RDF Query Answering Using Apache Spark:
Review and Assessment

Giannis Agathangelos®, Georgia Troullinou', Haridimos Kondylakis', Kostas Stefanidis?, Dimitris Plexousakis'

L ICS-FORTH, Greece

{jagathan, troulin, kondylak, dp}@ics.forth.gr

2 University of Tampere, Finland ~ kostas.stefanidis @uta.fi

Abstract—The explosion of the web and the abundance of
linked data demand for effective and efficient methods for
storage, management and querying. More specifically, the ever-
increasing size and number of RDF data collections raises the
need for efficient query answering, and dictates the usage of
distributed data management systems for effectively partitioning
and querying them. To this direction, Apache Spark is one
of the most active big-data approaches, with more and more
systems adopting it, for efficient, distributed data management.
The purpose of this paper is to provide an overview of the existing
works dealing with efficient query answering, in the area of RDF
data, using Apache Spark. We discuss on the characteristics and
the key dimension of such systems, we describe novel ideas in the
area, and the corresponding drawbacks, and provide directions
for future work.

I. INTRODUCTION

The prevalence of Open Linked Data, and the explosion
of available information on the Web, have led to an enormous
amount of widely available RDF datasets [6]. To store, manage
and query these ever increasing RDF data, many systems
have been developed by the research community and by
commercial vendors. To this direction, distributed big data
processing engines, like Hadoop, HBase and Impala [14], are
exploited more and more for this purpose due to their ability to
effectively handle mass amounts of data. Apache Spark, is one
of the most active, big data approach with an ever increasing
interest in using it for efficient query answering over RDF data.
The platform uses in-memory data structures that can be used
to store RDF data, offering increasing efficiency, and enabling
effective distributed query answering.

As such, the goal of this work is to provide an overview
of the works dealing with efficient query answering, using
Apache Spark, for RDF data. Focusing on this specific field,
we fill in the gap in the literature, providing a complete
and detailed overview of the current research activities in the
area. More specifically, our contributions are the following.
Firstly, we present and discuss various dimensions of analysis,
identifying key elements for such systems. Then, we classify
the approaches according to the data model and the Apache
Spark abstraction they use. We proceed further to perform an in
depth overview of the approaches in each category, providing a
unique perspective on the research in the area, and highlighting
the novel ideas and the drawbacks of each one. Finally, we
identify what is missing from the area and provide interesting
directions for future work.

There are already surveys in the area of generic RDF
storage [11] and on RDF data management systems in cloud
environments [15]. However, distributed RDF query answering

systems are beyond the scope of the former, as the authors
claim in the first paper, whereas they both cover mainly works
before the prevalence of Spark. As such, our work can be seen
as complementary to the aforementioned surveys, shedding
light to the area of RDF query answering, specifically, on
works using Apache Spark as the underlying data management
infrastructure. From a different perspective, [8] presents a
preliminary experimental comparison, evaluating Spark im-
plementations for RDF systems, focusing on techniques for
distributing data. Specifically, the authors analyze five repre-
sentative RDF data distribution approaches. The general goal
is to examine the advantages of each distribution solution, and
to identify the challenges of each approach when implemented
in Spark. However, in our paper we do not attempt to do a
comparative experimental evaluation to a limited number of
approaches, but to identify and present an overview of the
main research directions in the area.

The rest of this paper is structured as follows: In Section
II, we present some background required when speaking about
RDF data. Then, in Section III, we define the dimensions we
use for describing the systems presented in Section I'V. Finally,
Section V concludes this paper, identifies gaps in the area and
presents directions for future work.

II. BACKGROUND
A. The Resource Description Framework (RDF)

The representation of knowledge in RDF is based on triples
of the form of (subject predicate object) which record that
subject is related to object via predicate. Formally, represen-
tation of RDF data is based on three disjoint and infinite sets of
resources, namely: URIs (U), literals (L) and blank nodes (B).
RDF allows representing a form of incomplete information
through blank nodes, standing for unknown constants or URIs.
As such, a triple is a tuple (subject predicate object) from
(UUB) xU x (UULUB). In addition, to state that a resource
r is of a type 7, the property rdf:type is used.

RDF datasets have attached semantics through RDFS [1], a
vocabulary description language. RDF Schema is a vocabulary
description language that includes a set of inference rules used
to generate new, implicit triples from explicit ones.

Finally, a collection of triples can be represented as a
labeled directed graph, in which nodes represent subjects or
objects and labeled directed edges represent predicates.

B. Querying

For querying RDF data, SPARQL is used. SPARQL [2]
is currently the standard query language for the semantic web

and has become an official W3C recommendation. Essentially,
SPARQL is a graph-matching language. SPARQL queries
contain a set of triples patterns, also called basic graph patterns.
Triple patterns are like RDF triples that each of the subject,
predicate and object may be a variable or a literal. Solutions
to the variables are then found by matching the patterns in
the query to triples in the dataset. Thus, SPARQL queries are
pattern matching queries on triples, that compose an RDF data
graph.

Specifically, a SPARQL query consists of three parts.
The pattern matching part, which includes several features
of pattern matching of graphs, like optional parts, union of
patterns, nesting, filtering (or restricting) values of possible
matchings. The solution modifiers, which once the output of
the pattern has been computed (in the form of a table of values
of variables), allows to modify these values applying classical
operators, like projection, distinct, order, limit, and offset.
Finally, the output of a SPARQL query can be of different
types: yes/no answers, selections of values of the variables
which match the patterns, construction of new triples from
these values, and descriptions of resources.

According to the position of the variables in the triple
patterns, a query can have different shapes that affect its
performance. Star-shaped patterns/queries are characterized by
subject-subject joins between triple patterns as the join variable
is on the subject position. Linear shaped patterns/queries are
made of subject-object (or object-subject) joins, for example,
the join variable is on the object position in one triple pattern
and on the subject position in the other. Snowflake-shaped
patterns/queries are combinations of several star-shaped con-
nections. Finally, more complex queries combine the above
described patterns.

III. EVALUATION DIMENSIONS

Apache Spark [29] is an in-memory distributed computing
platform designed for large-scale data processing. Spark was
originally developed at UC Berkeley in 2009 and currently
is one of the most active big-data Apache projects. It can be
considered as a main-memory extension of the MapReduce
model [10], since both of them enable parallel computations
on comodity machines with locality-awareness scheduling,
fault tolerance and load balancing. Because of Spark’s main
memory implementation, it can be up to 100 times faster than
Hadoop. This level of efficiency is due to the two main data
abstractions that Spark provides: RDDs (Resilient Distributed
Dataset) and DataFrames. RDD was the primary user-facing
API in Spark since its inception. At its core, an RDD is an
immutable distributed collection of data elements, partitioned
across nodes in a cluster that can be operated in parallel with a
low-level API that offers transformations and actions. Like an
RDD, a DataFrame is an immutable distributed collection of
data. Unlike an RDD, data is organized into named columns,
like a table in a relational database. By using DataFrames,
Spark leverages this schema knowledge, and ends up in a much
more efficient data encoding than java serialization.

On top of RDD and DataFrames, Spark proposes two
higher-level data access models, GraphX and Spark SQL, for
processing semi-structured data in general. Those data models
can be used to handle RDF data and SPARQL queries. Spark

GraphX [28] is a library enabling graph processing by extend-
ing the RDD abstraction and hence introduces a new feature
called Resilient Distributed Graph or RDG. GraphX combines
the benefits of graph-parallel and data-parallel systems, as it
efficiently expresses graph computations within the framework
of the data-parallel system. Spark SQL [3] is Spark’s interface
for working with structured and semi-structured data. It enables
querying on data stored in DataFrames using SQL. It also
provides an optimizer, Catalyst, which is claimed to improve
the execution of queries.

As such, when studying the RDF processing approaches
on Apache Spark, the key factors are: a) the data model that
is selected in order to process the RDF data and b) the Spark
data abstractions each work decided to rely the implementation
on.

e Data Model: The model selected for the specific
representation of the RDF data. It can be one of the
following:

a. The Triple Model. RDF data is stored and processed
in their natural form, as triples that contain subject,
predicate, object.

b. The Graph Model. The RDF model is represented
as a directed labeled graph in which, for example, the
triple (s hasProperty p) can be interpreted as an edge
labeled with hasProperty from node s to node p. This
model is used mainly by systems that are built on top
of the graph processing API of Spark.

e Apache Spark Abstraction: Spark provides various
libraries and data abstractions each of them having
several advantages and disadvantages.

a. RDD. RDDs provide a low-level API that gives
great control over the dataset. It lacks the schema
control, but gives greater flexibility when it comes
to storage and partition, as it gives the choice of
implementing a custom partitioner.

b. DataFrames. A Dataframe is an immutable dis-
tributed collection of data that is organized into named
columns. Designed to make large datasets processing
even easier, allowing developers to impose a structure
onto a distributed collection of data.

c. Spark SQL. It enables querying on structured data
stored in DataFrames using SQL and provides an
optimizer for improving execution times.

d. GraphX. This is Spark’s library for graph pro-
cessing. By combining both graph-parallel and data-
parallel processing, it can achieve great performance
and flexibility. It also comes with well known graph
processing algorithms, like pagerank, triangle counting
and shortest paths computation.

e. GraphFrames. This is the newest graph processing
API that benefits from the scalability and high per-
formance of DataFrames. In contrast with GraphX,
it supports also queries over graphs. It is not yet an
official part of Apache Spark, but comes as a side
package.

Figure 1 summarizes the different dimensions based on
which we study RDF query processing methods.

Besides the aforementioned dimensions for categorizing
the works in the area, there are also a number of interesting

RDF Query Processing Methods

Data Model
2N

Apache Spark Abstraction
\) ~

/ \ . T
4 T | N
/ N g e / \

The Triple Model The Graph Model RDD Dataframes SparkSQL GraphX Graphframes

Fig. 1. A taxonomy presenting the dimensions for organizing RDF query
processing methods.

dimensions according to which we could further study them.
Specifically:

e Query Processing: This dimension identifies the pro-
cedure for translating a SPARQL query into a query
compatible to the Spark format and how does the
query get evaluated over the dataset. For example, a
SPARQL query can be translated into SQL code, and
execute this code using Spark SQL.

e Query Processing Optimizations: This dimension
describes the optimization methods employed by a
selected system. For example, a very common way
for query optimization is to re-order the joins sequence
based on data statistics.

e Data Partitioning: Choosing the right data partition
strategy is essential in distributed systems. The goal
is to maximize data locality and minimize network
communication to achieve the desirable performance.
Apache Spark uses by default a hash partitioning
strategy, but this can be modified depending on the
data abstraction that is used.

e SPARQL Fragment: SPARQL contains a huge set of
operations and most of the systems do not provide full
support for it. All systems start from evaluating simple
blocks of triple patterns, called Basic Graph Patterns
(BGP), and continue building on top of this, for more
operations (BGP+), such as average (AVG) and filter
operations (FILTER).

e System Contribution: The main focus of most of
the systems is to improve query performance. Some
systems focus on a particular query type, e.g., star
queries, and others target at handling multiple or all

query types.

IV. RDF PROCESSING APPROACHES

In this section, we organize systems based on the way
they model and process RDF data. Specifically, we distinguish
between 1) triple processing systems and ii) graph processing
systems. In triple processing systems, data is loaded as triples
and their raw form is used for further processing. Usually in
such systems, a simple partitioning technique, like hash or
vertical partitioning, is preferred whereas for the evaluation of
the issued SPARQL queries, the RDD API or Spark SQL is
used. In graph processing systems, RDF data is modeled as
graphs, and queries are evaluated directly over them. Either
GraphX or GraphFrames is used for query processing.

A. Triple Processing Systems

1) RDD Implementation: HAQWA [7] was the first ap-
proach that tries to process RDF data on Apache Spark. It
proposes a trade-off between data distribution complexity and
query answering efficiency. System’s fragmentation and allo-
cation is a two-step procedure. In the first step, a hash-based
partitioning is performed on triple subjects. This fragmentation
ensures that star-shaped queries are performed locally, but no
guarantees are provided for other query types. In the second
step, data are allocated according to the analysis of frequent
queries executed over the dataset. Then, at query time, the
system decomposes a query pattern into a set of local sub-
queries that can be evaluated locally. Each of those sub-queries
is a candidate to be the starting point (seed query) to evaluate
the entire query pattern. To prevent network communication,
the missing triples are replicated into the partitions that contain
the triples of the seed. To do so, for each candidate and parti-
tion, HAQWA computes the cost of transferring missing triples
into the current partition. HAQWA performs an encoding of
string values to integer ones on data, which minimizes data
volume and makes processing more efficient. Query processing
is based on a mapping from SPARQL to RDDs API, like join,
filter and count.

In SPARQLGX [13], RDF datasets are vertically parti-
tioned. As such, a triple (s p o) is stored in a file named p
whose content keeps only s and o entries. By following this
approach, the memory footprint is reduced and the response
time is minimized when queries have bounded predicates. The
query translation is done by parsing one by one the triple
patterns and mapping them to Spark’s RDD APIL. In order to
deal with a group of triple patterns, the result of each sub-query
is joined with the next one having a common variable with it,
using this common variable as a key (keyBy in Spark). If no
common variable is found, between two triple patterns, then
the cross procuct is computed. SPARQLGX is able to evaluate
Basic Graph Pattern (BGP) queries and also operations like
DISTINCT, SORT, UNION, OPTIONAL and FILTER. As an
optimization, statistics on data are computed in order to reorder
the join execution of each query. More specifically, the system
counts all distinct subjects, predicates and objects of the given
dataset.

2) Spark SQL: S2RDF [24] is an efficient and scalable
system on top of Spark that aims to provide improvements
for all query types. This work presents an extended version of
the classic vertical partitioning technique, called ExtVP. Each
ExtVP table is a set of sub-tables corresponding to a vertical
partition (VP) table. The sub-tables are generated by using
right outer joins between VP tables. More specifically, [24]
pre-computes semi-join reductions for subject-subject (SS),
object-subject (OS) and subject-object (SO). For SPARQL
query execution, the triples are joined via shared variables.
For example, for the triple patterns ?x likes ?y and ?x follows
?z the ?x variable is used for joining them. Assuming that
there are two tables containing 100 entries each, having only
10 entries in the same subject, we need 10,000 comparisons to
join them. If we store data using ExtVP, only 10 comparisons
are needed and as such, the efficiency of the query is enhanced.
For query processing, S2RDF uses Jena ARQ to tranform a
SPARQL query to an algebra tree and then it traverses this
tree to produce a Spark SQL query. To reduce the storage

overhead of the extra sub-tables a selectivity factor (SF) is
being used. This SF defines the relative size of ExtVP of
a table compared to the corresponding VP table size. So,
S2RDF supports the definition of a threshold for SF such
that all ExtVP tables above this threshold are not considered.
As a query optimization, an algorithm that reorders sub-query
execution based on the table size and the number of bounded
variables is used. Sub-queries with the most bounded variables
are executed first, and for those with same number of bounded
variables the one that corresponds to the smallest table size is
picked. S2RDF support SPARQL BGPs and also operations,
like FILTER, UNION, OFFSET, LIMIT and ORDER BY.

3) Hybrid Approaches: [21] studies two distributed join
algorithms, partitioned join and broadcast join, for the eval-
uation of BGP expressions on top of Apache Spark. In this
work, we see what kind of join algorithm each data abstraction
of Apache Spark uses, and how we can combine them to
achieve better performance. For the purpose of this study, data
is partitioned according to the value of the subject. For every
data abstraction of Spark, the authors implement a translation
from SPARQL to the corresponding API, in order to execute
queries on RDF by exploiting the framework.

Spark SQL uses the embedded Catalyst optimizer to gener-
ate the execution plan of the query, using the Spark DataFrame
and the broadcast join algorithm. A significant drawback of
this approach is that when one query has more than one
triple patterns (which is often the case) a Cartesian product
is being used instead of a join, which is inefficient. The
RDD approach translates each join into a partitioned join
operator, following the order specified by the input logical
query. This ends up with a sequence of (possibly n-ary) joins
on different variables. This approach lacks efficiency when
a broadcast join is cheaper e.g., join a small with a large
data set. It is worth mentioning that RDDs always reads the
entire data set for each triple pattern. DataFrames provide an
important benefit which comes from the columnar compressed
in-memory representation that is used. Up to 10 times larger
data sets than RDD can be managed. It uses a cost-based
join optimization approach by preferring a single broadcast
join to a sequence of partitioned join if the dataset is smaller
than a given threshold. For example, in the case of joining
several small datasets with a large one this approach is more
efficient. In cases that join expressions that are highly selective
filtering over a large dataset, this approach will not use the
most efficient join because it takes into account only the size.
Also this approach does not consider data partitioning.

Trying to overcome the limitations of the previous ap-
proaches, [21] offers a hybrid strategy that combines broadcast
joins with partitioned joins. More specifically, it takes into
account an existing data partitioning scheme to avoid useless
data transfer and use data compression from DataFrames to
reduce the data access cost of self-join operations. The most
efficient query plan for the combination of the two join
algorithms is generated by a dynamic greedy optimization
algorithm based on data statistics.

B. Graph Processing

1) GraphX: S2X [23] is a work that combines the graph-
parallel abstraction of GraphX with the data-parallel computa-
tion of Spark to evaluate SPARQL queries in a distributed

manner. GraphX is used to implement the graph pattern
matching part of SPARQL and the data-parallel computaion
of Spark to implement other SPARQL operators.

RDF data is being modeled as a property graph (for more
in property graphs, see [26]). In a property graph each vertex
has an I D and properties and edges have a property and two
IDs of the corresponding vertices. Edge property stores the
predicate U RI. Vertex properties are used to store subject and
object U RIs, and a data structure for candidate query variables
that could match this vertex. The basic idea of the proposed
algorithm is that every vertex in the graph stores the variables
of a query where it is a possible candidate for. The first step is
to match all triple patterns of a BGP independently, and then
exchange messages between adjacent vertices to validate the
match candidates until they do not change anymore. The set of
matches for each vertex is called local match and the matched
sets of adjacent vertices are called remote matches.

More specifically, all possibly relevant vertices are deter-
mined by matching each edge with all triple patterns from
the BGP. Match candidates are validated according to some
validation rules, using local and remote match sets and invalid
ones get discarded. Locally changed match sets are sent to their
neighbors in the graph for validation in the next step. The same
process is repeated until no changes occur. The final output is
composed of the individual subgraphs of the previous steps.
S2X can evaluate also SPARQL opertaros, like OPTIONAL,
FILTER, ORDER BY, PROJECTION, LIMIT and OFFSET.
These operators are implemented with the use of Spark API.

[16] introduces an approach that is based on subgraph
matching on GraphX. Here, each vertex is assigned three
properties: 1) a label that keeps the value of its corresponding
subject or object, 2) a Match_Track table (M_T) that contains
variables and constants, and 3) a flag that shows if a vertex
is located at the end of a path (sequence of matched BGP
triples). Edges have a property called edge label that keeps
the predicate value.

The proposed algorithm iterates through all BGP triples
of a SPARQL query. Graph matching is being implemented
with the use of AggregateMessages operator of GraphX that
provides two functions, sendMsg and a mergeMsg. SendMsg
can be considered as a map function that matches the current
BGP triple with all graph triples. If a match is found, the
sendMsg prepares and sends different messages to the source
and destination vertex of the triple. Then, using the mergeMsg
as a reduce function, the received messages are aggregated at
their destination vertex. At the last step in each iteration, the
joinVertices function is used to evaluate the old property values
and the new values in each vertex. After evaluating all BGP
triples, we join the final M_T tables of the end vertices, which
contain partial results, to generate the final query answer.

Spar(k)ql [12] also targets at evaluating SPARQL queries
over GraphX. RDF data is modeled as a property graph. The
node model adopted is pretty simple, object properties are the
edges of the graph and data properties are stored in the nodes
of the graph as node properties. An exception to this is the
rdf :type property. Although, it is an object property, due to
its popularity in SPARQL queries, it is stored in the node
properties along with the data properties.

In order to implement the query answering via vertex

programs, there is a need to store sub-results in tables in
each node. The main idea is that each node get messages
from its neighboors and calculates the sub-results based on
the incoming messages and the stored information. For this
reason, it performs a Map phase with the query variables
as keys, and data tables as values, that contain possible sub-
results. Furthermore, Spar(k)ql provides a message model that
allows all edges to be active until they get processed, so that
all type of queries will be able to be executed. A query plan
is generated by exploiting a breadth-first search algorithm that
uses object properties to create a tree. During the execution,
the query plan is traversed bottom-up and, for each node, it
iterates through the edges to find the corresponding matches.

2) GraphFrames: [4] is the first work that implements
an efficient processing technique for RDF data over the
GraphFrames API [9]. It is a new graph processing platform
created over Apache Spark, using the concept of DataFrames.
In this approach, the input dataset splits into two separate
lists, a nodelist and an edgelist, which are used to generate
the unweighted labeled graph. SPARQL queries are translated
into query graphs which are then being optimized to improve
performance. To determine an optimal order of the query,
the algorithm takes into account the predicate frequency, and
sorts sub-queries in non-descending order. In the next step,
another optimization takes place called local search space
pruning. In this procedure, for each query all triples in the
dataset that do not match BGPs predicates get discarded. This
technique results in a new graph created from this temporary
dataset, which has a much smaller search space. Finally, query
processing takes the optimized query and the locally pruned
RDF data-graph, and performs subgraph matching to get the
final query answer.

3) Hybrid Approaches: SparkRDF [5] is an elastic graph
processing engine that is scalable, efficient, reduces I/O and
intermediate communication and is built on top of Spark,
without the use of a graph processing API. The SparkRDF
approach presents a novel storage scheme for managing big
RDF graphs in HDFS, an iterative graph model for processing
SPARQL queries distributively and in-memory. Several opti-
mization techniques were proposed, including an optimal query
plan and a dynamic partitioning method.

Multi-layer Elastic Sub-graph (MESG) is the storage model
created for this work. MESG consists of three level of indexes.
In the first level, there is a class index and a relation index.
The relation index is for triples that do not have an rdf:type
predicate and the class index is for those triples that have.
Relation files are stored by predicate name and class files are
stored by the name of object. In the second level, MESG
uses more information for indexing than only the predicate.
It divides predicate files according to the type of subjects and
objects. So, there are CR (class-relation) and RC (relation-
class) indexes. In the third level, it goes one step further and
creates an index that combines every part of the triple. CRC
(class-relation-class) index uses subjects class, predicate and
objects class in order to exploit all the information that may
be available for a triple.

The Memory Data Model, RDSG (Resilient Discreted
Semantic SubGraph) is a distributed memory abstraction that
enables in-memory query computations on large clusters. This
model provides basic operations, like RDSG generation, filter,

TABLE 1. A TAXONOMY OF THE RDF QUERY PROCESSING
APPROACHES WITH RESPECT TO DATA MODEL AND APACHE SPARK
ABSTRACTION.

Data Model
The Triple Model The Graph Model
RDD [71, [131.[21] [5]
Apache Spark DataFrames [21]
Abstraction Spark SQL [24]
GraphX [23], [16], [12]
GraphFrames 4]

prepartition and join. These operations are based on the Spark
API and are used to implement system’s query processing.

Regarding query processing, every query is decomposed
into an ordered sequence of variables and every query variable
is made up of several triple patterns. For example, for the
variable X, the authors compute the matches for each triple
pattern for this variable, and the matched triples are used to
find the matches on the next triple pattern that X exists, by
joining them on the shared variable X. After this procedure
finishes, the process continues with the next variable.

As query optimizations, variable’s class is passed through
a message to the corresponding triple patterns containing the
variable. By following this method, the authors avoid read-
ing many unnecessary data, and rdf:type triple patterns can
be removed. On-demand, dynamic pre-partitioning is applied
to reduce the shuffling cost in the distributed join process.
Specifically, this process pre-partitions the MESG only when
it is on-demand loaded into the distributed memory. This
pre-partitioning scheme guarantees that the records sharing
the same variable value will be read into the same partition.
Finally, an optimal query plan is generated that first determines
the joining order of variables and then the order of triple
patterns in a job.

V. DISCUSSION & CONCLUSIONS

In short, we can categorize the RDF query processing ap-
proaches on Apache Spark based on the following dimensions:
how the data is modeled in order to process them (data model),
and which is the Spark API that is used for the implementation
of the approach (Spark Abstraction). RDF data is stored and
processed in their natural form, as triples, or are represented
as a directed labeled graph. RDDs, DataFrames, Spark SQL,
GraphX and GraphFrames are the APIs provided by Spark.
RDDs give great flexibility regarding storage and partitioning,
while DataFrames offer an immutable distributed collection
of data organized into named columns. When data is stored
in DataFrames, Spark SQL can be used for optimized query
processing. GraphX supports graph-parallel and data-parallel
data processing, while, GraphFrames, in addition, support
queries over graphs. Table I summarizes the various options
in each dimension. Overall, the graph representation model is
the one that is used mainly by systems that are built on top of
the graph processing API of Spark.

Generally speaking, we observe that there is a trend around
using Apache Spark when targeting at efficient RDF query
processing approaches. Table II provides some additional char-
acteristics of those approaches. The general goal of all those
approaches is to improve query performance by exploiting data
parallelization. However, to this purpose they neglect that data
partitioning is a key element of efficient query processing

TABLE II. ADDITIONAL CHARACTERISTICS OF THE RDF QUERY

PROCESSING APPROACHES.

[System [Query Processing | Optimization| Partitioning [SPARQL]|
[7] RDD API No Hash / Query Aware BGP+
[13] RDD API Yes Vertical BGP+
[24] Spark SQL Yes Extended Vertical BGP+
[21] Hybrid Yes Hash-sbj BGP
[23] Graph Iterations No Default BGP+
[16] Graph Iterations Yes Default BGP
[12] Graph Iterations Yes Default BGP
[4] Subgraph Matching Yes Default BGP
[5] Custom Yes Hash-sbj BGP

that has a huge impact in query answering. As such they
end up using simple partitioning techniques like vertical or
hash partitioning. Although, some recent works have already
started to recognize the importance of data partitioning (e.g.
[24] that presents a sophisticated partitioning technique based
on the classical vertical partitioning method or [27]), we argue
that data partitioning is an essential part of efficient query
processing and that further research is required in the area.

To this direction, exploiting knowledge about the queries
previously submitted in a system, we can end up in a more
efficient partitioning scheme. The goal of such a scheme
would be to handle efficiently the query types that are mostly
submitted to the system improving overall the efficiency of
the system. [7] proposes a partitioning procedure towards
this direction. Specifically, it exploits particular knowledge
regarding the input queries in order to ensure data locality in
frequent queries. Graph partitioning does not focus on load
balancing rather than on minimizing the edge-cut between
partitions. GraphX has not been exploited yet towards this
direction and could be an option to build such algorithms, as
it offers already an extensive amount of graph algorithms.

In a different direction, dynamicity is an important aspect
of the RDF data, which are constantly evolving, typically with-
out any warning, centralized monitoring, or reliable notification
mechanism [18], [19], [17]. This raises the need to keep track
of the different versions of the data, so as to be able to have
access not only to the latest version, but also to previous ones
[25], [22], [20]. As such an essential aspect, the next generation
parallel RDF query answering systems should be able to handle
evolving data in an uninterrupted manner.

ACKNOWLEDGMENT

This work was partially supported by the projects iManage-
Cancer (H2020-643529), Bounce (H2020-777167) and through
IKY scholarships programme and co-financed by the European
Union and Greek national funds through the action entitled
Reinforcement of Postdoctoral Researchers, in the framework
of the Operational Programme Human Resources Development
Program, Education and Lifelong Learning of the National
Strategic Reference Framework (NSRF) 20142020.

REFERENCES

[1] RDF Schema 1.1. Available online: http://www.w3.org/TR/rdf-schema/,
(last accessed October 2017)

[2] SPARQL Query Language for RDFE
https://www.w3.org/TR/rdf-sparql-query/

[3] Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D., Bradley, J.K.,
Meng, X., Kaftan, T., Franklin, M.J., Ghodsi, A., Zaharia, M.: Spark
SQL.: relational data processing in spark. In: SIGMOD (2015)

Available online:

(5]

(6]

(71

(8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Bahrami, R.A., Gulati, J., Abulaish, M.: Efficient processing of
SPARQL queries over graphframes. In: WI, pp. 678-685. ACM (2017)
Chen, X., Chen, H., Zhang, N., Zhang, S.: Sparkrdf: Elastic discreted
RDF graph processing engine with distributed memory. In: WI-IAT (1),
pp. 292-300. IEEE Computer Society (2015)

Christophides, V., Efthymiou, V., Stefanidis, K.: Entity Resolution in
the Web of Data. Synthesis Lectures on the Semantic Web: Theory and
Technology. Morgan & Claypool Publishers (2015)

Curé, O., Naacke, H., Baazizi, M.A., Amann, B.: HAQWA: a hash-
based and query workload aware distributed RDF store. In: Interna-
tional Semantic Web Conference (Posters & Demos), CEUR Workshop
Proceedings, vol. 1486. CEUR-WS.org (2015)

Curé, O., Naacke, H., Baazizi, M.A., Amann, B.: On the evaluation
of RDF distribution algorithms implemented over apache spark. In:
SSWS@ISWC (2015)

Dave, A., Jindal, A., Li, L.E., Xin, R., Gonzalez, J., Zaharia, M.:
Graphframes: an integrated API for mixing graph and relational queries.
In: International Workshop on Graph Data Management Experiences
and Systems, p. 2 (2016)

Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large
clusters. Commun. ACM 51(1), 107-113 (2008)

Faye, Cure, O., Blin: A survey of RDF storage approaches. ARIMA
Journal 15, 11-35 (2012)

Gombos, G., Ricz, G., Kiss, A.: Spar(k)ql: SPARQL evaluation method
on spark graphx. In: FiCloud Workshops (2016)

Graux, D., Jachiet, L., Geneves, P., Layaida, N.: SPARQLGX: efficient
distributed evaluation of SPARQL with apache spark. In: ISWC (2016)
Huang, J., Abadi, D.J., Ren, K.: Scalable SPARQL querying of large
RDF graphs. PVLDB 4(11), 1123-1134 (2011)

Kaoudi, Z., Manolescu, I.: RDF in the clouds: a survey. VLDB J. 24(1),
67-91 (2015)

Kassaie, B.: SPARQL over graphx. CoRR abs/1701.03091 (2017)

Kondylakis, H., Despoina, M., et al., G.G.: Evordf: A framework for
exploring ontology evolution. In: ESWC, pp. 104-108 (2017)

Kondylakis, H., Plexousakis, D.: Ontology evolution in data integration:
Query rewriting to the rescue. In: ER, pp. 393-401 (2011)

Kondylakis, H., Plexousakis, D.: Ontology evolution: Assisting query
migration. In: ER, pp. 331-344 (2012)

Kondylakis, H., Plexousakis, D.: Ontology evolution without tears. J.
Web Sem. 19, 42-58 (2013)

Naacke, H., Amann, B., Curé, O.: SPARQL graph pattern processing
with apache spark. In: GRADES @ SIGMOD/PODS, pp. 1:1-1:7. ACM
(2017)

Papakonstantinou, V., Flouris, G., Fundulaki, I., Stefanidis, K., Rous-
sakis, Y.: Spbv: Benchmarking linked data archiving systems. In:
BLINK2017 (2017)

Schitzle, A., Przyjaciel-Zablocki, M., Berberich, T., Lausen, G.: S2X:
graph-parallel querying of RDF with graphx. In: Big-O(Q)/DMAH
(2015)

Schitzle, A., Przyjaciel-Zablocki, M., Skilevic, S., Lausen, G.: S2RDF:
RDF querying with SPARQL on spark. PVLDB 9(10), 804-815 (2016)
Stefanidis, K., Chrysakis, I., Flouris, G.: On designing archiving policies
for evolving RDF datasets on the web. In: ER (2014)

Sun, W., Fokoue, A., Srinivas, K., Kementsietsidis, A., Hu, G., Xie,
G.T.: Sqlgraph: An efficient relational-based property graph store. In:
SIGMOD, pp. 1887-1901 (2015)

Troullinou, G., Kondylakis, H., Plexousakis, D.: Semantic partitioning
for rdf datasets. Information Search, Integration, and Personlization.
Communications in Computer and Information Science 760, 11-35
(2017)

Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: Graphx: a resilient
distributed graph system on spark. In: GRADES (2013)

Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.:
Spark: Cluster computing with working sets. In: HotCloud (2010)

