2.0 

 threshold_value = 0.9 + 1.0 + 0.8 = 2.7  Continue since 2.7 > 2.4 

 Step2: 
 score(C) = 0.8 + 0.5 + 0.8 = 2.1 

 score(E) = 0.7 + 0.8 + 0.7 = 2.2 

 threshold_value = 0.8 + 0.8 + 0.8 = 2.4 Stop since score(A) = threshold_value 

  The stopping condition of TA occurs at least as early as the   
 stopping condition of FA 
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Top-k Processing 

 Above: Aggregate rankings that contain the same set of tuples 

–  The produced ranking consists of the same tuple set 

 Report the k joined tuples with the largest interest scores 

–  Tuples of different rankings are joined w.r.t. specific join 
conditions 

–  Each tuple has a score computed from the scores of the 
participating tuples 

[Natsev et al. 2001; Ilyas et al. 2004] 

 Report the k groups of tuples with the largest interest scores 
–  Scores are computed using a group aggregation function 

[Li et al. 2006]  

Top-k Joined Tuples 

Top-k Groups of Tuples  
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Top-k Processing: Summary 

 A taxonomy of top-k query processing techniques 

Implementation Level 

Application level Within engine 

Query 
Model 

Top-k tuples 
[Fagin et al. 2001; Nepal and 

Ramakrishna 1999; Guntzer et al. 2000] 
-- 

Top-k joined 
tuples 

[Natsev et al. 2001] 
[Ilyas et al. 

2004] 

Top-k groups of 
tuples 

-- [Li et al. 2006]  

138 



Tutorial Overview 

Preference Representation 

Preference Composition 

Preferential Query Processing 

Preference Learning 
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Model Learnt 

Pairwise orderings  (i.e., qualitative preferences) 

Utility function (i.e., quantitative preferences) 
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Input 
Positive examples 

Negative examples 

Explicit feedback 

Implicit feedback 
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Method 
Association rule mining 

Classification 

Clustering 
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Input: User logs, no explicit ranking information  
x is preferred over y, if and only if, freq(x) > freq(y). 

Model learnt: 
Preferences between values of individual attributes are used to 
infer positive and negative preferences, numerical preferences and 
complex preferences [Kießling 2002]. 

An important assumption, for learning negative preferences or 
dislikes, is the close world assumption indicating that a user 
knows all possible values of an attribute. 

Holland et al. [2003] 
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Model Learnt: a preference relation in the form of partial order 

Input: set of superior and inferior examples  

Output: a strict partial order, such that, every item is dominated 
by at least one item in the set of superior examples and it is not 
dominated by any other item in the set of inferior examples. 

[ Jiang et al. 2008], [Wong et al. 2007] 
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Input: Feedback that an item should be ranked higher than another.  

Model: Pref (i1; i2), Pref : I x I  [0; 1], returns a value indicating 
which item is ranked higher. 

Learning: At each round, items are ranked with respect to Pref. 
Then, the learner receives feedback from the environment.  
Given that Pref is a weighted linear combination of n primitive 
functions, at each round the weights are updated with respect to the 
user feedback and loss, where loss is the normalized sum of 
disagreements between function and feedback. 

[Cohen et al. 1999] 



Conclusions 

Preference Representation 

Preference Composition 

Preferential Query Processing 

Preference Learning 
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Conclusions 

Existing methods are divided into qualitative and quantitative 

Existing methods tackle specific aspects of the problem 

A holistic preference representation approach is missing 

Complete understanding of user preferences is missing – (psychology?) 

Preference Representation 

Preference Composition 

Preferential Query Processing 

Preference Learning New types of preferences (membership, uncertain, …) 
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Conclusions 

Preference Representation 

Preference Composition 

Preferential Query Processing 

Preference Learning 

Existing works follow a uniform approach to representation and  
composition 

Qualitative composition applies to preferences represented in either way 

Most approaches deal with tuple-to-tuple preference composition 

There are combinations that have not been touched at all 
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Conclusions 

Preference Representation 

Preference Composition 

Preferential Query Processing 

Preference Learning 

An approach for matching both internal and external preference context  
to query context is missing 

Approaches that deal with instance and semantic applicability are missing 

Embed preferences in the database 

Query + Preferences = ? 
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Conclusions 

Preference Representation 

Preference Composition 

Preferential Query Processing 

Preference Learning 

Learning preferences following db-specific models is highly unexplored 

Learning context-aware and privacy-aware preferences (too) 
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Sufficient information for deriving user preferences is missing 



Future Directions 

Hybrid preference models 

Combining qualitative and quantitative aspects 

Group preferences 

Merging individual preferences  [Amer-Yahia et al. 2009] 
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Social preferences 

User preferences over the social graph 



Future Directions 

Leveraging the wisdom of crowds 

Learning preferences 

Preference-aware query engine 
Making preferences first-class citizens 
Holistic optimizer 
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