gRecs: A Group Recommendation System based
on User Clustering

Irene Ntoutsi!, Kostas Stefanidis?*, Kjetil Norvag?, and Hans-Peter Kriegel®

! Institute for Informatics, Ludwig Maximilian University, Munich
{ntoutsi, kriegel}@dbs.ifi.lmu.de
2 Department of Computer and Information Science, Norwegian University of Science
and Technology, Trondheim
{kstef ,Kjetil.Norvag}@idi.ntnu.no

Abstract. In this demonstration paper, we present gRecs, a system for
group recommendations that follows a collaborative strategy. We en-
hance recommendations with the notion of support to model the confi-
dence of the recommendations. Moreover, we propose partitioning users
into clusters of similar ones. This way, recommendations for users are
produced with respect to the preferences of their cluster members with-
out extensively searching for similar users in the whole user base. Finally,
we leverage the power of a top-k algorithm for locating the top-k group
recommendations.

1 Introduction

Recommendation systems provide suggestions to users about movies, videos,
restaurants, hotels and other items. The large majority of recommendation sys-
tems are designed to make personal recommendations, i.e., recommendations for
individual users. However, there are cases in which the items to be suggested are
not intended for personal usage but for a group of users. For example, a group
of friends is planning to watch a movie or to visit a restaurant. For this reason
some recent works have addressed the problem of identifying recommendations
for a group of users, trying to satisfy the preferences of all the group members.

Our work falls into the collaborative filtering approach, i.e., we offer user
recommendations for items that similar users liked in the past. We introduce
the notion of support in recommendations to model how confident the recom-
mendation of an item for a user is. We also apply user clustering for organizing
users into clusters of users with similar preferences. We propose the use of these
clusters to efficiently locate similar users to a given one; this way, searching for
similar users is restricted within his/her corresponding cluster instead of the
whole database. Moreover, we exploit a top-k algorithm to efficiently identify
the k£ most prominent items for the group.

* This work was carried out during the tenure of an ERCIM “Alain Bensoussan”
Fellowship Programme. This Programme is supported by the Marie Curie Co-funding
of Regional, National and International Programmes (COFUND) of the European
Commission.

The rest of this demostration paper is organized as follows: The gRecs frame-
work is introduced in Section 2. The system architecture is presented in Section 3.
Section 4 describes the gRecs demonstration scenario for group recommendations
in a movies application.

2 The gRecs Group Recommendations Framework

Assume a set of items Z and a set of users U interacting with a recommendation
application. Each user u € U may express a preference for an item ¢ € Z, which
is denoted by preference(u,i) and lies in the range [0.0 — 1.0]. For the items
unrated by the users, we estimate a relevance score, denoted as relevance(u,),
where u € U, i € Z. To do this, a recommendation strategy is invoked.

We distinguish between personal recommendations referring to a single user
and group recommendations referring to a set of users.

Personal recommendations. There are different ways to estimate the rele-
vance of an item for a user. Our work follows the collaborative filtering approach,
such as [5] and [3]. To produce relevance scores for unrated items for a user, we
employ preferences of users that exhibit similar behavior to the given user. Sim-
ilar users are located via a similarity function simU (u,u’), that evaluates the
proximity between u and u'. We use F, to denote the set of the most similar
users to u. We refer to such users as the friends of u. Several methods can be
employed for selecting F,. A straightforward method is to locate the users u’
with simU (u,u’) greater than a threshold §. This is the method used here.

Given a user u and his friends F,,, if u has not expressed any preference for
an item 4, the relevance of 7 for u is commonly estimated as follows:

. D o ence(u! o SimU (u,u’) xpreference(u’,i)
relevance(u, i) = =* Edaf g el : SimUu) .

uw € fyunIpreference(u’,i)

Typically, users rate only a few items in a recommendation application be-
cause of the huge amount of the available items. This is our motivation for
introducing the notion of support for each suggested item ¢, for user u. Support

defines the percentage of friends of u that have expressed preferences for ¢, that
_ |S,SCF,,s.t.Vu'€S,Ipreference(u’,i)|
- [Ful)
To estimate the worthiness of an item recommendation for a user, we pro-

pose to combine the relevance and support scores in terms of a value function.
Formally, the personal value of an item i € T for a user u € U, such that,
B preference(u,i), is defined as: value(u,i) = w; x relevance(u,i) + wq X
support(u, i), wy + wg = 1.

is, support(u,i)

Group recommendations. In addition to personal recommendations, there
are contexts in which people operate in groups, and so, a model for group rec-
ommendations should be defined. Some approaches have been recently proposed
towards this direction (e.g., [2]).

In general, collaborative filtering combines the preferences of the single users
to predict the preferences for the group as a whole. To this end, in our approach,

we first compute the personal value scores for the unrated items for each user
of the group. Based on these predictions, we then produce the aggregated value
scores for the group. Formally, given a group of users G, G C U, the group value
of an item i € T for G, such that, Yu € G, B preference(u,i), is: value(G,i) =
Aggrueg(value(u,i)).

We employ three different designs regarding the aggregation method Aggr,
each one carrying different semantics: (i) the least misery design, capturing cases
where strong user preferences act as a veto, (ii) the fair design, capturing more
democratic cases where the majority of the group members is satisfied, and (iii)
the most optimistic design, capturing cases where the most satisfied member
of the group acts as the most influential member. In the least misery (resp.,
most optimistic) design the predicted value score for the group is equal to the
minimum (resp., maximum) value score of the scores of the members of the
group, while the fair design returns the average score.

Given a group of users and a restriction k& on the number of the recommended
items, our goal is to provide the group with k suggestions for items that are highly
valued, without computing the group value scores of all database items.

3 gRecs System Overview

In this section, we describe the main components of the architecture of our
system. A high level representation is depicted in Figure 1. Given a group of
users, we first locate the friends of each user in the group. Friends preferences
are employed for estimating personal recommendations, while in turn, personal
recommendations are aggregated into recommendations for the whole group.

Friends generator. This component takes as input a group of users G and
returns the friends F,, of each user u in the group. The naive approach for finding
the friends of all users in G requires the online computation of all similarity
values between each user in G and each user in &. We compute the similarity
between two users with regard to their Euclidean distance. This however, is too
expensive for a real-time recommendation application where the response time is
an important aspect for the end users. To speed up the recommendation process,
we perform preprocessing steps offline. More specifically, we organize users into
clusters of users with similar preferences. For partitioning users into clusters, we
use a hierarchical agglomerative clustering algorithm that follows a bottom-up
strategy. Initially, the algorithm places each user in a cluster of his own. Then, at
each step, it merges the two clusters with the greatest similarity. The similarity
between two clusters is defined as the minimum similarity between any two users
that belong to these clusters. The algorithm terminates when the clusters with
the greatest similarity, have similarity smaller than §. In this clustering approach,
we consider as friends of each user u the members of the cluster that u belongs
to. This set of users is a subset of F,,.

Personal recommendations generator. In this step, we estimate the per-
sonal value scores of each item for each user in G. To perform this operation, we

{‘. g . ‘.}
88-8

Friends
Generator

Clusters of Users

Database

Personal Recommendation e
Generator

Group Recommendation
Generator

gRecs Engine

Fig. 1. gRecs system architecture.

employ the outputs of the previous step, i.e., the friends of the users in G. Given
a user 4 € G and his friends F,,, the procedure for estimating the value(u,i) of
each item ¢ in Z requires the computation of relevance(u,i) and support(u,1).
Pairs of the form (4, value(u, 7)) are maintained in a set V,,. This component is
also responsible for ranking, in descending order, all pairs in V,, on the basis of
their personal value score.

Group recommendations generator. This component generates the k£ high-
est group-valued item recommendations for the group of users G. To do this, we
combine the personal value scores computed from the previous step by using ei-
ther the least misery, the fair or the most optimistic design. Instead of following
the common way of computing the group value scores of all items and ranking
the items based on these scores, we employ the TA algorithm [4] for efficient
top-k computation. Note that TA is correct when the group value scores of the
items are obtained by combining their individual scores using a monotone func-
tion. In our approach, aggregations are performed in a monotonic fashion, hence
the applicability of the algorithm is straightforward.

4 Demonstration

The gRecs system for group recommendations has been implemented in JAVA
on top of MySQL. We demonstrate our method using a movie ratings database
[1]. In particular, we form groups of users with different semantics and choose
an aggregation design from the available ones. After estimating the top-k group
value scores, users are presented with the recommended movies. An explanation
is also provided along with each movie, i.e., why this specific recommendation
appears in the top-k list. For the least misery (resp., most optimistic) design,
we report with each movie its group value score and the member of the group

with the minimum (resp., maximum) personal value score for the movie, i.e., the
member that is responsible for this selection. Similarly, for the fair design, we
report with each movie the members of the group with personal value scores for
the movie close to the group value score of the movie, i.e., the members that are
highly satisfied, and hence, direct towards this selection.

References

1. Movielens data sets. Available online at: http://www.grouplens.org/node/12; vis-
ited on Oct. 2011.

2. S. Amer-Yahia, S. B. Roy, A. Chawla, G. Das, and C. Yu. Group recommendation:
Semantics and efficiency. PVLDB, 2(1):754-765, 20009.

3. J. S. Breese, D. Heckerman, and C. M. Kadie. Empirical analysis of predictive
algorithms for collaborative filtering. In UAI, pages 43-52, 1998.

4. R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.
In PODS, 2001.

5. J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and
J. Riedl. Grouplens: Applying collaborative filtering to usenet news. Commun.
ACM, 40(3):77-87, 1997.

