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ABSTRACT keyword results.

Keyword-based search in relational databases allows users to dis- In our m??'e" preferences express a Lxs’mlcetha_t holds un- .
cover relevant information without knowing the database schema or 46" @ specificcontext where both context and choice are speci-
using complicated queries. However, such searches may return ar{'ed through keywords. For example, consider the following two
overwhelming number of results, often loosely related to the user preferences: gfriller}, G. Old_man> W. Allen) and ({comed_}',
intent. In this paper, we propose personalizing keyword database "V Allen - G O'dm"%’)- The first preference denotes that in the
search by utilizing user preferences. Query results are ranked base contextofthriller movies, the user prefe@. OldmaroverW. Allen

on both their relevance to the query and their preference degree for'V€reas the latter, that in the contextoimediesthe user prefers

the user. To further increase the quality of results, we consider two V- AllenoverG. Oldman Such preferences may be specified in

new metrics that evaluate the goodness of the result as a set, namel@" 2d-hoc manner when the user submits a query or they may be

coverage of many user interests and content diversity. We presenlStored "? a general user prqfi_le. I_Drefgrt_ences may also be created
an algorithm for processing preference queries that uses the pref.2utomatically based on explicit or implicit user feedback (e.g. [12,
erential order between keywords to direct the joining of relevant 201) Of on the popularity of specific keyword combinations (e.g.
tuples from multiple relations. We then show how to reduce the [17, 4]). For example, _the first preference may be _mduced by the
complexity of this algorithm by sharing computational steps. Fi- [act thatthe keywordgiriller andG. Oldmanco-occur in the query

nally, we report evaluation results of the efficiency and effective- 'O%me often t?an tfhe keywordsriller %nﬂl/v' Allen i K
ness of our approach. iven a set of preferences, we would like to personalize a key-

word queryQ by ranking its results in an order compatible with the
1. INTRODUCTION order expressed in the user choices for contgxEor example, in

Keyword-based search is very popular because it allows users tothe results of the quer = {thriller}, movies related t@&. Oldman
express their information needs without either being aware of the Should precede those relatedAbAllen To formalize this require-
underlying structure of the data or using a query language. In re- Ment, we consider expansions of queJyvith the set of keywords
lational databases, existing keyword search approaches exploit theétPPearing in the user choices for contéxt For instance, for the
database schema or the given database instance to retrieve tupleduery @ = {thriller}, we use the querie&), = {thriller, G. Old-
relevant to the keywords of the query. For example, consider the Mart and Q2 = {thriller, W. Aller}. We project the order induced
movie database instance shown in Figure 1. Then, the results of0Y the user choices among the results of these queries to produce
the keyword queryy = {thriller, B. Pitt} are thethriller movies an order among the results of the original query .
Twelve MonkeyandSeverboth withB. Pitt. Since keyword search is often best-effort, given a constraint

Keyword search is intrinsically ambiguous. Given the abundance ©n the number of results, we would like to combine the order of
of available information, exploring the contents of a database is a results as indicated by the user preferences with their relevance to
complex procedure that may return a huge volume of data. Stil, the query. Besides preferences and relev_ance, we also consider the
users would like to retrieve only a small piece of it, namely the Set of thek results as a whole and seek to increase the overall value
most relevant to their interests. Previous approaches for ranking the©f this set to the users. Specifically, we aim at selecting:theost
results of keyword search include, among others, adapting IR-style fépresentative among the relevant and preferred resul_ts, i.e. these
document relevance ranking strategies (e.g. [18]) and exploiting the résults that both cover different preferences and have diffecent c
link structure of the database (e.g. [19, 6, 9]). In this paper, we t€nt. In general, such resultdlversmcatlon_, i.e. selecting items th_at
propose personalizing database keyword search, so that differengdiffer from each other, has been shown to increase user satisfaction
users receive different results based on their personal interests. T (36, 34].

this end, the proposed model exploits user preferences for ranking Ve pPropose a number of algorithms for computing the Aaje-
sults. For generating results that follow the preference order, we

rely on applying thewinnow operatorf{11, 32] on various levels
to retrieve the most preferable choices at each level. Then, we in-

Permission to make digital or hard copies of all or part of thiskfor troduce asharing-resultkeyword query processing algorithm, that
personal or classroom use is granted without fee providatidbpies are exploits the fact that the results of a keyword query are related with
not made or distributed for profit or commercial advantage aatichpies the results of its superset queries, to avoid redundant computations.

bear this notice and the full citation on the first page. Toyootherwise, to Finally, we propose an algorithm that works in conjunction with

republish, to post on servers or to redistribute to listguies prior specific . : . . )
permission and/or a fee. the multi-level winnow and the sharing-results algorithm to com
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Movies

of tuplesT’, such that, for each pair of adjacent tuplgst; in T,

idm | title genre year | director X X
— mi |Dracula thriller 1992 F.F. Coppola t; € Ry, tj € ij there is an EdgeRil Rj) € Gu and it holds that
i m2 | Twelve Monkeys thriller {1996 T. Gilliam (ti X tj) € (Rz X R])
fopme [Seven thriller 11996 | D. Fincher Total JTT A JTT T is total for a keyword queny, if and only
rrt» m4 | Schindler’s List drama 1993 S. Spielberg . . . .
s TPicking up the Pieces lcomedy 2000 | A, Arau if, every keyword of) is contained in at least one tuple Bf
Minimal JTT: A JTT T that is total for a keyword querg) is
alsominimalfor @, if and only if, we cannot remove a tuple from
Play Actors T and get a total JTT fof).
idm |ida ida | name gender | dob We can now define the result of a keyword query as follows:
— mi |al » al G. Oldman male 1958 .
L m a2 7 a2 | B.Pitt male | 1963 DEFINITION 2 (QUERY RESULT). Given akeyword querg,
e 7 e L. Neeson male | 1952 the resultRes(Q) of @ is the set of all JTTs that are both total and
—— m4 |a3 a4 W. Allen male 1935 ini
minimal for@Q.
—— ms |a4 / a . ° Q . . .
] ) The size of a JTT is equal to the number of its tuples, i.e. the
Figure 1: Database instance. number of nodes in the tree, which is one more than the number of
In summary, this paper makes the fo"owing contributions: jOinS. For example, for the database of Figure 1, the result of the

keyword quen = {thriller, B. Pitf} consists of the JTTs: (i),
Twelve Monkeys, thriller, 1996, T. Gilligm- (ms2, az2) — (a2, B.
Pitt, male, 1963and (ii) (ms, Seven, thriller, 1996, D. Finchgr
(ms, a2) — (a2, B. Pitt, male, 1968 both of size equal to 3.

e it proposes personalizing keyword search through user pref-
erences and provides a formal model for integrating prefer-
ential ranking with database keyword search,

e it combines multiple criteria for the quality of the results that
include the relevance and the degree of preference of ea(:h2-2 Keyword Preference Model
individual result as well as the coverage and diversity of the ~ Keyword queries are very general and their result may include

set of results as a whole, a large number of JTTs. We propose personalizing such results by
« it presents efficient algorithms for the computation of the top-  incorporating preferences.
k representative results. DEFINITION 3 (CONTEXTUAL KEYWORD PREFERENCEH. A

We have evaluated both the efficiency and effectiveness of our contextual keyword prefereneg is a pair cp = (C, w; = wy),
approach. Our performance results show that the sharing-resultswhereC' C W andw;, w; € W. We also writev; ¢ w;.
algorithm improves the execution time over the baseline one by  The intuitive meaning of a contextual keyword preference, or
90%. Furthermore, the overall overhead for preference expansio simply preference, is that, when all keywords in contéxtare
and diversification is reasonable (around 30% in most cases). Ourpresent, results involving keyword; are preferred over those in-
usability results indicate that users receive results more interestingvolving keywordw;. We refer tow; >¢ w; as the choice part of
to them when preferences are used. the preference. For example, consider the preferemed{thriller,

The rest of this paper is organized as follows. In Section 2, we in- B. Pitt}, T. Gilliam = D. Fincher). Preferencep indicates that, in
troduce our contextual keyword preference model. In Section 3, we the case othrillers andB. Pitt, movies related td. Gilliam are
explore the desired properties of search results and define tlie top- preferred over those related®o Fincher,
representative ones, while in Section 4, we propose algorithms for  Note that we interpret context usinyV D semantics. This means
preferential keyword query processing within relational databases. that a choice holds only if all the keywords of the context part are
In Section 5, we discuss a number of extensions and in Section 6,present (bothhriller andB. Pitt in our example).OR semantics
we present our evaluation results. Section 7 describes related workcan be achieved by having two or more preferences with the same

and finally, Section 8 concludes the paper. choice part (for instance, in our example, onetfmiller and one
for B. Pitt).
2. MODEL We call the preferences for which the context part is empty, i.e.

C = {}, context-freekeyword preferences. Context-free keyword

preferences may be seen as preferences that hold independently of

context. For example, the preference (friller = dramg indi-

T ] cates thathrillers are preferred ovetramasunconditionally.

2.1 Preliminaries We call the set of all preferences defined by a user, user profile,
Most approaches to keyword search (e.g. [19, 6]) exploit the de- or simplyprofile. Let P be a profile, we us®¢ to denote the set of

pendencies in the database schema for answering keyword queriesdreferences with context andWe to denote the set of keywords

Consider a databage with n relationsR;, Rz, . . ., R,. Thesche- that appear in the choices &iz. We call the keywords iW¢

ma graphGp is a directed graph capturing the foreign key relation- choice keywordor C'.

We start this section with a short introduction to keyword search
in databases. Then, we present our model of preferences and per
sonalized keyword search.

ships in the schema;p has one node for each relatiéh and an We provide next the formal definition of dominance.

edgeR; — Rj, ifand only if, R; has a set of foreign key attributes DEFINITION 4 (DIRECT PREFERENTIAL DOMINATION). Gi-
referring to the primary key attributes &f;. We refer to the undi- ven a keyword quer§) and a profileP, letT;, T; be two JTTs total
rected version of the schema graphgas for Q. We say that; directly dominated; underPq, T; »p, Tj,

Let W be the potentially infinite set of all keywords. A keyword  if and only if, 3w; in T}, such thatfw; in T; with w; =¢ w; and
query( consists of a set of keywords, i@. C W. Typically, the w;, w; € Wq.

result of a keyword query is defined with regardgdining trees of The motivation for this specific formulation of the definition of
tuples(JTTs), which are trees of tuples connected through primary dominance is twofold. First, we want to favor JTTs that include at
to foreign key dependencies [19, 6, 9]. least one choice keyword over those that do not include any such

DEFINITION 1 (JOINING TREE OFTUPLES(JTT)). Givenan keyword. Second, in the case of two JTTs that contain many choice
undirected schema graghy, a joining tree of tuples (JTT) isatree  keywords, we want to favor the JTT that contains the most preferred



one among them. To clarify this, consider the following example.
Assume the querg) = {w,}, the choice keywordsv:, w2, ws, wa

and the preferencesdf,}, w1 > ws), {wq}, w2 > w3), {wq},

wq > wsz). LetTy, Ts be two JTTs in the result set 6§, where

T, contains, among others, the keywordg, w1, ws andT> the
keywordsw, andw,. Then, based on Definition 4, although
contains the keyworavs that is less preferable tham, contained

in Ty, Ty directly dominated>, becausd’ containsw; which is
the most preferred keyword among them.

In general, direct dominance p, defines an order among the
JTTs that contain all keywords ). Note that it is possible that,
for two JTTsTy, T», both Ty - p, T> andT >~p, Ti hold. For
instance, in the above example, assufhevith w, andw, and7:
with w, andw,. We consider such JTTs to be equally preferred. It
is also possible that neith&f >~ p,, T2 norTs > p, 11 holds. This

is the case when none of the JTTs contain any choice keywords.
Such JTTs are incomparable; we discuss next how we can order

them.
2.3 Extending Dominance

[ R. DeNiro ] [ A. Pacino ] [ R. Williams ]

L l
(rooms ) (ronin ) (wome )

Figure 2: The graph of choicest{th,,,m%F.F.CUWUM.

higher level (1= 1)

lower level (1=2)

T; € projectq(Ty) and there is no joining tree of tuples;
PRes(Q, P), such thatT}; € projectq(T;) andT; > p, T;.

Note that the indirect dominance relation is not a superset of
direct dominance, that ig; >~ p, T; # T; =>p, T;. To see this,
consider the case whe¥é contains a choice keyword that precedes
those inT; butT; belongs to the project of a JTT that contains an
even more preferred keyword.

Our goal in defining indirect preferential dominance is to impose
an ordering over the results that will follow the preferences given
by the users exactly. Thus, a result that is even only “distantly”
related to a choice keyword (i.e. through many joins) is preferred
over a result that is more closely related to a less preferred choice
keyword. We shall introduce issues of relevance and multi-criteria

Definition 4 can be used to order by dominance those JTTs in the ranking later in the paper.

query result that contain choice keywords. For example, given the
preference (fhriller}, F. F. Coppola> T. Gilliam), for the query

Q = {thriller}, the JTT T3 = (m., Dracula, thriller, 1992, F.

F. Coppolg directly dominates the JTT> = (m2, Twelve Mon-
keys, thriller, 1996, T. Gilliah However, we cannot order results
that may contain choice keywords indirectly through joins. For
example, given the preferencetftfiller}, G. Oldman> B. Pitt)
and the same quei® = {thriller}, now 77 and7: do not contain
any choice keywords and thus are incomparable, whereas &gain
should be preferred ovér, since it is a thriller movie related 8.
Oldman while T3 is related tdB. Pitt.

We capture such indirect dominance through the notion of a JTT
projection. Intuitively, a JTTI; indirectly dominates a JTT}, if
T; is the projection of some JTT that directly dominates the JTTs
whose projection i§;.

Projected JTT Assume a keyword quer§) and letT;, T; be
two JTTs. Tj is a projected JTT of; for @, if and only if, T}
is a subtree ofl; that is total and minimal forQ, that is,T; €
Res(Q). The set of the projected JTTs 8f for @ is denoted by
projectq(T3).

For example, assume the quegy= {thriller}. The JTT (n4,
Dracula, thriller, 1992, F. F. Coppolpis a projected JTT ofr1,
Dracula, thriller, 1992, F. F. Coppolp— (m1, a1) — (a1, G. Old-
man, male, 1958for Q.

We can construct the projected JTTs of a JTby appropriately
removing nodes fronT" as follows. A leaf node off" is called
secondarywith respect taQ, if it contains a keyword ir@ that is
also contained in some other nodeTaf All projected JTTs fofl’
can be produced fro' by removing secondary nodes one by one
till none remains.

The following set is useful. It contairexactlythe minimal JTTs
that include all keywords i) and at least one keyword .

DEFINITION 5 (PREFERENTIAL QUERY RESULT). Given a
keyword query@ and a profile P, the preferential query result
PRes(Q, P) is the set of all JTTs that are both total and minimal
for at least one of the querieg | J{w;}, w; € Wq.

Now, we can define indirect dominance as follows:

DEFINITION 6  (INDIRECT PREFERENTIAL DOMINATION).
Given a keyword querg) and a profileP, letT;, T; be two JTTs
total for Q. We say thatl; indirectly dominatesl’; under Pg,
T ==py Ty, if there is a JTTT] € PRes(Q, P), such that,

2.4 Processing Dominance

Given a query®, we would like to generate its results in order
of indirect dominance. To achieve this, we use the fact that, in
general, the trees in the result @fl J{w;} directly dominate the
trees in the result of) | J{w, }, for w; >¢ wj;. This suggests that
the order for generating the results for a qu@rghould follow the
order g among the choice keywords iVg. We describe next,
how to organize the choice keywords to achieve this.

Let P be a profile,C a context andPc the related contextual
preferences ifP. We organize the choice keywordsTitic using
a directed grapli~p for Pc, referred to agraph of choicegor
Pc. Gp,, has one node for each keyword € W and an edge
from the node representing; to the node representing;, if and
only if, it holds thatw; =c w; andfw,, such thatw; =c w.
andw, >c w;. For example, consider the preferences@br
{thriller, F. F. Coppold: c¢p:1 = (C, R. DeNiro>- A. Garcig), cp2
= (C, A. Pacino> A. Garcia), cps = (C, A. Pacino> A. Hopkin3
andcps = (C, R. Williams> R. Gerg. The graph of choices for
this set of preferences is depicted in Figure 2.

To extract fromG p,, the set of the most preferred keywords, we
apply themultiple level winnow operatofl1, 32]. This operator
retrieves the keywords appearing (fe,, in order of preference.
Specifically, at levell, winp, (1) = {w; € We | Pw; € We,
wj »=c ws}. For subsequent applications at level > 1, it holds,
winp, (1) = {w; € We | Dw; € (We — ULZ winp, (r)) with
w; =c wi}.

In the following, we assume that the preference relatiende-
fined over the keywords ifi/¢ is a strict partial order. This means
that it is irreflexive, asymmetric and transitive. Irreflexivity and
asymmetry are intuitive, while transitivity allows users to define
priorities among keywords without the need of specifying relation-
ships between all possible pairs. Strict partial order ensures that
there are no cycles in preferences, since that would violate irreflex-
ivity.

Since the relation-¢ is acyclic, this ordering of keywords cor-
responds to a topological sort 6fp,. Therefore, we traverse the
graph of choicess p, in levels (Algorithm 1) and at each level, we
return the keywords of the nodes with no incoming edges. For ex-
ample, consider the graph of choices of Figure 2dos {thriller,

F. F. Coppold. Then,winp, (1) ={R. DeNiro, A. Pacino, R. Willi-
amg, while winp, (2) = {A. Garcia, A. Hopkins, R. Geye

LetT be a JTT that belongs tBRes((Q, P). To encapsulate the



Algorithm 1 Multiple Level Winnow Algorithm

Input: A graph of choice<i'p, = (V, Eg).
Output: The setawinp,, () for the levels.

1. begin

2: winnow_result: empty list;

3r1=1;

4: while Vg not emptydo

5:  for all w; € Vg with no incoming edges it do
6: winp, (1) =winp, (1) U{w: };

7:  endfor

8 Add win p,, (1) to winnow_result;

9: Vg=Vg — winpc (l);

10: for all edgese = (w;, w;) with w; in winp, (1) do
11: Eqg =FEg —e;

12:  end for

13 |++;

14: end while

15: return winnow_result,

16: end

preference order df’ with regards ta? and P, we associate with
T avalue, calledlorder(T, @, P), equal to the minimum winnow
levell over all choice keywords); € W, that appear if". Then:

PrRoPOSITION 1. LetT;, T; be two JTTsT;, T; € PRes(Q,
P), such thatdorder(T;, Q, P) < dorder(T;,Q, P). Then,T;
does not directly dominatg; under Pg.

PrRoOOF. For the purpose of contradiction, assume that-p,
T;. Then, 3w, in T}, such thatfw; in T; with w; = w;, which
means thadorder(T;, Q, P) > dorder (T}, @, P), whichis a con-

tradiction. [
Thus, by executing the queri€s| J{w1 }, ..., @ U{wm }, where

{w1, ..., wn} are the keywords retrieved by the multiple level
winnow operator, in that order, we retrieve the JTT®dtes(Q, P)
in an order compatible with the direct dominance relation among
them. Given, for example, the quey = {thriller, F. F. Coppolg
and the preference®1, cp2, cps andcps, we report first the JTTs
in the results of@ U {R. DeNird, Q U {A. Pacing, Q U {R.
Williams} and then, those fo@ U {A. Garcig, Q U {A. Hopking,
Q U{R. Gerg.

By taking the projection of these JTTs in that order, and re-

moving duplicate appearances of the same trees, we take resultd

in Res(Q) in the correct indirect dominance order. Note that a

projected result may appear twice as output since it may be related

indirectly, i.e. through joins, with more than one choice keyword.
To see that by projecting the JTTs we get the resultBdr(Q)
ordered by indirect dominance, 18t be a JTT that belongs to
Res(Q). We define the indirect order df, iorder(T, Q, P),
to capture its indirect dominance with respect@oas follows:
torder(T, Q, P) is the minimumdorder(T’, Q, P) among allT”,
such that]" € projecto(T’) andoo if there is no suct™. It holds:
THEOREM 1. LetT;, T be two JTTsT;, T; € Res(Q), such
that, iorder (T3, Q, P) < iorder(T;,Q, P). Then,T; does not
indirectly dominatel’; under@.

PROOF. Assume thaflj >->p, T;. ThendT; € PRes(Q, P),
such that?}; € projectq(T;) and#T; € PRes(Q, P), such that,
T; € projectq(T]) with T] > p, T;. SinceT; is a subtree of;,
=(T; »pg, T}) (1). Also, sinceorder(Ti, Q, P) < iorder(T}, Q,
P) andT} € projectq(T}), T; cannot contain any keyword that is
preferred over the keywords @f. Therefore~(T; >p, T;) (2).
SinceT} contains at least one choice keyword, (1) and (2) cannot
hold simultaneously, which is a contradiction.]

Note here that there may be resultdins(Q) that we do not get
by projection. Those do not indirectly dominate any result but are
indirectly dominated by those that we have gotten by projection.

THEOREM 2. LetS =, projectq(T+), VT € PRes(Q, P),
andT; be a JTT, such thafl; € Res(Q)\S. ThenVT; € S, it
holds that ()7} ~>~r, T; and (i) ~(T; =>r, Tj)-

PROOF. SinceT; ¢ S, there is ndly, T; € projecto(T}), such
that, ) contains a choice keyword d¥,. However, for every
T; € S there is at least on&j, T; € projectq(T}), such that[’;
contains at least a choice keywordldf,. Therefore, according to
Definition 6, both (i) and (ii) hold. [

We can present to the user the projected result or the original JTT
in PRes(Q, P), which is not minimal but provides an explanation
of why its projected tree iRes(Q) was ordered this way. For
instance, for the querg) = {thriller}, the preference ¢hriller},

G. Oldman3> B. Pitt) and the database instance in Figure 1, we
could either present to the user as top result the J&T, Orac-
ula, thriller, 1992, F. F. Coppolp— (m1, a1) — (a1, G. Oldman,
male, 1958that belongs td° Res(Q, P) or its projected JTTr(1,
Dracula, thriller, 1992, F. F. Coppolgthat belongs tdRes(Q).

3. TOP-K PERSONALIZED RESULTS

In general, keyword search is best effort. For achieving useful
results, dominance needs to be combined with other criteria. We
distinguish between two types of properties that affect the goodness
of the result: (i) properties that refer to each individual JTT in the
result and (i) properties that refer to the result as a whole. The
first type includes preferential dominance and relevance, while the
latter includes coverage of user interests and diversity.

3.1 Result Goodness

Each individual JTTT total for a queryQ is characterized by
its dominance with regards to a profile, denotedder(T, Q, P).

In addition, there has been a lot of work on ranking JTTs based
on their relevance to the query. A natural characterization of the
relevance of a JTT (e.g. [19, 6]) is its size: the smaller the size of
the tree, the smaller the number of the corresponding joins, thus the
larger its relevance. The relevance of a JTT can also be computed
based on the importance of its tuples. For example, [9] assigns
scores to JTTs based on the prestige of their tuples, i.e. the number
of their neighbors or the strength of their relationships with other
tuples, while [18] adapts IR-style document relevance ranking. In
he following, we do not restrict to a specific definition of rele-
vance, but instead just assume that each individual T3 also
characterized by a degree of relevance, denatéebance(T, Q).

Apart from properties of each individual JTT, to ensure user sat-
isfaction by personalized search, it is also important for the whole
set of results to exhibit some desired properties. In this paper, we
consider covering many user interests and avoiding redundant in-
formation.

To understand coverage, consider the graph of choices in Figure
2. JTTs for the query) ={thriller, F. F. Copolla} that includeR.
DeNiroandR. Williamshave the same degree of dominance and as-
sume, for the purposes of this example, that they also have the same
relevance. Still, we would expect that a good result does not only
include JTTs (i.e. movies) that cover the preferencd&roeNiro
but also JTTs that cover the preferenceRaWilliamsand perhaps
other choices as well. To capture this requirement, we define the
coverageof a setS of JTTs with regards to a que@ as the per-
centage of choice keywords Vg that appear irb. Formally:

DEFINITION 7 (COVERAGE). Given a queryQ, a profile P
andasetS = {T1,...,T.} of JTTs that are total fo€, the cover-
age ofS for @) and P is defined as:

Ui, (We N keywords(T5)) |

coverage(S,Q, P) = Wol ,
Q

wherekeywords(T;) is the set of keywords ;.




High coverage ensures that the user will find many interesting

that coverage will generally decrease. However, at the same time,

results among the retrieved ones. However, many times, two JTTsthe average dominance will increase, since the returned results cor-

may contain the same or very similar information, even if they are
computed for different choice keywords. To avoid such redundant
information, we opt to provide users with results that exhibit some
diversity, i.e. they do not contain overlapping information. For

respond to high winnow levels only. For example, if a user is pri-
marily interested in dominant results, we retrievelTTs corre-
sponding to keywords retrieved byin p,, (1) by setting, for exam-
ple, (1) = k, andF () = 0, for¢ > 1. A low decrease rate of

guantifying the overlap between two JTTs, we use a Jaccard-basedmeans that less trees will be retrieved from each winnow level, so

definition of distance, which measures dissimilarity between the tu-
ples that form these trees. Given two JTI;$T; consisting of the
sets of tuplesd, B respectively, the distance betweBnandTj is:

d(T;,T;)=1— "‘zﬂg} . We have considered other types of distances
as well, but this is simple, relatively fast to compute and provides a
good indication of the overlapping content of the two trees.

To measure the overall diversity of a set of JTTs, we next define

we can retrieve the most relevant ones. Relevance is also calibrated
through the selection of the relevance thresheld,If relevance

is more important than dominance, a large value for the relevance
threshold in conjunction with an appropriafe will result in re-
trieving thek JTTs that have the largest degrees of relevance, in-
cluding those inZ!** that do no have any relation with any choice
keyword. Diversity is calibrated througtthat determines the num-

their set diversity based on their distances from each other. A num- berm of candidate trees out of which to select thenost diverse

ber of different definitions for set diversity have been proposed in

the context of recommender systems; here we model diversity as

the average distance of all pairs of elements in the set [35].

DEFINITION 8 (SET DIVERSITY). Given a setS of z JTTs,
S={T,...,T.}, the set diversity of is:

f:l ZJZ>Z d(Th Tj)

(z—1)z/2

To summarize, a “good” result for a queryQ includes JTTs
that are preferred and relevant, covers many choices and iselivers

3.2 Top« Result Selection

Given a restrictiork on the size of the result, we would like to
provide users witlk highly preferable and relevant results that also
as a whole cover many of their choices and exhibit low redundancy.
To achieve this, we resort to the following algorithm that offers us
the flexibility of fine-tuning the importance of each of the criteria
in selecting the togk results.

For a query®, we useRes;(Q) to denote the set of JTTs with
relevance greater than a thresheldGiven a query@ and a pro-
file P, let ! be the maximum winnow level. Far < r < [,
let Z" = ijewme(m Ress(Q U {w;}). Also, let 7't =

Ress(Q) \ Ur.cpres(o,p) Projecte(Te). We want more pre-
ferred keywords, that is, the ones corresponding to small winnow
values, to contribute more trees to the topesults than less pre-
ferred ones. The number of trees offered by each levelcap-
tured by F (i), where F is a monotonically decreasing function
with >>'1 F(i) = k. EachZ' contributesF (i) JTTs. For 1<
i < [, the contributed JTTs are uniformly distributed among the
keywords of level to increase coverage.

Among the many possible combinations fotrees that satisfy
the constraints imposed b¥, we choose the one with the most
diverse results. Next, we define the thTTs.

diversity(S) =

DEFINITION 9 (Top-k JTTS). Given a keyword querg, a
profile P, a relevance thresholgand the sets of resul{sz?, . . ., A
ZF M with | 214 . 4| ZY 4| 25| = m, the topk JTTs k < m,
is the setS™ for which:

g*

argmax diversity(S),
sc Utz
|S|=k
such that,Z* contributes? (s) JTTs toS*, which, for 1< <, are
uniformly distributed among the keywords of winnow leé\atd 7

. . N . 141 .
is a monotonically decreasing function wi; ] F (i) = k.

There are two basic tuning parameters: the funcftoand the

ones.

QUERY PROCESSING

In this section, we present our algorithms for processing person-
alized keyword queries. Section 4.1 presents some background,
while in Section 4.2, we first present a baseline algorithm for pro-
cessing keyword queries and then introduce an enhancement that
reuses computational steps to improve performance. In Section 4.3,
we propose an algorithm for computing tépesults.

4.1 Background

We use our movies example (Figure 1) to briefly describe basic
ideas of existing keyword query processing. For instance, consider
the query@ = {thriller, B. Pitf}. The corresponding result consists
of the JTTs: (i) {n2, Twelve Monkeys, thriller, 1996, T. Gilligm-

(ma2, a2) — (a2, B. Pitt, male, 196Band (ii) (ms, Seven, thriller,
1996, D. Finchey — (ms, a2) — (a2, B. Pitt, male, 1968 Each

JTT corresponds to a tree at schema level. For example, both of the
above trees correspond to the schema levelMfeeies t""#er} —
Play? — Actorst?-P} where eachR consists of the tuples

of R; that contain all keywords oK and no other keyword af).

Such sets are callddple setsand the schema level trees are called
joining trees of tuple setdTSs).

Several algorithms in the research literature aim at constructing
such trees of tuple sets for a quefyas an intermediate step of
the computation of the final results (e.g. [19, 6]). In the follow-
ing, we adopt the approach of [19], in which all JTSs with size up
to s are constructed (in this case, a JTT's size determines its rele-
vance). In particular, given a que, all possible tuple setR;*
are computed, wher®;" = {t |t € R; A Yw, € X, t contains
wz A Yw, € Q\X, t does not containv,}. After selecting a
random query keywora., all tuple setsR;® for whichw, € X
are located. These are the initial JTSs with only one node. Then,
these trees are expanded either by adding a tuple set that contains
at least another query keyword or a tuple set for which= {}

(free tuple set). These trees can be further expanded. JTSs that
contain all query keywords are returned, while JTSs of the form
R — R;U — RY, where an edg®; — R; exists in the schema
graph, are pruned, since JTTs produced by them have more than
one occurrence of the same tuple for every instance of the database.

4.2 Processing Preferential Queries

In this section, we present algorithms for computing the prefer-
ential results of a query, ranked in an order compatible with prefer-
ential dominance.

thresholds. Dominance, coverage and relevance depend on how 4.2.1 Baseline Approach
quickly F decreases. A high decrease rate leads to keywords from The Baseline JTS AlgorithrfAlgorithm 2) constructs in levels

fewer winnow levels contributing to the final result. This means

the sets of JTSs for the queri@sU {w; }, Yw; € winp, (1), start-



Algorithm 2 Baseline JTS Algorithm

Input: A query@, a profile P, a schema grapfi;; and a sizes.
Output: A list JTList of JTSs with size up te for the queriex | J{w; },
Yw; € WPQ-

: begin
I Queue: queue of JTSs;
1 JT List: empty list;
1=1;
: while unmarked keywords exist WPQ do
Compute the set of keywordsin p, (1);
for eachw. € winp, (1) do
Mark w;
Compute the tuple se8X for @ J{w.};
Select a keywordv; € Q J{w: };
for eachR¥, 1 < i < n, such thatw; € X do
InsertR;X into Queue;
end for
while Queue # () do
Remove the hea# from Queue;

RPRRR PR
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16: if B satisfies the pruning rukaen

17: Ignore B;

18: else ifkeys(B) = Q J{w:} then

19: InsertB into JT List;

20: else

21: for eachR)X, such that, there is aR)" in B and R; is
adjacent taR; in Gy do

22: if (X = {} ORX — keys(B) # 0) AND (size of

B < s)then

23: ExpandB to includeR;¥ ;

24. Insert the updated into Queue;

25: end if

26: end for

27: end if

28: end while

29:  endfor

30: i+

31: end while

32: return JT List;

33: end

ing with I = 1, i.e. the level with the most preferred keywords.
This way, all JTTs constructed for JTSs produced at |z re-
trieved before the JTTs of the trees of tuple sets produced at level
[+1. Algorithm 2 terminates when all the JTSs for querigs)
{wi}, Yw; € Wp,, have been computed. (In Algorithm 2, we use
the notationkeys(B) to refer to the query keywords contained in a
JTSB.)

Based on the completeness theorem of the algorithm introduced
in [19] for computing the JTSs, Theorem 3 proves the completeness
of Algorithm 2.

THEOREM3 (COMPLETENESY. Every JTT of size; that be-
longs to the preferential query result of a keyword quéris pro-
duced by a JTS of sizg that is constructed by the Baseline JTS
Algorithm.

PROOF Given a query@ and a profileP, the Baseline JTS
Algorithm constructs independently the JTSs for each qugty
{w:}, Vwy € Wp,, (lines 8-27). Since for each query the algorithm

returns the trees of tuple sets that construct every JTT that belongs Given the setz

to the corresponding result, every JTT that belong8 Res(Q, P)
is produced by the JTSs constructed by Algorithm 2 as well.

4.2.2 Result Sharing

Based on the observation that the JTS<Janay already contain
in their tuple sets the additional keyword of a query@: € KQ,
where K @Q contains the querie@: = Q U {w: }, Yw: € Wr,, we
employ such trees to construct thosednr. To do this, theSharing

JTS Algorithm(Algorithm 3) constructs first the JTSs f@rusing a
selected keyworav, € Q based on the tuple seig* for Q (lines
3-5). Then, for eacly)., we recompute its tuple sets by partitioning
eachR;* for @ into two tuple sets foQ;: R;* that contains the
tuples with only the keywords( and Rixu{“"} that contains the
tuples with only the keywordX U {w.} (lines 11-13). Using the
JTSs for@ and the tuple sets fap:, we produce all combinations

of trees of tuple sets (lines 14-17) that will be used next to construct
the final JTSs for):. For example, given the JTS fa R;* - R},

we produce the following JTSs f&: RX - RY, RXV1*t} - RY,
RX - RYVU) and RXV 1} - RXV1“) Note that, such a JTS
is constructed only if all of its tuples sets are non-empty. The JTSs
that contain all keywords af: are returned. The rest of them are
expanded as in Algorithm 2 (lines 33-42).

Since for a query) Algorithm 2 does not construct JTSs of the

form R{“+ - R]{.’“”“}, the procedure described above does not con-
struct forQ, JTSs of the formR{*“*} - RJ{.w’““"}. The same also

holds for the JTSs that conneﬁﬂwk}, R]{.wk’wt} via free tuple
sets. To overcome this, we construct all such trees from scratch
(lines 18-32) and then expand them as before (lines 33-42). Theo-
rem 4 proves the completeness of Algorithm 3.

THEOREM4 (COMPLETENESY. EveryJTT of size, that be-
longs to the preferential query result of a keyword qu@ris pro-
duced by a JTS of sizg that is constructed by the Sharing JTS
Algorithm.

PROOF Let @ be a query,P a profile andS the set of JTSs,
such that, each JTT iR Res(Q, P) can be produced by a JTS in
S. Sisdivided into two set$§; andS>, such thatS; NS, = () and
S1USy = 5. S; consists of all JTSs containing both the tuple sets
Rl{wT}, RJ{“’“W} for a selected keyword), € Q, Vw: € Wp,,
and .S, all the rest. With respect to Algorithm 3, JTSs .&f are
constructed through the lines 3-5, 11-17 and 33-42, while JTSs of
S1 are constructed through the lines 18-42. Therefore, in any case,
every JTT inPRes(Q, P), can be produced by a JTS constructed
by theSharing JTS Algorithm [

4.3 Top+« Query Processing

In the previous section, we introduced tBlaring JTS Algo-
rithm that efficiently constructs all JTSs for a quepy Next, we
focus on how to retrieve the tapresults for@Q (see Definition 9).

In general, we use the functioh to determine the number of JTTs
each level contributes to the result, thus calibrating preferential
dominance, while the specific trees of the result are selected based
on their relevance, coverage and diversity.

Relevance is tuned through the maximum sizé the JTSs con-
structed with regards to Algorithms 2 and 3, while coverage is en-
sured by selecting trees from each le¥ieko that, as many key-
words as possible are represented in the final result. Concerning
diversity, we have to identify the trees with the maximum pair-wise
distances.
= {J, Z" of m relevant JTTs, our goal is to
produce anew sét, S C Z, with thek most diverse JTTg; < m,
such that,Z® contributesF (i) trees. The problem of selecting the
k items having the maximum average pair-wise distance out of
items is similar to thep-dispersion-sunproblem. This problem
as well as other variations of the genesalispersion problem (i.e.
selectp out of m points, so that, the minimum distance between any
two pairs is maximized) have been studied in operations research
and are in general known to be NP-hard [13].



Algorithm 3 Sharing JTS Algorithm

Input: A profile P, a set of queried< @ of the formQ; = Q U {w:},
Yw € WpQ, a schema grapi;; and a sizes.

Output: A list JTList of JTSs with size up te for the queries IK Q.

Algorithm 4 Top-k JTTs Algorithm
Input:  The sets of keywordsvinpg, (1), ..., winp, (1) and the sets of

ITTszt, ..., 2, Zi+1,
Output: The setS of the top4 JTTs.

1: begin 1: begin

2! Queuer, Q'": queues of JTSs; 2: 8 =0;

3: JTS?, JTSList: empty lists; 3:fori=1;i <=1 i++do

4: Compute the tuple sef’;* with regards taQ; 4: for eachj € winp,, (i) do

5: Select a keywordv, € Q; . o N F(i) .

6: Construct and insert tdT'S? the JTSs ofQ; /* as steps 9-27 of the 5 counter(i, j) = Twinpg, @I’
Baseline JTS Algorithm */ 6: endfor

7. =1 _ 7: end for

8: while unmarked keywords exist WPQ do 8: Find the treeqy, T> € Z! with the maximum distance;

9:  Compute the set of keywordsin p, (1); 9: S=SUTy;

10:  for eachQ; € KQ, such thatw; € winp, (1) do 10: S = SUTy;

11:fori=1;i <=1+ 1;i++do

11: Mark wy; 120 for j—0;§ < F(i); j++do

: X 1<i< ; J =107 Y
12 for S20RA; 1 £ < m, computed ?ﬁg 0 13:  Findthe treel’ € Z\S with the maximumdist(T, 5);
13: Construct the tuple se8X andR; 7 for Qy; 14: S=SUT:
14: end for _ o 15: if i <1+ 1then
15: for each JTSIVTS® do ~16: Find the keywordw thatT was computed for;
16: Construct all combinations of trees of tuple sets by reptacin = 17: counter(i,w) = counter(i,w) — 1;

the tuple sets o) with the relative tuple sets @; 18: if counter(i,w) == 0 then
17: Insert those JTSs intQueuer; 19: Remove fromz? all JTTs computed fow:
18: end for 20: end if
19: for eachwa"'}, 1 <4 < n, computed foQ; do 21: end if
20: InsertRi{“’T} into Queues; 22:  endfor
21: end for 23: end for
22: while Queues # 0 do 24: end
23: Remove the heaf from Queues;
24: for eachR;X, such that, there is aRJY in B andR; is adja-
centtoR; in Gy do dist(T,S) = min d(T,T;).

25: if X ={wy,w:} AND size of B < s — 1then N ) lsisz )
26: ExpandB to includeRX ; Initially, we consider an empty sef. We first add toS the
27: Insert the updateds into Queue ; two furthest apart elements ¢f'. Then, we incrementally con-
28: else itX = {} AND size of B < s —1then structS by selecting trees o'\ S based on their tree-set distance
gg; E’;‘;er‘t”t?g LO '(;‘:t'g;eiﬁ% ; . from the trees already iff. In particular, we compute the distances
31 end if P Queues; dist(T;, S),VT; € Z*\S and add tcS the tree with the maximum
32: end for corresponding distance. Wh%}% trees have been added to
33: end while N Q
34 while Queuer # 0 do S fora keywordllrrwme (1), we exclude JTTs computed for that
35: Remove the heaft from Queue ; keyword fromZ*. After F(1) trees have been selected frafn,
36: if T" satisfies the pruning rukben we proceed by selecting trees fraff\ S until anotherF(2) trees
37 Ignore B; have been added ®and so on.
gg: elsﬁ'fkrf%sfrf) ;TQLUEW} then We can further reduce the number of performed operations based
20- clse Sert into L Last, on the observation that after the insertion of a ffet S, the dis-
41 /* as steps 21-26 of the Baseline JTS Algorithm */ tances of all other trees that have not yet entered the diverse results
42: end if from S’, 8" = S U {T}, are affected only by the presenceof
43: end while This leads us to the following proposition:
2;1 ;Tf_ for PROPOSITION 2. Given a JTTT; and two sets of JTTS and

. ) roQl AN .
46 end while sh,s' =5 U {T;}, It, holds .that.'
A7: return JTlist; dist(Ty, S") = min{dist(T;, S),d(T;,T:)}.
48: end The above process is shown in Algorithm 4. Observe that, thres-

A brute-force method to locate tikemost diverse JTTs of =
U, 2%, |Z| = m, is to first produce al(’}') possible combinations

of trees and then pick the one with the maximum set diversity out

hold-based topk algorithms (e.g. [14]) cannot be applied to con-
struct diverse subsets of JTTs, sincekhe 1 most diverse trees of
Z are not necessarily a subset offitenost diverse ones.

of those that satisfy the constraints of Definition 9. The complex- 5. EXTENSIONS

ity of this process is exponential and therefore, the computational

cost is too high even for low values of andk. A number of
lower-complexity heuristics have been proposed to locate subsetspartl We also discuss a simple approach for deriving preferences.

of elements (e.g. in [13]). In this paper, we use the following vari-

In this section, we consider extending the preference model by
relaxing its context part and allowing more keywords in its choice

ation: we construct a diverse subset of JTTs based on the tree-se5-1 Relaxmg Context
distance.

DEFINITION 10 (TREE-SET DISTANCE). GivenaJTTI and
a set of JTTsS = {T1,..

., T.}, the tree-set distance betwe&h

andS is:

For a profileP and a queryy, the associated set of preferences
Py may be empty, that is, there may be no preference§)fom
this case, we can use for personalization those preferences whose
context is more general thap, i.e. their context is a subset &.



cp, = ({}, choice,)
cp, = ({}, choice,)

can further exploit the main idea of ti&haring JTS Algorithmin
particular, consider a quel® and two sets of keywordd/1, >
that appear in the choices of the relevanft@references. During
construction, the JTSs 6§ | W1 and@ |J W, will be computed.
Assuming thati?, (| W2 # {}, we could first compute the JTSs
of Q J(W1 () W2) and then use them to find the JTSLPE ) W1
and@ | J W», instead of computing them from scratch.

\Ep. = ({S. Spielberg, L. Neeson}, choicc.ﬂ [cp(, = ({thriller, F. F. Coppola}, choicc.a 5 . 3 P rofl | e G e neratlon

User preferences can either be explicitly provided by the user
[cpm—(:drama, S. Spiclberg, L. Neesnn*f.choice@ or be automatically constructed based on the previous user inter-
actions or other available information. Although the focus of this
paper is on how to exploit already constructed profiles to person-
alize keyword database search, we also discuss here a method for
potentially inferring contextual keyword preferences in the absence
of user input.

cp, = ({S. Spielberg}, choice;) cp, = ({thriller}, choice,)

cp; = ({drama, S. Spielberg}, choice) Ep\ = ({thriller, S. Spielberg}, choicc)
cp, = ({drama, S. Spielberg}, choice,)

Figure 3: Context lattice of preferences.

DEFINITION 11  (RELAXED CONTEXT). Given aquery) and
aprofile P, asetC' C Q is arelaxed context foR in P, if and only

if',(i) 3(C, choice) er and (ii) 3 (C", choice’) € P, such that, Assume that we maintain a loff of the keyword queries sub-
¢'cQandC CC. mitted to the database. To allow multiple occurrences of the same

Given a profileP, therelaxed preferential resubf a queryQ is query@ in H, let us assume that each submitted query is preceded
the set of all JTTs that are both total and minimal for at least one in the log by a unique identifier, that i¢] is a set of entries of
of the queries) | J{w;}, w; € Wp,, whereC is a relaxed context the form (id, Q) for each submitted query, wheié is a unique
for Q. That is, we do not relax the original quefy, but instead, identifier and@ the content of the query, that is, its keywords. For
we just use the choice keywords of a relaxed contex¢for instance H ={(id1, {thriller, G. Oldman), (idz, {drama, S. Spiel-

To depict the subset relation among contexts, a lattice represen-berg}), (ids, {drama, Q. Tarantiny), (id4, {drama, 1993, S. Spiel-
tation can be used. Any context-free preference is placed on theberg), (ids, {comedy, W. Allel), (ids, {drama, S. Spielbeky)}
top of the lattice. An example is shown in Figure 3. For instance, is a log of six queries, where, for example, the quedyafna, S.
given the preferences of Figure 3 and the qu@ry {thriller, F. Spielberg was submitted twice.

F. Coppola, R. DeNirj since there is no preference with context Let W' be a set of keyword$y’ C W. We usefreq(W') to de-
equal toQ, the choice keywords of preferencgy, whose context note the number of queries iifi in which W’ appears;freq(W') =
is a relaxed context fof), will be used. Note that the context of  [{(id, Q) € H, such thatW’ C Q}|. For instance, in the exam-
cpa is also more general tha@, but it is not a relaxed context for  ple H, freq({drama}) = 4. Our underlying assumption is that
Q because the context o9 is more specific. high popularity of a set¥’ of keywords, i.e. a larggreq(W")

If there is no preference more specific@ we finally select value, implies a preference div’, which is an assumption com-
the context-free preferences, if any. Finally, note that there may be monly made by many preference learning algorithms [17, 4]. More
more than one relaxed context {Q. For instance, for the query  precisely, when a keyword; appears together with a set of other
Q = {thriller, S. Spielberg, L. Neesgrboth {thriller, S. Spielbergy keywordsW’, i.e. in the same query with them, more frequently
and {S. Spielberg, L. Neespare relaxed contexts. In this case, we than a keywordv; does, this is considered as an indication that
can use either of them. We could also use more than one relaxedis preferred ovetw; in the context ofi¥’’. Thus, we create a con-
context but this raises semantic issues with regards to the compositextual preferencéq’’, w; = w;), forw;, w; ¢ W', if freq(W'
tion of the associated orders between their choice keywords, if they {w,}) — freq(W' U {w;}) > minf x |H|, whereminf < lis
are conflicting, which is an issue beyond the scope of this work.  a positive constant that tunes the strength of the preferences. For
5.2 Multi-Keyword Choices instance, for the examplE andmin f = 0.30, we infer the contex-

. tual keyword preference ¢famag, S. Spielberg- Q. Taranting.
Our model of pre_ferences supports choices between two key- Note that the above rule, for context-free preferences, i.e. for
words. One may think of more complex preferences of the form W' = {}, gives us w; = w; if freq{w:}) — freq({w;}) >
- ) 7 J K J =

(C, choice), whereC' C W andchoice = (wi, A ... Awy,) = minf x |H|, which simply gives priority to popular keywords over

(wey Ao Ay ), wy, wr, 1< j <21 <2<y €W less popular ones. Recall that through context relaxation, context-
We shall refer to such preferencescasnposite contextual keyword o0 hreferences will be applied when nothing more specific exists.
preferencesAs an example, consider the prefereace = ({com- This means that, for instance, for a query whose keywords have not

(I\E/Idy’ W. 'fl\_”heh (E. Nortofr:/\ D. rIIBar_rynplore ~ (Ef Cry;tal/\ D. appear in any of the queries iH, we can use such context-free
0ore)). The meaning ofcp is that in the case afomedymovies  receencos 1o personalize it

andW. Allen those movies that are related to b&hNortonand
D. Barrymoreare preferred over those that are related to t&th
CrystalandD. Moore Choices can be constructed arbitrarily, in 6. EVALUATION

the sense that each choice can have any number of keywords and To evaluate the efficiency and effectiveness of our approach, we
different number of keywords can be used for the left and the right conducted a number of experiments, using both real and synthetic

part, i.e. it may hold that # y. datasets: (i) the MOVIES database [2] (Figure 4) and (ii) the TPC-
Supporting composite preferences of this form is straightforward. H database [3]. The MOVIES dataset consists of nearly 11500
In this case, the preferential result of a quépyis the set of all movies, 6800 actors, 3300 directors, 175 studios and more than

JTTs that are both total and minimal for at least one of the queries 45000 play tuples. For the TPC-H database, to experiment with the
QU W;, whereW; is now a set of keywords that appear in one of distribution of each keyword’s appearance, we do not use its ac-
the parts of a choice fap. The algorithms of Sections 4.2, 4.3 can tual dataset but rather only its schema and generate data using the
be applied without any modifications. However, to speed up query following procedure (that was also used in [19]). Each keyword
processing when preferences with composite choices are used, weppears in a relatioR; of the database with a probability equal to
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rszal)), where sizéR;) is the cardinality ofR; andy is the TR R R

cardinality of the largest relation in the database. The lower the Figure 5: MOVIES dataset: Set diversity of first-level results.

value ofz, the higher the probability for a keyword to appear in a

relationship. Table 1: TPC-H dataset: Varying keyword selectivity.
We run our performance experiments for (i) queries of a differ- x | s T‘IF”e msﬁc), N”’r_‘ber"fism,s
ent size|q|, (ii) profiles with a different number of preferences and Baseline | Sharing | Baseline | Sharing
thus, a different numbeiv| of relevant choice keywords, (iii) vari- 10 i ég'g ggf 42‘15 2‘7"22
ous maximum sizesfor the computed JTTs and (iv) different key- 51 51899 | 325 | 34025 | 66612
word selectivities. We use MySQL 5.0 to store our data. Our sys- 3 1219 25 87.44 17.29
tem is implemented in JDK 1.5 and connects to the DBMS through 8 [4] 8428 5.8 524.1 108.7
JDBC. We use an Intel Pentium D 3.0GHz PC with 1GB of RAM. 5 | 701.20 38.19 | 3877.93 | 752.75
The profiles and queries used in our experiments along with the . i ;‘1‘-21 2-;‘7‘ ég;-gi 12226-0282
source code and datasets are available for download [1]. =80T 5034 227575 T 95057

6.1 Performance Evaluation

In our performance evaluation study, we focus on (i) highlighting s case, we manually picked keywords with various selectivities,
the efficiency of theSharing JTS Algorithir(ii) demonstrating the  ving to construct queries and profiles that lead to results of dif-

effectiveness of thdop+ JTTs Algorithmand (iii) assessing the  ferent sizes and relevance. TBharing JTS Algorithnrequires
overhegd of query personalization as well as the reduction in the 5.5und 10% of the time required by tBaseline JTS Algorithm
result size achieved. while the reduction of join operations during the expansion phase
6.1.1 Sharing vs. Baseline JTS Algorithm depends orjg| and varies from 90% to 50%. The corresponding

To illustrate the efficiency of th&haring JTS Algorithnversus results are shown in Figure 7.
the Baselinealternative, we measure the execution time and the g 1.2 Topk JTTs Algorithm
total number of join operations performed during the phase of JTSs
expansion.

Figures 6a, 6b report the execution time and total number of join
operations, for the TPC-H database, fof = 10 when|q| and
s vary, while Figures 6c, 6d show the values of the corresponding
measures fofg| = 3 and varying|w|, s. In all cases, we con-
sider thatr = 10, which means that the probability of a keyword
appearing in the largest relatiod. {N EITEM) is 10%, while
for the smallest relationEGION), this probability is around
1%. TheSharing JTS algorithns more efficient, performing only
a small fraction of the join operations performed by Beseline
one, thus, also requiring much less time. Ascreases, the reduc-
tion becomes more evident, since the larger this size is, the more
the computational steps that are shared. For example, in Figure 6a
whens = 5, theSharing JTS Algorithmequires only 2.5%-10.5%
of the time required by thBaseline JTS AlgorithmObserve that,
while the number of joins for thBaseline JTS Algorithimcreases
along with |g|, it decreases for th8haring JTS Algorithn{Fig-
ure 6b). This happens because for a larger valye|pthe trees of

Our Top+ JTTs Algorithmcombines four metrics in determin-
ing the top# results for a query, namely, preferential dominance,
degree of relevance, coverage and diversity. To compute thellovera
result, we use a number of heuristics that guide the order of gener-
ation of the JTTs. We first evaluate the performance of our basic
heuristics and then show their effectiveness.

First, we evaluate the performance of our underlying diversifi-
cation heuristic by comparing it against the brute-force algorithm
both in terms of the quality of produced results as well as the time.
The complexity of all methods depends on the numheof can-
didate trees to choose from and on the required nurhlmdrtrees
to select. We experiment with a number of different values for
m andk. However, the exponential complexity of the brute-force
algorithm prevents us from using large values for these two pa-
rameters. Therefore, we limit our study t@ = 10, 20, 30 and
k = 4,8,12,16,20. In Table 2, we show the results for the brute-

the preferential result share larger common sub-trees, therefore th Table 2: Brute-force vs. Heuristic diversification.
Sharing JTS Algorithmerforms fewer expansions. m | __ Brute-force __ Heuristic

To study the impact of keyword selectivity, we also run a set of Setdiversity | Time (msec) | Setdiversity | Time (msec)
experiments forr = 10, 8,6 ands = 3,4, 5 for constant values 104 0.98 33 0.97 7
of |¢| and|w| (J¢| = 3 and|w| = 10). The results are shown in 2 0.92 38 0.92 1

. . L 0.99 623 0.97 16

Table 1. For lower values af, i.e. higher keyword selectivity, both 3 004 1194 093 o1
the execution time and join operations increase for both algorithms, | 2° 3 0.86 171315 0.86 30
since more results exist. In all cases though Sharing JTS Algo- 16 0.81 11730 0.80 43
rithm outperforms théaselineone. For example, far = 8, the 4 1.00 3190 0.99 21
reduction in execution time is around 90%, while the join opera- | 182 8-32 1323;‘;2;1 g-gg ig
tions are reduced py 80%. 16 0.94 300561487 0.3 61

Similar observations can be made for the MOVIES database. In 20 001 104214544 0.90 79
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force method and our heuristic. We observe that the brute-force cases when the heuristic is applied, since more keywords from all
method consumes much more time than the heuristic, while the setwinnow levels contribute to the result. The improvement is more
diversity of the produced results is similar (the difference is less evident forPr. B, as expected.
than 1%). Applying our diversity heuristic improves the set di- In general, high coverage ensures that results reaching the users
versity of results, even when choosing trees of tuples only among represent most of their interests. However, this does not necessar-
those computed for the choice keywords of the same winnow level ily mean that those results are not similar with each other. Next, to
(Figure 5). demonstrate how selecting results based on our diversity heuristic
As discussed, we can tune the trade-off between dominance andcan produce even more satisfying results, we execute a number of
relevance through the functigh. To demonstrate this, we use the queries and present here a characteristic example. For the query
function F(i) = k - % for various values of., where {dramg and a winnow level containing the keywor@reekand
L is the lowest winnow level from which results are retrieved. For !talian, four results should be selected accordingrtaror simplic-
example, wherl, = 1, only results corresponding to the choice 'ty: We U?gggl{}the JTTs Comp{uétraii?rthejmnlng tr?gfacgjl;ple sets
keywords of the first winnow level are returned. We run the follow- M ovies (Italian} Directors and Movies -
ing experiments fofg| = 1, |w| = 10 ands = 4. In Figures 8a, Directors . When only coverage is applied, the results

8b, we use a profile leading to five winnow levels. We also con- ar€: _
(i) (Tan21, Eternity and a Day, 1998, Th. Angelopoul@®ama) — (Th. An-

sider a sixth level containing the query results when no preferences gelopoulos, 1935Greek)

3;?1(:“;?35 \é\gi \f’;owfégefvfrgge n%rmgli'\f:: :Zr:g‘%r;c\]e_rigd rele- i) (Frs0, Intervista, 1992, F. Fellinbrama) — (F. Felini, 1920, talian)

the averagpe domir{:’mce igthé rﬁéﬁ%d.er andiorder of the tree:s (i) (Ta|n12’ |Lanizc3%ge ink)Fog’ 1988, Th. Angelopoulbsama) — (Th. An-
h : gelopoulos, ree

!n PR@S(Q’ P) and Res(Q) re_Spr‘Ctlvely’ where for those JTTs (iv) (GTO01, Cinema Paradiso, 1989, G. Tornatdeama) — (G. Tornatore, 1955,
in Res(Q) that are not the projection of any JTT inRes(Q, P), Italian)

we useiorder = 6 (that is, the maximum winnow level plus 1) as  when diversity is also considered, the third of these results is re-
opposed tao. As L increases, the average dominance decreasesplaced by (PvG02, Brides, 2004, P. VoulgaBsama) — (P. Voul-
because less preferable choice keywords are also employed, whileyaris, 1940Greek). Coverage remains the same, however, with
the average relevance increases, since highly relevant JTTs fromdiversity, one more director can be found in the results.
the lower levels enter the tapresults. . .

Coverage is also very im(;FZ)rtant, especially in the case of skewed 6.1.3 Result Pruning and Time Overhead
selectivity among the choice keywords. For example, if the combi-  Finally, we study the overall impact of query personalization in
nation of the query keywords and some top-level choice keyword keyword search in terms of the number of returned results and the
is very popular, then, without coverage, the JTTs computed for that corresponding time overhead. Both of these measures depend on
choice keyword would dominate the result. Figure 8c shows the how frequently the relative to the query choice keywords appear in
average coverage for two profiles, when our coverage heuristic is the database. Therefore, we experiment with profiles with different
employed or not, forL. = 5. The first profile Pr. A) contains selectivities. Agrofile selectivitywe define the normalized sum of
keywords with similar selectivities, while the second oRe B) the number of appearances of each choice keyword in the database.
contains keywords of different popularity, i.e. some keywords pro- We use profiles withw| = 6, 8, 10, 12 and study a query with
duce more results than others. Coverage is greatly improved in both|g| = 2: (i) when no preferences are applied or a profile with (ii)

small and (iii) large selectivity is used.



In Figures 9a and 9b, we measure the total number of the con-

structed JTTs, i.e. not just the tdpenes, fors = 3, 4 respec- Table 3: Usability Evaluation.

tively. In general, query personalization results in high pruning. precision(10) | dos
For s = 3, the use of the profile with large selectivity prunes more No Preferences 0.09 1.9
than 85% of the initial results, while for the profile with small se- Context-Free Keyword Preferences 0.21 2.7
lectivity the pruning is more than 95%. The respective percentages | Relaxed Context 0.87 7.4
for s = 4 are 33% and 74%. In Figures 9c and 9d, we measure the | Contextual Keyword Preferences

time to generate the joining trees of tuple sets required to retrieve | Dominance-Relevance 0.89 7.9
the final results. When the profile with |arge Selectivity is applied, Dominance-Re|evance_C0verage_DiverS ty 0.94 8.7

the time overhead is 24% fer= 3 and 35% fors = 4 on average.
For the profile with small selectivity, the corresponding percentages 7. RELATED WORK

0, 0,
are 22% and 32% on average. Keyword search in relational databaséss been the focus of

. ) much current research. Schema-based approaches (e )[4
6.2 Usability Evaluation the schema graph to generate join expressions and evaluate them

The goal of our usability study is to demonstrate the effectiveness t0 produce tuple trees. This is the approach we followed in this
of using preferences. In particular, the objective is to show that Paper. Instance-based approaches (e.qg. [9]) representttteada
for a reasonable effort of specifying preferences, users gee mo as @ graph in which there is a node for each tuple. Results are
satisfying results. To this end, we conducted an empirical evalu- Provided directly by using a Steiner tree algorithm. Based on [9],
ation of our approach using the MOVIES dataset, with 10 com- Several more complex approaches have been proposed (e.g. [16
puter science students with a moderate interest in movies. Each of21])- There have also been proposals for providing ranked keywor
them provided a set of contextual keyword preferences including retrieval, which include incorporating IR-style relevance ranking
context-free ones. On average, there were five preferencesdrelate ([18, 26, 28]), authority-based ranking ([8]) and automated rank-
to each of the queries that were later submitted by each user. Userdnd based on workload and data statistics of query answers ([10]).
were asked to evaluate the quality of the top-10 JTTs retrieved. For Our approach is different, in that, we propose using preferences to
characterizing the quality, we use two measures: (i) precision and Personalize the results of keyword search. In this respect, précis
(ii) degree of satisfaction. The first one captures the judgment of dueries ([29]) are the most relevant. Précis are keyword queries
the users for each individual result. In particular, users marked eac Whose answer is a synthesis of results, containing tuples directly
result with 1 or 0, indicating whether they considered that it should "elated to the given keywords and tuples implicitly related to them.
belong to the top-10 ones or not. The ratio of 1s corresponds to While précis provides additional meaning to the results by adding
the precision of the top-10 results, namptgcisior(10). The sec- structure, our goal is to use preferences for ranking results. iPrefe
ond measure evaluates the perceived user satisfaction by the set ognces are considered in [24] in the context of IR for document re-
results as a whole. To assess this, users were asked to provide aHieval. The main difference is that, only the keywords that appear
overall degree of satisfactionds in the range [1, 10] to indicate N the query are considered, whereas in our approach we expand
how interesting the overall result set seemed to them. the original query with choice keywords.

We compare the results of keyword queries when executing them: With regards tgpreferencesthe research literature is extensive.
without using any of the preferences and with using the related con- There are two fundamental approaches for expressing pretarenc
textual keyword preferences, first based only on dominance and?@ qualitative and a quantitative one. In thealitative approach
relevance and then based on all four properties. Also, we consider(€-9- [11, 22, 15]), preferences between items are specifiedigirec
using only context-free preferences as well as a case in which theretypically using binary preference relations. In peantitative ap-
is no preference with context equal to the query and so, relaxation Proach(e.g. [5, 23, 25, 7]), preferences are expressed indirectly by
is employed. We usé& as in our performance experiments with using scoring functions that assign numeric scores to items. We
equal to the maximum winnow level for each user. Table 3 reports have followed a qualitative approach, since we think it is more nat-
the average values of the quality measures (we omit the detailedural for the user to express preferences among keywords directly.
per user scores due to space limitations). Our results indicate that,USing a quantitative approach is also feasible. Intuitively, the score
when no preferences are employed, hmtcisionanddosare low. of each keyword would correspond to its winnow level.

The use of context-free preferences improves both measures mod- Previous contextual preference models, such as [31, 30], use the
erately, since such preferences capture only the generic interest§erm contextto refer to situational context, such as time and lo-
of each user. Applying contextual keyword preferences improves cation. The most similar contextual model to ours is that in [4].
quality considerably, even when preferences with relaxed context However, the work in [4] assumes knowledge of the schema and
are employed. The most satisfying results are produced when all2ddresses a different problem: pre-computation of database rank-
properties are taken into account. This demonstrates how impor-ings for representative contexts.

tant set-centric properties are when combined with dominance and Recentlydiversityhas attracted considerable attention as a means
relevance. Although our evaluation is preliminary, we believe that for enhancing user satisfaction in recommender systems and web
the results attained so far are promising. search (e.g. [36]). In terms of database queries, [33] consitiers

Concerning user behavior, in general, most of our users defined versifying the results over queries on a single database relation.
preferences that resulted in short graphs of choices. Shortgraph The mainideais to build an appropriate B+-tree on the relation and
produce few winnow levels and consequently, many ties among the €xplore a bounded number of tuples by using the tree to skip over
results with respect to preferential dominance. Using relevance, Similar tuples. A central difference with our approach is that our
coverage and diversity led to resolving such ties. We also noticed algorithms are built on top of the database engine. This may intro-
that our users were often positively biased for movies they have duce some overheads, but it does not require any modifications of
heard about. This can be seen as an indication that exploiting previ-the database system. Besides algorithms for increasing diversity, a

ous queries to generate additional preferences based on popularitgentral issue is deriving an appropriate definition of diversity. In
(as explained in Section 5.3) can prove very useful. this paper, we used a Jaccard-based distance measure on the con-
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tent of the JTTs. Recently, [34] proposed a different view of di- [12]
versity based on explanations which are based on past user ratings
and proposed efficient algorithms to increase it. [27] considered [13]
the problem of selecting an appropriate set of features, so that, the[14
differences among the results of structured queries are efficiently
highlighted.

8. SUMMARY

The simplicity of keyword-based queries makes them a very pop- [17]
ular method for searching. However, keyword-based search may
return a large amount of matching data, often loosely related to the
actual user intent. In this paper, we have proposed personalizing[19
keyword database search by employing preferences. By extend-
ing query-relevance ranking with preferential ranking, users are [20]
expected to receive results that are more interesting to them. Tol2]
further increase the quality of results, we have also suggested se-
lecting k representative results that cover many user interests andpzz]
exhibit small overlap. We have presented algorithms that extend [23]
current schema-based approaches for keyword search in ralation

[15]

[16]

[18]

databases to incorporate preference-based ranking aridragpe- 24]
sentative selection. [25]
[26]
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