
On Designing Archiving Policies for Evolving
RDF Datasets on the Web

Kostas Stefanidis, Ioannis Chrysakis, and Giorgos Flouris

Institute of Computer Science, FORTH, Heraklion, Greece
{kstef,hrysakis,fgeo}@ics.forth.gr

Abstract. When dealing with dynamically evolving datasets, users are
often interested in the state of affairs on previous versions of the dataset,
and would like to execute queries on such previous versions, as well as
queries that compare the state of affairs across different versions. This is
especially true for datasets stored in the Web, where the interlinking as-
pect, combined with the lack of central control, do not allow synchronized
evolution of interlinked datasets. To address this requirement the obvious
solution is to store all previous versions, but this could quickly increase
the space requirements; an alternative solution is to store adequate deltas
between versions, which are generally smaller, but this would create the
overhead of generating versions at query time. This paper studies the
trade-offs involved in these approaches, in the context of archiving dy-
namic RDF datasets over the Web. Our main message is that a hybrid
policy would work better than any of the above approaches, and describe
our proposed methodology for establishing a cost model that would allow
determining when each of the two standard methods (version-based or
delta-based storage) should be used in the context of a hybrid policy.

1 Introduction

DBpedia, Freebase, and YAGO are, among many others, examples of large data
repositories that are available to a wide spectrum of users through the Web.
These data repositories store information about various entities, such as per-
sons, movies, organizations, cities and countries, as well as their relationships.
Typically, data in such datasets are represented using the RDF model [6], in
which information is stored in triples of the form (subject, predicate, object),
meaning that subject is related to object via predicate. By exploiting the ad-
vances of methods that automatically extract information from Web sites [16],
such datasets became extremely large and grow continuously. For example, the
Billion Triples Challenge dataset of 20121 contains about 1.44B triples, while
DBPedia v3.9, Freebase and Yago alone feature 25M, 40M and 10M entities,
and 2.46B, 1.9B and 120M triples, respectively [12].

Dynamicity is an indispensable part of the current Web, because datasets
are constantly evolving for a number of reasons, such as the inclusion of new

1 http://km.aifb.kit.edu/projects/btc-2012/

experimental evidence or observations, or the correction of erroneous conceptu-
alizations [14]. The evolution of datasets poses several research problems, which
are related to the identification, computation, storage and management of the
evolving versions. In this paper, we are focusing on the archiving problem, i.e., the
problem of efficiently storing the evolving versions of a dataset, with emphasis
on datasets stored on the Web.

Datasets on the Web are interlinked; this is promoted by the recent hype of
the Linked Open Data (LOD) cloud2, which encourages the open publication of
interrelated RDF datasets to encourage reusability and allow the exploitation
of the added value generated by these links. Currently, the LOD cloud contains
more that 60B triples and more than 500 million links between datasets.

The interlinking of evolving datasets causes problems in the Web context.
The open and chaotic nature of the Web makes impossible to keep track of who
uses (i.e., links to) a given dataset, or what are the effects of a given change to
interrelated datasets; this is in contrast to closed settings, where every change in
a dataset is automatically propagated to all related parties. As a result, access to
previous versions should be allowed to guarantee that all related applications will
be able to seamlessly continue operations and upgrade to the new version at their
own pace, if at all. In addition, even in a non-interlinked setting, experiments
or other data may refer to a particular state of the dataset and may be non-
understandable when viewed under the new version. Finally, certain applications
may require access to previous versions of the dataset to support historical or
cross-version queries, e.g., to identify past states of the dataset, to understand
the evolution/curation process, or to detect the source of errors in the current
modeling.

Supporting the functionality of accessing and querying past versions of an
evolving dataset is the main challenge behind archiving systems. The obvious
solution to the problem is to store all versions, but this can quickly become
infeasible, especially in settings where the dataset is too large and/or changes
are too frequent, as is the case in the Web of data [12]. To avoid this, several
works (e.g., [9, 5, 17]) have proposed the use of deltas, which essentially allow the
on-the-fly generation of versions, given any version and the deltas that lead to
it. Even though this approach generally reduces space requirements, it causes an
overhead at query time, because versions need to be reconstructed before being
queried.

Given that RDF is the de-facto standard language for publishing and ex-
changing structured information on the Web, the main objective of this paper is
to present our work towards designing a number of archiving policies for evolving
RDF datasets. To do this, we study the trade-offs between the above two, basic
archiving policies. In fact, we are proposing to use a cost model that employs
the time and space overheads that are imposed by them in order to support
hybrid policies, where some of the versions and some of the deltas are stored.
Such policies could enjoy the best of both worlds by identifying which versions
and which deltas should be stored to achieve optimal performance in terms of

2 http://linkeddata.org/

both space requirements and query efficiency. To our knowledge this is the first
work studying this problem for RDF datasets on the Web.

The rest of this paper is organized as follows. Section 2 presents a classifi-
cation of the queries we are interested in, and Section 3 defines deltas between
versions of datasets. Section 4 describes the basic archiving policies. Section 5
introduces the hybrid archiving policies, while Section 6 discusses a number of
extensions. Section 7 focuses on different implementation strategies by consider-
ing different aspects of the archiving problem. Section 8 presents related work,
and finally, Section 9 concludes the paper.

2 Query Types

We consider 3 types of queries, namely modern, historical and cross-version.
These differ on the version(s) that they require access to, in order to be answered.
Modern queries are queries referring to the current version of a dataset. For
instance, in a social network scenario, one may want to pose a query about the
(current) average number of friends of a certain group of subscribers. Historical
queries are queries posed on a (single) past version of the dataset. In the example
above, one could be interested to know the average number of friends for the
same group at a given past version. Finally, cross-version queries are posed on
several versions of the dataset, thereby retrieving information residing in multiple
versions. For example, one may be interested in assessing how the number of
friends of a certain person evolved over the different versions of the dataset.
Such queries are important for performing different types of analytics across
versions or for monitoring and understanding the evolution process.

From a different perspective, and motivated by [4] that focuses on storing
and querying large graphs, we distinguish between global and targeted queries.
Abstractly, to answer a global query, we need the entire version of a dataset.
In contrast, targeted queries require accessing only parts of the version. For
example, the average number of friends, at a given version, of all subscribers
of a social network is a global query, while the average number of friends for a
specific group of subscribers is a targeted query.

Finally, we distinguish queries as version-centered and delta-centered queries.
Version-centered queries require the versions themselves for the computation of
results. On the other hand, delta-centered queries manage to work only with
deltas. For instance, retrieving the difference in the number of friends of a
group of subscribers in a social network between two versions, represents a delta-
centered query. We generalize the notion of delta-centered queries, so as to in-
clude queries that need for evaluation, along with deltas, stored versions, while
dictating no versions reconstructions.

3 Changes and Deltas

The option of storing deltas, rather than versions, was proposed as an alternative
archiving strategy to reduce storage space requirements. To implement this, one

has to develop a language of changes, which is a formal specification of the
changes that the system understands and detects, as well as change detection and
application algorithms that allow the computation of deltas, and their subsequent
on-demand application upon versions [9].

One way to do this, is to use low-level deltas, which amount to identifying
the RDF triples added and deleted to get from one version to the other (e.g., [15,
17]). Many approaches however, employ more complex languages, resulting to
high-level deltas, which produce more concise deltas that are closer to human
perception and understanding, and capture changes from a semantical (rather
than syntactical) perspective (e.g., [9, 8]).

Languages are coupled with appropriate change detection algorithms, which,
given two versions Vi, Vj , produce a delta δ that describes the changes that lead
from Vi to Vj ; obviously, said delta is expressed using the language of changes
that the corresponding tool understands and detects. Moreover, languages are
coupled with change application algorithms, which take a version, say Vi, and a
delta, δ, in the input and return the result of applying δ on Vi. Note that both
algorithms should abide by the semantics of the language of changes that they
implement. In addition, the change detection and application algorithms should
be compatible, in the sense that the output of change detection between Vi and
Vj , when applied upon Vi, should return Vj (this is called consistent detection
and application semantics in [9]).

Also it often makes sense to store Vj , rather than Vi. This gives more flexi-
bility to the archiving system, as it allows the storage of intermediate versions
(or the current one), rather than necessarily the first one only. To support this
feature, the change detection algorithm should be able to compute the inverse
delta, denoted by δ−1, either from the original input (Vi, Vj) or from the delta
itself; moreover, the change application algorithm should be able to use it to
correctly produce Vi, when Vj and δ−1 are available. This property is called
reversibility [9].

In this work, we are not restricting ourselves to any particular language
and change detection/application algorithm. We only have two requirements:
first, that such algorithms exist and they are compatible, and, second, that such
algorithms satisfy the reversibility property.

4 Basic Archiving Policies

In this section, we elaborate on the pros and cons of the two main archiving
approaches, namely full materialization and materialization using deltas (a high
level representation is depicted in Fig. 1). In addition, we present a third basic
approach that materializes exhaustively both versions and deltas.

Full Materialization. The most obvious solution to evaluate queries of any type
involves maintaining all the different versions of a dataset. Under this archiving
policy, every time a new version of a dataset is available, such version is stored
in the archive. The advantages of this approach is that the archiving task comes

V1	
 V2	
 V3	
 V4	
 V5	

V1	
 V2	
 V3	
 V4	
 V5	

V6	

V6	

C1 C2 C3 C4 C5

Q	

a) Full materialization

V1	
 δ1	
 δ2	
 δ3	
 δ5	
 δ4	

calculate	
 δ1	
 calculate	
 δ2	
 calculate	
 δ3	
 calculate	
 δ4	
 calculate	
 δ5	

V1	
 V2	
 V3	
 V4	
 V5	
 V6	
 C1 C2 C3 C4 C5

Q	

V1	
 o	
 δ1	
 o	
 δ2	
 o	
 δ3	
 o	
 δ4	
 V1	
 o	
 δ1	

b) Materialization using deltas

version &
changes

storage query example

query example
storage

version &
changes

Fig. 1: Visualizing the a) full materialization and b) materialization using deltas
archiving policies.

with no processing cost, as the version is stored as-is. Moreover, since all versions
are materialized, the full materialization policy allows efficient query processing
(in general, for all types of queries). The main drawback of this policy is that
the space overhead may become enormous, especially in cases where the stored
versions are large and/or too many versions need to be stored (e.g., due to the
fact that the dataset evolves too often). Under this policy, even the slightest
change in the dataset between two versions would force the full replication and
storage of the new version in the archive, resulting in large space requirements.

Materialization Using Deltas. A feasible alternative to the full materialization
policy is the storage of deltas. Under this policy, only one of the versions of the
dataset needs to be fully materialized (e.g., the first or the last one); to allow ac-
cess to the other versions, deltas that describe the evolution of the versions from
the materialized version should be computed and stored. Clearly, in this case,
space requirements are small. However, the evaluation of queries would require
the on-the-fly reconstruction of one or more of the non-materialized versions,
which introduces an overhead at query time. Furthermore, storing the deltas
introduces an overhead at storage time (to compute the deltas).

Materialization Using Versions and Deltas. From another extreme, the materi-
alization using versions and deltas policy maintains both all different versions
of a dataset, as well as all deltas between any two consecutive versions. That is,
for each new published version of the dataset, we store in the archive the ver-
sion along with its delta from the previous version. The main advantage of this
approach is that allows for efficient query processing, even for delta-centered
queries. However, computing deltas, at storage time, introduces an overhead.
The obvious drawback of the policy is its vast space requirements.

calculate	
 δ1	
 calculate	
 δ3	
 calculate	
 δ4	

V1	
 V2	
 V3	
 V4	
 V5	
 V6	
 C1 C2 C3 C4 C5

Q	

V3	
 o	
 δ3	
 o	
 δ4	
 V1	
 o	
 δ1	

V1	
 V3	
 V6	
 δ1	
 δ3	
 δ4	

version &
changes

storage
query example

Fig. 2: Visualizing the hybrid archiving policy.

5 Hybrid Archiving Policies

The main motivation behind our paper is that a hybrid solution, where some
of the versions are stored under the full materialization policy, while others are
stored using the materialization using deltas policy, would work best. Thus, a
hybrid policy would materialize only some of the versions (which could include
the first, last and/or intermediate versions), as well as deltas for reconstructing
the non-materialized versions (Fig. 2). The objective of a hybrid policy is to
strike a balance between query performance and storage space; applied correctly,
it would allow us to enjoy the best of both worlds, by leading to modest space
requirements, while not introducing a large overhead at storage and query time,
according to the specific needs and peculiarities of the corresponding application
domain.

The challenge in this direction is to determine what to materialize at each
step, i.e., a version or a delta, by employing an appropriate cost model. Each of
the two policies would introduce a specific time and space overhead, which need
to be quantified and compared via the cost model. To make this more specific,
let’s assume that an existing version Vi−1 evolves into Vi, and we need to decide
whether to store Vi itself, or the appropriate delta δi.

5.1 Storing a version

At storage time, the policy of full materialization (fm) causes a time overhead to

store Vi, namely tfmstore(Vi) = |Vi|·g, where |Vi| is the size of Vi (#triples), and g is
the cost of storing a triple in the disk3. At query time, given a specific query qj ,
there is a time overhead for executing qj over Vi, that is, tfmquery(Vi, qj) = c(Vi, qj),
where c reflects the complexity of executing qj over Vi and depends on |Vi| and
the size of the result res(qj) of qj . Assuming that pVi

is an estimation on the
number of the set of upcoming queries Q that refer to Vi, the time overhead for
executing all Q queries is expressed as:

tfmquery(Vi, Q) = pVi · avgQ(tfmquery(Vi, qj))

3 In general, there may be other factors affecting the storage time (e.g., caching effects,
storage method, disk technology, etc.), which may cause small deviations from this
time estimate; however this paper aims to provide an approximation of the various
costs, and minor deviations are acceptable.

Then, the overall time overhead when storing a version Vi is defined, tak-
ing into consideration the estimated upcoming queries for the version, using an
aggregation function F :

tfm(Vi, Q) = F(tfmstore(Vi), t
fm
query(Vi, Q))

The corresponding space overhead of storing Vi is denoted by sfm(Vi) and is
equal to |Vi|.

5.2 Storing a delta

When storing the delta δi instead of Vi, in order to compute it, we need both
versions Vi−1 and Vi. Next, we distinguish between two cases, namely, Vi−1 was
stored during the previous step, or not.

Vi−1 is stored
Assuming the scenario in which Vi−1 is stored, there is a time overhead for com-
puting and storing δi, at storage time, and for reconstructing Vi and executing
a set of queries Q over it, at query time.

Specifically, we formulate the overhead to compute δi as t
δ,Vi−1

compute(Vi, Vi−1, δi) =
dc(Vi, Vi−1, δi), where dc reflects a function expressing the difficulty of comput-
ing δi with respect to the size and form of Vi−1, Vi and δi. As when storing a

version, the overhead to store δi is t
δ,Vi−1

store (δi) = |δi| · g, where |δi| is the size of
δi (#triples).

At query time, the overhead for reconstructing the version Vi is given by:

t
δ,Vi−1
reconstruct(Vi−1, δi) = pVi · da(Vi−1, δi)

where da defines the difficulty of applying δi to Vi−1 taking into account the size
and form of Vi−1 and δi. Similarly to tfmquery, the overhead of executing a set of
pVi queries Q over Vi is:

t
δ,Vi−1
query (Vi, Q) = pVi · avgQ(t

δ,Vi−1
query (Vi, qj))

where t
δ,Vi−1
query (Vi, qj) is the specific overhead for computing the results of qj over

Vi.
The overall time overhead in this policy is defined, using an aggregation

function G, as follows:

tδ,Vi−1(Vi, Q) = G(t
δ,Vi−1
compute(Vi, Vi−1, δi), t

δ,Vi−1
store (δi), t

δ,Vi−1
reconstruct(Vi−1, δi), t

δ,Vi−1
query (Vi, Q))

Finally, the space overhead for storing the delta, denoted by sδ,Vi−1(δi), equals
to |δi|.

Vi−1 is not stored
When Vi−1 is not stored, it must be somehow created to allow computing the
delta; towards this aim, we propose two alternative policies. The former recon-
structs sequentially all previous versions, starting from the latest stored one, in
order to manage to reconstruct Vi−1. The latter just maintains temporarily the
current version of a dataset (until the next “new version” appears), indepen-
dently of the decision regarding the storage of the version or its delta.

Reconstruct Vi−1
Assume that Vj is the latest stored version. Then, we should first reconstruct
Vj+1. Using Vj+1, we reconstruct Vj+2, and so forth. At the final step, we use
Vi−2 to reconstruct Vi−1. This way, the time overhead to reconstruct Vi−1 is:

t
δ,¬Vi−1
prev reconstruct(Vj+1, Vi−1) = (i− 1− j) · avgj to (i−1)(da(Vx, δx+1))

while the overhead to store Vj+1, Vj+2, . . ., Vi−1 is:

t
fm,¬Vi−1
prev store(Vj+1, Vi−1) = tfmstore(Vj+1) + tfmstore(Vj+2) + . . .+ tfmstore(Vi−1)

Having reconstructed Vi−1, the additional time overhead is defined as in the
case in which Vi−1 is stored. In overall, given an aggregation function H, the
time overhead of this policy is:

tδ,¬Vi−1(Vi, Q) = H(t
δ,¬Vi−1
prev reconstruct(Vj+1, Vi−1), t

fm,¬Vi−1
prev store(Vj+1, Vi−1), tδ,Vi−1(Vi, Q))

Finally, the space overhead sδ,¬Vi−1(δi) in this policy is max{|Vj+1|+ |Vj+2|+
. . .+ |Vi−1|}+ |δi|.

Maintain temporarily Vi−1
The reconstruct Vi−1 policy exhaustively reconstructs, from the latest stored
version, all intermediate versions in order to catch Vi−1. Differently, we propose
maintaining temporarily the current version. Using this heuristic, when the new
version arrives, i.e., Vi, we can directly compare it with the previous one, i.e.,
Vi−1. Then, we drop the version that has been assigned as current, i.e., Vi−1,
and maintain the new version, i.e., Vi. Abstractly speaking, the maintain tem-
porarily Vi−1 policy reduces both the time and space overheads, compared to the
reconstruct Vi−1 policy, since it only requires the maintenance of one additional
version.

Following this approach, the time and space overheads are defined as follows:

tδ,+Vi−1(Vi, Q) = tδ,Vi−1(Vi, Q) + tfmstore(Vi−1)

sδ,+Vi−1(δi) = sδ,Vi−1(δi) + |Vi−1|

5.3 On selecting a hybrid archiving policy

To generalize, the decision on which policy is optimal, when a new version arrives,
depends on the relative importance given to the time and space overheads for
the application at hand. For example, a time-critical application might not care
too much about the space overheads, whereas other applications could be more
balanced in their requirements.

A simple way to model this, is by using the weighted summation of the time
and space overheads of our hybrid policies, and select the best choice per case.
In particular, assume a function I defined as:

Iα = wt · tα + ws · sα

where wt, ws are weights in [0,1], tα corresponds to tfm(Vi, Q), tδ,Vi−1(Vi, Q),
tδ,¬Vi−1(Vi, Q) or tδ,+Vi−1(Vi, Q), and sα corresponds to sfm(Vi), s

δ,Vi−1(δi),

sδ,¬Vi−1(δi) or sδ,+Vi−1(δi) for the storing a version, storing a δ, storing a δ
& reconstruct Vi−1 or storing a δ & maintain Vi−1 policy, respectively. Typi-
cally, the policy with the minimum cost, i.e., the minimum value for Iα, is the
one that will be used. Although more sophisticated functions can be designed,
this function is simple and intuitive, and allows directly comparing the policies
costs.

6 Extending Hybrid Archiving Policies

Clearly, the process of version reconstruction appears to be costly. In this section,
we study different ways for, whenever possible, i.e., for specific query types, either
avoiding reconstructions, or reconstructing only parts of versions. This way, we
manage to reduce the time overhead when processing queries.

6.1 Use only deltas

Given a delta-centered query, i.e., a query that can be evaluated directly on
deltas without accessing any versions, when following the use only deltas policy,
no version reconstruction is required. As an example, consider a query that
targets at retrieving the difference in the number of friends of a specific group of
subscribers in a social network between two versions. For computing the answer
of this query, we count the number of triples in the delta, added or deleted, that
involve at least one subscriber in the given group and reflect friendships between
subscribers.

This way for a delta-centered query, the corresponding overall time overheads
for the storing a δ, storing a δ & reconstruct Vi−1 and storing a δ & maintain
Vi−1 policies, reduce to:

t
δ,Vi−1

only δ (Vi, Q) = G(t
δ,Vi−1
compute(Vi, Vi−1, δi), t

δ,Vi−1
store (δi), t

δ,Vi−1
query (δi, Q))

t
δ,¬Vi−1

only δ (Vi, Q) = H(t
δ,¬Vi−1
prev reconstruct(Vj+1, Vi−1), t

fm,¬Vi−1
prev store(Vj+1, Vi−1), t

δ,Vi−1

only δ (Vi, Q))

and

t
δ,+Vi−1

only δ (Vi, Q) = t
δ,Vi−1

only δ (Vi, Q) + tfmstore(Vi−1)

where t
δ,Vi−1
query (Vi, δi) defines the cost of executing pVi queries over δi.

6.2 Use deltas and stored versions

Alternatively, one can assume a scenario in which both stored versions and deltas
can be used for answering a query, instead of reconstructing versions referring to
this query. For example, for computing the average number of friends of a specific
user in a set of versions, we count first the number of friends in the stored version,
and while accessing the deltas that correspond to the other versions of the query,
we calculate the average requested value. As motivated by the example, this
policy is applicable only to delta-centered queries.

The overall time overheads, denoted as t
δ,Vi−1

δ,Vi
(Vi, Q), t

δ,¬Vi−1

δ,Vi
(Vi, Q) and

t
δ,+Vi−1

δ,Vi
(Vi, Q) are defined as in Section 6.1. The only difference is on the cost

t
δ,Vi−1
query (δi, Q), which is replaced by t

δ,Vi−1
query (Vi, (δi, δi−1, . . . , δx), Q), since one query

in Q is evaluated over the version Vi, while the rest over the deltas δi, δi−1, . . . ,
δx.

6.3 Partial version reconstruction

However, there are cases in which version reconstruction cannot be avoided. To
improve the efficiency of such scenarios, we propose the partial version recon-
struction policy. Specifically, when queries access only parts of a dataset, like
the targeted queries, we may construct only those parts required for the query
execution.

Let’s assume that an existing version Vi−1 evolves into Vi. Let also V ′i be
the needed part of Vi for query answering, and δ′i be the part of δi that when
applied to Vi−1 constructs V ′i . Then, the overall time overheads for the storing
a δ, storing a δ & reconstruct Vi−1 and storing a δ & maintain Vi−1 policies are
defined as:

t
δ,Vi−1

partial(Vi, Q) = G(t
δ,Vi−1
compute(Vi, Vi−1, δi), t

δ,Vi−1
store (δi), t

δ,Vi−1
reconstruct(Vi−1, δ

′
i), t

δ,Vi−1
query (V ′i , Q))

t
δ,¬Vi−1

partial (Vi, Q) = H(t
δ,¬Vi−1
prev reconstruct(Vj+1, Vi−1), t

fm,¬Vi−1
prev store(Vj+1, Vi−1), t

δ,Vi−1

partial(Vi, Q))

t
δ,+Vi−1

partial (Vi, Q) = t
δ,Vi−1

partial(Vi, Q) + tfmstore(Vi−1)

where t
δ,Vi−1

reconstruct(Vi−1, δ
′
i) includes as well the cost for computing δ′i.

7 Implementation Strategies

Above, we studied a number of policies for storing evolving datasets, each of
which has different pros and cons and is suitable for a different usage scenario. In
particular, full materialization policies are good when versions are not too large
or not too many, or when the storage space required for storing the evolving
datasets is not an issue compared to the access time (which is optimal in this
policy). On the contrary, delta-based strategies are on the other end of the
spectrum, optimizing storage space consumption but causing overheads at query
time for most types of queries. The intermediate policies considered in this paper
(hybrid policies, partial reconstruction of versions, temporary storage of the
latest version) aim to strike a balance between these extremes. Table 1 presents a
summary of the various policies, while next we focus on different implementation
strategies by considering different aspects of the problem of what to store.

To decide which policy to follow, one needs to somehow “predict” the future
behavior of the dataset, e.g., the number, type and difficulty of queries that will
be posed upon the new or already existing versions. Even though an experienced
curator may be able to do such a prediction with a reasonable accuracy (e.g.,
based on past queries or on the importance of the new version), predictions may

Table 1: Archiving policies.
Archiving policy Short Description Applicability

Basic policies
full materialization maintain all the different

versions of a dataset
all query types

(store all versions,
one version and
deltas between
versions, or all

materialization using
deltas

maintain only one version of
a dataset and deltas describ-
ing the evolution from the
stored version

all query types

versions and all
deltas)

materialization using
versions and deltas

maintain all versions of a
dataset and all deltas be-
tween consecutive versions

all query types

Hybrid policies
store a version store Vi all query types
store a delta store δi (Vi−1 is stored) all query types

(given that an ex-
isting Vi−1 evolves
into Vi, decide
whether to store

store a delta & recon-
struct Vi−1

store δi (Vi−1 is not stored)
Vi−1 is reconstructed via a
set of reconstructions from
the latest stored version

all query types

Vi or δi) store a delta & main-
tain Vi−1

store δi (Vi−1 is not stored)
maintain Vi−1, until Vi ar-
rives

all query types

Extensions

use only deltas query evaluation on deltas,
i.e., no version reconstruc-
tion is required

delta-centered
queries

(special cases for
avoiding (full) re-
constructions)

use deltas & stored
versions

query evaluation on deltas
and stored versions, i.e., no
version reconstruction is re-
quired

delta-centered
queries

partial version recon-
struction

reconstruct only the parts
needed for query evaluation

targeted
queries

need to be revised. Based on this idea, we discriminate three different ways to
take decisions regarding the policy to follow for the storage of each new version.

In general, when deciding if a new version will be materialized or not at the
time of its publication, we care for achieving a feasible and efficient solution
at local level. This notion of locality resembles a greedy approach that targets
at decisions taking into account only the recent history of materializations, for
example, by comparing the current version with only the previous one (possibly,
by using materialized deltas). In other words, the locality implementation strat-
egy takes a decision on the storage policy based on the current data/curator
knowledge, and does not revise or reconsider such decision later.

Following a different implementation strategy, we may judge about what to
materialize periodically. In particular, periodicity uses periods defined as sets, of
specific size, of consecutive versions or versions published within specific time
intervals. Then, decisions about which versions and deltas to store, within a
period, are taken with respect to the versions published in the period. Periodicity
succeeds in extending the local behavior of the previous approach. However, it

wrongly assumes that updates are uniformly distributed over periods, leading
sometimes to maintaining versions with very few changes.

Alternatively, one may be interested in decisions that aim to store those
versions that offer global potentials to the storage and query processing model.
The globality implementation strategy works towards this direction. It resembles
a more exhaustive approach targeting at storing decisions based on comparisons
between the current version and all the previously materialized ones, i.e., taking
into account the whole history of materializations. Note that globality could
also lead to the re-evaluation of the decisions to keep/drop some of the previous
versions, as new versions appear, which is not the case for the locality and
periodicity strategies that do not reconsider past decisions. This way, globality
typically comes at the cost of a huge number of comparisons between versions.

Clearly, a strategy that combines characteristics of the above approaches,
in order to achieve efficient and effective storing schemes, is a challenge worth
studying. In our current work, for bounding the number of the comparisons
executed when the globality strategy, i.e., the strategy with the best quality,
is employed, we focus on tuning the number of versions to be examined with
respect to the estimated frequencies and types of the upcoming queries, and the
frequencies and amounts of changes between consecutive versions.

8 Related Work

In the context of XML data, [7] presents a delta-based method for managing
a sequence of versions of XML documents. Differences, representing deltas, be-
tween any two consecutive versions are computed, and only one version of the
document is materialized. To achieve efficiency, [1] merges all versions of the
XML data into one hierarchy; an element, associated with a timestamp, appears
in multiple versions and is stored only once. Clearly, our work does not target
at hierarchical models for archiving, but on graph-organized data on the Web.

[5] presents, in the context of social graphs, a solution for reconstructing only
the part of a version that is required to evaluate a historical query, instead of the
whole version, similar to our partial version reconstruction policy. However, the
main focus of this work is different, since it considers time with respect to graph
evolution. [3] considers as well the addition of time. Specifically, it enhances
RDF triples with temporal information, thus yielding temporal RDF graphs, and
presents semantics for these graphs, including a way for incorporating temporal
aspects into standard RDF graphs by adding temporal labels. Our approach
is different in that it does not consider temporal-aware query processing. [11]
proposes a graph model for capturing relationships between evolving datasets
and changes applied on them, where both versions and deltas are maintained.
From a different perspective, [13] supports versioning by proposing the use of an
index for all versions.

Recently, several commercial approaches that support archiving come up. To
do so, for example, Dropbox uses deltas between different versions [2], Googledrive4

4 drive.google.com/

stores the entire versions, while, to our knowledge, none of them employs a hybrid
approach. In general, it should be noted that adding timestamps to the triples
in the datasets could partly solve the archiving problem, as versions could be
generated on-the-fly using temporal information [1]. However, encoding tempo-
ral information in RDF triples often resorts to cumbersome approaches, such as
the use of reification [3], which create overheads during querying. Furthermore,
timestamps are generally absent in the context of Web data [10], which makes
such a solution infeasible in practice. Studying this alternative is beyond the
scope of this paper.

9 Conclusions

In this paper, we discuss the problem of archiving multiple versions of an evolving
dataset. This problem is of growing importance and applies in many areas where
data are dynamic and users need to perform queries not only on a single (possibly
the current) dataset version, but also on a set of previous versions. The problem
becomes more difficult in the context of the Web, where large, interconnected
datasets of a dynamic nature appear.

Towards addressing the archiving requirements of data on the Web, we focus
on designing different policies that, taking into consideration time and space
overheads, aim to determine the versions of a dataset that should be materialized,
as opposed to those that should be created on-the-fly at query time using deltas.
We consider various parameters affecting such a decision, related to the type,
frequency and complexity of queries, and size and frequency of changes.

Clearly, there are many directions for future work. As a first step, our plans
include the evaluation of the cost model to experimentally verify whether the
actual overheads appearing in practice are consistent with the theoretically ex-
pected ones. Moreover, it is our purpose to study methods for appropriately
selecting the input parameters of our cost functions, algorithms for query evalu-
ation and implementations in specific contexts. We peer a two-phase algorithm;
in the first phase, the algorithm locates or reconstructs the version(s) required,
in the second phase, for the query execution.

To further increase the efficiency of archiving, we envision building indexes
on the materialized versions and deltas. In general, indexing could improve per-
formance significantly, by enabling faster access of the data required for versions
reconstructions and query executions. Specifically, we examine specific index
structures suitable for specific query types and policies. For example, when as-
suming a targeted query, one option is to use an index for efficiently identifying
only the part of a version or delta that the query targets at. Such an index
appears to be of high importance when using, for example, the partial version
reconstruction policy.

Interestingly, specific parts of versions or deltas that are not stored in the
archive, but have been reconstructed to satisfy various query requirements, can
be indexed in order to be re-used either as they are, or after being combined
with each other. Our goal in this direction is to define a policy that exploits

previous reconstructions, as well as their combinations, to minimize the number
of reconstructions needed for new queries. To do this, properties such as applica-
bility, expressing whether a part of a version can be used for evaluating a specific
query, and combining ability, expressing whether two parts of a version can be
combined to produce a new one, need to be appropriately defined.

Acknowledgments

This work was partially supported by the European project DIACHRON (IP,
FP7-ICT-2011.4.3, #601043).

References

1. P. Buneman, S. Khanna, K. Tajima, and W. C. Tan. Archiving scientific data.
TODS, 29:2–42, 2004.

2. I. Drago, M. Mellia, M. M. Munafò, A. Sperotto, R. Sadre, and A. Pras. Inside
Dropbox: understanding personal cloud storage services. In Internet Measurement
Conference, 2012.

3. C. Gutierrez, C. Hurtado, and A. Vaisman. Temporal RDF. In ESWC, 2005.
4. U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Faloutsos. Gbase: a scalable and

general graph management system. In KDD, 2011.
5. G. Koloniari, D. Souravlias, and E. Pitoura. On graph deltas for historical queries.

In WOSS, 2012.
6. F. Manola, E. Miller, and B. McBride. RDF primer. www.w3.org/TR/rdf-primer,

2004.
7. A. Marian, S. Abiteboul, G. Cobena, and L. Mignet. Change-centric management

of versions in an XML warehouse. In VLDB, 2001.
8. N. Noy and M. Musen. PromptDiff: A fixed-point algorithm for comparing ontology

versions. In AAAI, 2002.
9. V. Papavasileiou, G. Flouris, I. Fundulaki, D. Kotzinos, and V. Christophides.

High-level change detection in RDF(S) KBs. TODS, 38(1), 2013.
10. A. Rula, M. Palmonari, A. Harth, S. Stadtmüller, and A. Maurino. On the diversity

and availability of temporal information in Linked Open Data. In ISWC, 2012.
11. Y. Stavrakas and G. Papastefanatos. Supporting complex changes in evolving

interrelated web databanks. In OTM Conferences (1), 2010.
12. K. Stefanidis, V. Efthymiou, M. Herchel, and V. Christophides. Entity resolution

in the Web of data. In WWW, 2014.
13. Y. Tzitzikas, Y. Theoharis, and D. Andreou. On storage policies for semantic Web

repositories that support versioning. In ESWC, 2008.
14. J. Umbrich, M. Hausenblas, A. Hogan, A. Polleres, and S. Decker. Towards dataset

dynamics: Change frequency of Linked Open Data sources. In LDOW, 2010.
15. M. Volkel, W. Winkler, Y. Sure, S. Kruk, and M. Synak. SemVersion: A versioning

system for RDF and ontologies. In ESWC, 2005.
16. G. Weikum and M. Theobald. From information to knowledge: harvesting entities

and relationships from Web sources. In PODS, 2010.
17. D. Zeginis, Y. Tzitzikas, and V. Christophides. On computing deltas of RDF(S)

knowledge bases. TWEB, 2011.

