“Strength Lies in Differences” — Diversifying Friends for
Recommendations through Subspace Clustering

Eirini Ntoutsi
LMU, Munich
ntoutsi@dbs.ifi.Imu.de

Kostas Stefanidis
ICS-FORTH, Heraklion

kstef@ics.forth.gr

Katharina Rausch
LMU, Munich

rausch.katharina@gmail.com

Hans-Peter Kriegel
LMU, Munich

kriegel@dbs.ifi.Imu.de

ABSTRACT

Nowadays, WWW brings overwhelming variety of choices
to consumers. Recommendation systems facilitate the se-
lection by issuing recommendations to them. Recommen-
dations for users, or groups, are determined by considering
users similar to the users in question. Scanning the whole
database for locating similar users, though, is expensive.
Existing approaches build cluster models by employing full-
dimensional clustering to find sets of similar users. As the
datasets we deal with are high-dimensional and incomplete,
full-dimensional clustering is not the best option. To this
end, we explore the fault-tolerant subspace clustering ap-
proach. We extend the concept of fault tolerance to density-
based subspace clustering, and to speed up our algorithms,
we introduce the significance threshold for considering only
promising dimensions for subspace extension. Moreover, as
we potentially receive a multitude of users from subspace
clustering, we propose a weighted ranking approach to re-
fine the set of like-minded users. Our experiments on real
movie datasets show that the diversification of the similar
users that the subspace clustering approaches offer results
in better recommendations compared to traditional collabo-
rative filtering and full-dimensional clustering approaches.

1. INTRODUCTION

With the growing complexity of WWW, users often find
themselves overwhelmed by the mass of choices available.
Shopping for DVDs, books or clothes online becomes more
and more difficult, as the variety of offers increases rapidly
and gets unmanageable. To facilitate users in their selec-
tion process, recommendation systems provide suggestions
on items, which might be interesting for the respective user.
In particular, recommendation systems aim at giving recom-
mendations to users or groups of users by estimating their
item preferences and recommending those items featuring
the maximal predicted preference. The prerequisite for de-
termining such recommendations is historical information on
the users’ interests, e.g., the users’ purchase history.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM’14, November 3-7, 2014, Shanghai, China.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2598-1/14/11 ...$15.00.
http://dx.doi.org/10.1145/2661829.2662026.

Typically, user recommendations are established by con-
sidering users sharing similar preferences as the query user.
Scanning the whole database to find such like-minded users,
though, is a costly process. More efficient approaches build
user models for computing recommendations. For example,
[14] applies full-dimensional clustering to organize users into
clusters and employs these clusters, instead of a linear scan
of the database, for predictions. Full-dimensional clustering
is not the best option for the recommendation domain due
to the high dimensionality of the data. Typically, there exist
hundreds to thousands or millions of items in a recommen-
dation application. Feature reduction techniques, like PCA,
tackle the high dimensionality problem by reducing the ini-
tial high dimensional feature space into a smaller one, and
working upon the reduced feature space. Such a global re-
duction is not appropriate for cases where different dimen-
sions are relevant for different clusters; for example, there
might be a group of comedy fans, part of which might be-
long to another group of drama fans, but there might be no
group of both comedy and drama fans. Due to high dimen-
sionality, such cases are actually more common than finding,
e.g., users similar with respect to the whole feature space.

To deal with the high dimensionality aspect of recommen-
dations, we employ subspace clustering [11], that extracts
both clusters of users and dimensions, i.e., items, based on
which users are grouped together. As users possibly belong
to more than one subspace cluster (each cluster defined upon
different items), this approach broadens our options for se-
lecting like-minded users for a query user. Employing in
the recommendation process users that differ qualitatively
in terms of the items upon which their selection was made,
makes the set of like-minded users more diverse. Traditional
subspace clustering methods [11] cannot be applied in our
settings as our data are characterized by sparsity and incom-
pleteness (users rate only few items, resulting in a lot of miss-
ing values). To deal with these issues, recently, the so called
fault tolerant subspace clustering has been proposed [7]. We
extend the original grid-based fault tolerant subspace clus-
tering algorithm and introduce two density-based fault tol-
erant approaches that, as we will show, perform better in
terms of both quality and efficiency. To speed up the al-
gorithms, we introduce the significance threshold, a heuris-
tic for finding the most significant dimensions for extending
subspace clusters instead of considering all dimensions. Sub-
space clustering might result in overlapping clusters; we pro-
pose a weighted ranking approach to combine these results
and select the most prominent users for recommendations.

In brief, our contributions are as follows:

e We explore subspace clustering for recommendations
and introduce two density-based fault tolerant subspace
clustering approaches.

e We propose the significance threshold as a criterion
to prune non-promising for subspace extension dimen-
sions.

e We refine via weighted ranking, the selection of like-
minded users that result from the combination of sub-
space clusters that a user belongs to.

e We experimentally show that employing fault tolerant
subspace clustering with the weighted ranking of like-
minded users results in predictions of higher quality,
while the proposed significance threshold reduces the
runtime of our algorithms.

The rest of the paper is organized as follows. Section 2
presents the basics of recommendations and the limitations
of existing approaches. Section 3 overviews fault tolerant
subspace clustering, while Section 4 extends fault tolerant
subspace clustering from grid-based to density-based, and
introduces the significance threshold for reducing the search
space. Section 5 describes the weighted ranking approach for
exploiting the subspace clustering results for recommenda-
tions. Section 6 presents our experimental results. Related
work is in Section 7, and conclusions are given in Section 8.

2. BACKGROUND AND LIMITATIONS

2.1 Background on Recommendations

Assume a recommendation system, where I is the set of
items to be rated and U is the set of users in the system. A
user u € U might rate an item 4 € I with a score rating(u, 1)
in [0.0,1.0]; let R be the set of all ratings recorded in the
system. Typically, the cardinality of the item set I is high
and users rate only a few items. The subset of users that
rated an item ¢ € I is denoted by U(i), whereas the subset
of items rated by a user u € U is denoted by I(u).

For the items unrated by the users, recommendation sys-
tems estimate a relevance score, denoted as relevance(u, 1),
uw € U, i € I. There are different ways to estimate the
relevance score of an item for a user. In the content-based
approach (e.g., [13]), the estimation of the rating of an item
is based on the ratings that the user has assigned to similar
items, whereas in collaborative filtering systems (e.g., [9]),
this rating is predicted using previous ratings of the item
by similar users. In this work, we follow the collaborative
filtering approach. Similar users are located via a similarity
function simU (u,u’) that evaluates the proximity between
u,u’ € U by considering their shared dimensions. We use F,,
to denote the set of the most similar users to u, hereafter,
referred to as the friends of u.

DEFINITION 1. Let U be a set of users. The friends Fu,
of a user u € U consists of all those users u' € U which are

similar to u w.r.t. a similarity function simU(u,u’) and a
threshold §, i.e., Fu = {u’ € U : simU (u,u’) > 6}.

Given a user u and his friends F,, if u has expressed no
preference for an item 4, the relevance of ¢ for u is estimated
as:) ,) ,
> wer, SimU(u, u')rating(u’, i)

y /
> wer, stmU(u,u’)

After estimating the relevance scores of all unrated user
items, the top-k rated items are recommended to the user.

Most previous works focus on recommending items to in-
dividual users. Recently, group recommendations that make

relevancer, (u,1) =

recommendations to groups of users instead of single users
(e.g., [3, 14]), have received considerable attention. Our goal
is to test our methods for both user and group recommen-
dations. Here, for group recommendations, we follow the
approach of [14]: first, estimate the relevance scores of the
unrated items for each user in the group, then, aggregate
these predictions to compute the suggestions for the group.

DEFINITION 2. Let U be a set of users and T be a set of
items. Given a group of users G, G C U, the group relevance
of an item i € T for G, such that, Yu € G, Prating(u, i), is:

relevance(G, 1) = Aggrueg(relevancer, (u,1))

As in [14], we employ three different designs regarding
the aggregation method Aggr: (i) the least misery design,
capturing cases where strong user preferences act as a veto
(e.g., do not recommend steakhouses to a group when a
member is vegetarian), (ii) the fair design, capturing more
democratic cases where the majority of the group members
is satisfied, and (iii) the most optimistic design, capturing
cases where the more satisfied member of the group acts as
the most influential one (e.g., recommend a movie to a group
when a member is highly interested in it and the rest have
reasonable satisfaction). In the least misery (resp., most
optimistic) design, the predicted relevance score of an item
for the group is equal to the minimum (resp., maximum)
relevance score of the item scores of the members of the
group, while the fair design, that assumes equal importance
among all group members, returns the average score.

2.2 Limitations of Existing Approaches

One of the key issues in collaborative filtering approaches
is the identification of the friends set F,, of a user u € U.
Below we discuss two approaches towards this direction: (i)
the naive approach that scans the whole database of users
to select the most similar ones and the (ii) full dimensional
clustering approach that partitions users into clusters and
employs cluster members for recommendations.

2.2.1 Naive Approach

A straightforward approach for finding the set F, for a
user u € U, is to compute simU (u,u’), Vu' € U, and select
those with simU (u,u’) > §, where § is the similarity thresh-
old. Such an approach though would be inefficient in large
systems, since it requires the online computation of the set
of friends for each query user. The problem is aggravated in
case of group recommendations, where the sequential scan
of the database should be performed for each user in the
query group. The execution time increases linearly with the
number of group members; the larger the query group, the
slower the approach.

2.2.2 Full-dimensional Clustering Approach

One way to overcome the limitations of the naive ap-
proach, is to build some users model and directly employ
this model for recommendations. Full-dimensional cluster-
ing has been used towards this direction to organize users
into clusters of similar ones. The pre-computed clusters are
then employed to speed up the recommendation process;
the friends of a given user u correspond approximately to
the users that belong to the same cluster as u.

In [14], a bottom-up hierarchical clustering algorithm has
been employed to build the users model. The similarity be-
tween two clusters is defined in terms of the complete link-
age, i.e., as the minimum similarity between any two users of
these clusters. The algorithm terminates when the similar-
ity of the closest pair of clusters violates the user similarity

threshold §. Thus, the resulted clusters fulfill the similar-
ity criterion in Definition 1, i.e., all users within a cluster
have a similarity of at least §. However, the set of friends
might be incomplete, i.e., for a user u belonging to a cluster
C' there might be users with whom u has a similarity of at
least § but they do not belong to C. The reason is in the
clustering process: at each step the two most similar clus-
ters are merged, resulting in a larger cluster. The order of
merging plays an important role on the final clusters setup.
Although all members of a cluster will have a similarity of
at least §, there might be users with similarity greater or
equal to § being assigned to different clusters.

The recommendation time in this case is reduced, since
the clusters are pre-computed and the set of friends is eas-
ily deliverable; the decrease is rapid for group recommen-
dations, especially as the group size increases. Concerning
quality, the naive approach outperforms the full clustering
approach, as it can locate the extensive set of friends for
each user whereas in full clustering, the set of friends for a
user is its corresponding cluster members. The smaller the
cluster is, the more restricted the set of friends for a user
within the cluster is and therefore, the lower the quality of
recommendations for this user.

Both naive and full dimensional clustering approaches “suf-
fer” from the so called curse of dimensionality since both
operate in the original high dimensional item space. In high
dimensional spaces, the discriminative power of the distance
functions lowers and moreover, it is more difficult to find
similar users in the whole (high dimensional) feature space,
whereas it is easier to locate such users in a subspace of di-
mensions. To deal with these issues, subspace clustering [11]
tries to detect both the objects (users in our case) that be-
long to a cluster and the dimensions (items in our case) that
define this cluster. Therefore, a user might belong to more
than one subspace clusters, each defined upon a different
subset of items. Employing subspace clustering for recom-
mendations serves a three-fold purpose: (i) improves the
clustering quality by providing a better partitioning of the
users based on different subsets of items, (ii) expands the set
of friends for a user by allowing users to belong to several
clusters, and (iii) diversifies the set of friends as different
friends might be chosen based on different items.

3. SUBSPACE CLUSTERING AND FAULT-
TOLERANT SUBSPACE CLUSTERING

Subspace clustering approaches aim at detecting clusters
embedded in subspaces of a high-dimensional dataset [11].
Clusters may be comprised of different combinations of di-
mensions, while the number of relevant dimensions may vary
strongly. To restrict the search space, only axis-parallel sub-
spaces are searched through for clusters. A subspace S de-
scribes a subset of items, S C I; |S| is the subspace cardi-
nality. A subspace cluster C' is then described in terms of
both its members U C U and subspace of dimensions S C [
upon which it is defined as C' = (U, S).

The vast majority of subspace clustering algorithms works
on complete datasets. However, our data is characterized
by many missing values, since users rate only a few items.
Recently, fault tolerant subspace clustering [7] has been pro-
posed to handle sparse datasets. The main idea of this ap-
proach is that clusters including missing values can still be
valid, as long as the amount of missing values does not have
a negative influence on the cluster’s grade of distinction.

To restrict the number of missing values in a subspace
cluster, thresholds w.r.t. the number of missing items, the
number of missing users and their combination, are used.
These thresholds are adapted from the original work [7]

to the recommendations domain. Users featuring a miss-
ing value for item ¢ € I are included in U:(i) = {u €
Ulrating(u,i) =7}, whereas I(u) = {i € I|rating(u,i) =7}
holds those items having a missing value for user u € U.
User Tolerance: Each user in a subspace cluster must not
contain more than a specific number of missing item ratings.
That is, Vu € U : [I N I2(u)| < € - |I|, where €, € [0,1] is
the user tolerance threshold.

Item Tolerance: Each item in a subspace cluster should
not contain too many missing values. That is, Vi € [:
|[UNU>(i)| <€ - |U|, where ¢; € [0,1] is the item tolerance
threshold.

Pattern Tolerance: The total number of missing values in
a subspace cluster must not exceed the pattern tolerance
threshold ¢, € [0,1]. Thatis, >, . [S NIz (u)] < e - |U]-|S].

Thus, a cluster C = (U, S) is a valid fault tolerant subspace
cluster if the number of missing items per user does not
violate €,, the number of missing users per item does not
violates €; and the total number of missing values is bounded
w.r.t. €g.

Bottom-up subspace clustering approaches make use of
the monotonicity property: if C = (U, S) is a subspace clus-
ter, in each subset S’, S’ C S, there exists a superset of
users, so that, this set is a subspace cluster as well. The
fault tolerance model defined so far, does not follow the
monotonicity property. [7] suggests enclosing cluster approz-
imations, which form supersets of the actual clusters, i.e.,
they include more users than the actual subspace clusters
do. These approximations follow the monotonicity prop-
erty. A subspace cluster can be extended by adding some
dimensions up to a dimensionality of value mx. Thus, each
fault tolerant subspace cluster C' = (U, S), with |S| < mz,
is mx-approximated by a maximal fault tolerant subspace
cluster A = (Ua,S), established by the thresholds e, =
min{ey - T 1} and ¢; = ¢4 = 1. The rationale is to extend
the subspace clusters by some dimensions, in order to create
enclosing approximations, which fulfill these thresholds.

4. SUBSPACE CLUSTERING FOR USER
RECOMMENDATIONS COMPUTATION

4.1 Grid-based Fault Tolerant Subspace Clus-
tering (gridFTSC)

[7] introduces the grid-based fault tolerant subspace clus-
tering algorithm FTSC by integrating the fault tolerance
concepts to the grid-based subspace clustering algorithm
CLIQUE [2]. As in CLIQUE, the data space is partitioned
into non-overlapping rectangular grid cells by partitioning
each item into g equal-length intervals and intersecting the
intervals. Clusters consists of dense cells containing more
than a density threshold minPts points.

In FTSC, users with missing values/ratings might also be
part of the clusters. To this end, an extra interval is allo-
cated for each item, where users with missing values for the
respective item are placed in. To generate cluster approxi-
mations, except for the item intervals with existing values,
item intervals for missing values are also considered. Thus,
a cluster approximation consists of the users in the respec-
tive cluster cells plus the users obtained by considering the
intersection with the missing values intervals.

For an efficient generation of cluster approximations, a set
of users Uy is partitioned according to the amount of miss-
ing values per user, i.e., (Ua,S) = ([US, U4, --,U3],5),
where U} consists of the users with exactly 7 missing values.
To avoid analyzing all possible subspaces, the monotonic-
ity of approximations and the fault tolerance thresholds are

exploited (Algorithm 1). To generate the actual clusters
from the approximations, the approximation list of users is
traversed and users are added to the cluster. Users with
no missing values (at the top of the list) are first added to
the cluster, whereas those with missing values are gradually
added if they do not violate the fault tolerance thresholds.

Algorithm 1 Candidate Approximations (gridFTSC) [7]

1: function GETCANDIDATE((UaA, S),d, I, I7)

2 if (firstRun) then

3 S+ d

4 U« I

5: Ug + I

6: else

7 S+ Su{d}

8 for (i from 0 to size(Ua)) do
9: e:ristingListi —1In Uj;;
10: missingListi — I N Ui
11: end for

12: U% — existingList®

13: n < size(existingList)

14: for (i from 1 to (n — 1)) do
15: U}’S < ezistingListi UmissingList' ™!
16: end for

17: Ug < missingList™ ™!

18: end if

19: return (Ug, S’)
20: end function

Figure 1 (left) shows an example with the 1l-item inter-
vals for item/dimension 1. There are 4 dense intervals/cells
(red), whereas the users with missing values are allocated to
their own interval (blue)'. The candidate approximation is
a list: users with no missing values are stored first (marked
with (a)) followed by users with 1 missing value (marked
with (b)). Figure 1 (right) shows the result when extending
the candidate approximation based on item 2. For illustra-
tive purposes, we choose the interval [0.75,1] for item 2. The
extension of the candidate approximation list would be as
follows: users with values in both items 1 and 2 for this range
(marked with (1)), are assigned to the first position of the
candidate approximation list. Users with missing values in
either item 1 or 2 (marked with (2) or (3), resp.), are stored
in the second position of the list. The last position of the
list stores the interval marked with (4) for users with miss-
ing values in both items 1 and 2. This part can be directly
pruned, since it contains only missing values.

1 1® -
. .
0 o [(2) @)
. RES
08 4 08 ¥ -
+ s +
07 - 07 +-
w0 ~0s
H H
2 P 2 .
fos L §os +t s
Bo4 04
N
03, 03
(b)=> . Sl (a) s PSR
02 - 02 +
.
o e o1 v 3)
0 #¢™ . o 8 e - . ve
o 01 02 03 a2 0s 05 07 o3 o5 1| (4) o1 o2 03 o4 05 0s o7 o 03 1

Dimension 1 Dimension 1

Figure 1: Grid-based cluster approximations (g = 4,
minPts = 3).

4.2 Density-based Fault Tolerant Subspace
Clustering

The quality of grid-based clustering heavily depends on
the positioning of the grid in the data space. Density-based

'For visualization reasons, we assume that missing values
are represented by 0 in the respective item and the lower
bound for ratings is greater than 0.

approaches are more flexible in detecting arbitrarily shaped
clusters. Interestingly, we can adapt the candidate approx-
imations construction to density-based clusters, instead of
grid-cells. The difficulty that emerges when transferring the
fault tolerance concept to density-based subspace clustering
is that density-based approaches use a distance function and
so, we need to evaluate distances between users, even though
they might contain missing values.

We propose two approaches for building candidate ap-
proximations for density-based fault tolerant subspace clus-
tering: (i) a hybrid approach, called hybridFT'SC, that com-
bines grid- and density-based ideas and (ii) a pure density-
based approach inspired by the subspace clustering algo-
rithm SUBCLU [§], called denFTSC.

4.2.1 Hybrid Fault Tolerant Subspace Clustering (hy-
bridFTSC)

Instead of splitting the data space into intervals, as in
gridF'TSC, the hybrid approach determines 1-item density-
based clusters for each item/dimension of the dataset. For
the 1D clustering, we employ DBSCAN [6]. However, as
DBSCAN cannot handle missing values, for each item, the
users with missing values on it are “isolated” into a so called
pseudo cluster and DBSCAN is applied on the remaining
users. Thus, for each item, we get one or several density-
based clusters with users featuring no missing values and
a pseudo-cluster with users having no ratings for the spe-
cific item. As in gridFTSC, we extend each of those 1-item
candidate approximations with additional items to receive
broader subspaces, c.f., getCandidate method (Algorithm 2).

We aim at generating candidate approximation lists sorted
according to the users’ numbers of missing values. Thus, in
the first run of getCandidate, we assign each 1-item density-
based cluster to the first position of the candidate approx-
imation list (line 4). In the second position, we save the
corresponding pseudo cluster with users featuring missing
values for the respective item (line 5). To generate an n-item
candidate approximation, we combine all the users from the
candidate approximation list, generated in the (n—1)th run,
to get a set of users for clustering (line 9-10). When examin-
ing this set of users, we filter out users with a missing value in
item d and assign them to a pseudo cluster (line 13). After-
wards, we call an 1-item DBSCAN (considering item d only)
on the remaining users (line 16). This DBSCAN-call may
result in one or several density-based clusters, which rep-
resent new candidates for extension. We discard the noise
points and generate a new candidate approximation for each
of the clusters. To do this, each resulting cluster is combined
with all users from the pseudo cluster (line 18) and sorted
ascendingly according to the users’ numbers of missing val-
ues in the current subspace to generate the new candidate
approximation list (line 19-20). The algorithm continues
as the grid-based one. Generally, our focus is on creating
density-based grid-cells by executing 1-item DBSCAN-runs
in order to extend the subspaces to a higher dimensionality.
Since the positioning of these grid-cells is flexible and not
static, we are able to find broader and tighter grid-cells.

Figure 2 (left) displays the 1-item density-based clusters
for item 1. We consider the candidate approximation, which
includes the density-based cluster marked by (a), as well as
the pseudo cluster, which contains the users with missing
values for item 1 (marked by (b)). To extend this candidate
approximation by item 2, i.e., to the subspace spanned by
items 1 and 2, we combine the users of both clusters into one
set. Afterwards, we filter out the users with missing values
for item 2 (marked by (2) and (3) in the right part). We call
DBSCAN on the remaining users and obtain two clusters,

Algorithm 2 Candidate Approximations (hybridFTSC)

1: require density-based 1-item cluster C' from item d, pseudo clus-
ter C- including missing values for item d
2: function GETCANDIDATE((U4, S),d, C, C-)

3: if (firstRun) then

4: S+ d

5: U «~C

6: U)13 +— C-

7 add (Ug, S’) to candidate Approximations
8: else

9: S+ Su{d}

10: for i from 0 to size(Us) do

11: add UZ to allUsers

12: end for

13: missingList < filterMissing(allUsers, d)
14: existingList < filter Existing(allUsers, d)
15: // dist(): distance function based only on item d
16: clusters <— DBSCAN (existingList, dist, d)
17: for all cluster in clusters do

18: users <— cluster U missingList

19: Up <+ sortByMissingV alues(users, S")
20: add (Ug, S’) to candidate Approzimations
21: end for

22: end if

23: return candidate Approximations

24: end function

1 Y EasE 0 n
0s 09 | i
. e
08 AR)3 08 e { -t
o = (b} o7 jaases) oS
wos |14 oe o {1b)
H : 02
2os 3 2os ¥
£ H
Soa a3 Bo.
S (5}
; 03
> e hESea B2 Pis Ci5ad Pelde®
02 ¥ 9 a st
ol
01 PR (3 (2) ..
0 o

01 02 03 04 05 0§ 07 08 03 1 01 07703 04 05 0§ 07 08 09 1
Dimension 1 Dimension 1

Figure 2: Hybrid-based cluster approximations (e =
0.04, minPts = 3).

marked as (1a), (1b). User ol is included in cluster (1a), as
we consider just the second item. This is because it belongs
to the e-neighborhood of some of the cluster users of (1a) in
item 1. User 02 belongs to cluster (1b). We create two new
candidate approximations by combining each of the clusters
with both (2) and (3). For each new candidate, we create a
list, which includes users ordered according to their number
of missing values within the current subspace. For example,
the candidate approximation list based on (1a) holds (1a) at
its first position, as it does not contain any missing values,
(2) and user ol at its second position, as they contain one
missing value per user, and (3) at its last position with only
missing values in the current subspace.

4.2.2 Density-based Fault Tolerant Subspace Clus-
tering (denFTSC)

SUBCLU [§] is a density-based bottom-up clustering ap-
proach, which is based on DBSCAN [6]. In SUBCLU, the
notions of neighborhood, reachability, connectivity and clus-
ter from DBSCAN are related to a specific subspace. The
DBSCAN parameters € (for defining the neighborhood of a
point) and minPts (for deciding on core points) are inher-
ited. SUBCLU starts in 1-item subspaces and applies DB-
SCAN to every subspace to generate 1-item clusters. Next,
it checks, for each cluster, in a bottom-up way, whether the
cluster or part of it still exists in higher-item subspaces.
SUBCLU considers each k-item candidate subspace and se-
lects those of the remaining k-item subspaces, which share
(k - 1) attributes with the former. The algorithm joins them
in order to determine (k + 1)-item candidate subspaces.

B 1
oo 09
.
08 ==) 08 o
b}

o7 _ D) 07
wos 41 os 1b)

H F SNERED = —

£os - %05 o4 g

H —
Soe } Soe

Al (1a) ¥
o3 e el o3 1% e .
02 (3 a s
ol
01
L *H2) o 0[3 ¥
o oy ©
01 62 02 04 05 05 07 05 03 1 01 02 03 04 05 05 07 05 03 1
Dimension 1 Dimension 1

Figure 3: SUBCLU-based cluster approximations (e =
0.04, minPts = 3).

The SUBCLU-based approach aims at determining density-
based candidate approximations by focusing on the complete
current subspace. Our goal is to transfer the SUBCLU clus-
tering paradigm to fault tolerant clustering. Therefore, for
computing distances for the candidate approximations, we
employ a function, which ignores items with missing values.

As in the hybrid approach, we generate 1-item density-
based clusters by applying DBSCAN for each item. The
users with missing values for the respective item are again
assigned to a pseudo cluster. In the first run of getCandidate
(Algorithm 3), every 1-item cluster is saved in the first po-
sition of the candidate approximation list (line 4), whereas
the pseudo cluster for the item is assigned to the second po-
sition (line 5). For the nth run of getCandidate, we merge
all users in the candidate approximation list of the (n —1)th
run (line 9-10). They pose the basis for the DBSCAN-call
with respect to the current candidate’s subspace (line 15).
For calculating distances, we use a function that considers
the objects in the current subspace and ignores items with
missing values. Again, we receive one or several clusters and
discard the noise points. We then create a candidate approx-
imation list for each of the resulting clusters by sorting the
clustered users according to their numbers of missing values
in the current subspace (line 17). The rest of the algorithm’s
processing is similar to the grid-based approach.

Figure 3 (left) depicts the state after the call of an 1-item
DBSCAN on item 1. The algorithm retrieves 4 clusters and
a pseudo cluster. To extend the candidate approximation
consisting of (a) and (b) to the two-item subspace (items 1
and 2), we merge (a) and (b) at the second run of getCandi-
date. The call of DBSCAN on the 2-item subspace results in
two new candidate approximations: (i) the combination of
(1a), o1, 02, 03 and (2), and (ii) the combination of (1b), o2,
03, 04 and (2). Users o2 and o3 are assigned to both approx-
imations, as we ignore items not exist in both users’ feature
vectors. Users included in (2) feature missing values in both
items 1 and 2 and therefore, it has not been determined yet,
whether they belong to one of the clusters, and if so, to
which one. So, they are assigned to both approximations.

Again, the candidate approximation list is generated by
building sets of users sorted according to their number of
missing values in the current subspace.

In contrast to the hybrid approach, the SUBCLU-based
approach does not assign the user right from cluster (la)
(marked with an arrow) to cluster (1a), because it considers
the 2-item distance, which exceeds the value of €. As the
hybrid approach, however, considers just the 1-item distance
(based on item 2), the user is assigned to cluster (1a), as he
features a distance below € to nearest cluster object.

4.2.3 Reducing the search space through the signifi-
cance threshold

The runtime of the algorithms, highly depends on the di-

mensionality of the datasets since we are looking for clusters

in subspaces of the original high dimensional feature space.

Algorithm 3 Candidate Approximations (denFTSC)

1: require density-based 1-item cluster C' from item d, pseudo clus-
ter C» including missing values in item d
2: function GETCANDIDATE((U4, S),d, C, C-)

3: if (firstRun) then

4: S+ d

5: U «~C

6: U)13 +— C-

7 add (Ug,S’) to candidate Approzimations

8: else

9: S+ Su{d}

10: for i from 0 to size(Us) do

11: add Uj’q to allUsers

12: end for

13: // dist is a distance function ignoring missing values
14: // dist is based on the current subspace S’
15: clusters < DBSCAN (allUsers, dist, S")

16: for all cluster in clusters do

17: Up + sortByMissingV alues(cluster, S")
18: add (Ug, S’) to candidate Approzimations
19: end for

20: end if

21: return candidate Approximations

22: end function

To reduce the runtime, we exploit the fact that we are only
interested in extending our candidate subspaces and look-
ing for broader clusters, which are highly distinctive and
contain significant information. For example, if most users
rated in the same way a particular item (resulting in one big
user cluster and noisy users for this item), the item does not
need to be considered for extension. Following this ratio-
nale, for subspace extension, we consider only those items
which contain at least clusterThreshold 1-item clusters fea-
turing at least dataThreshold % of the overall number of
users in the dataset. The value for clusterThreshold should
be larger than 1 (i.e., an item should be part of at least two
1-item clusters) and approximately half of the amount of
possible ratings (in order to express significance relatively
to the characteristics of the dataset). The dataThreshold
expresses how much of the population these clusters should
cover.

S. WEIGHTED RANKING FOR LOCATING
SIGNIFICANT FRIENDS

Through subspace clustering, we possibly receive many
like-minded users for a user u, as u might be a member of
several subspace clusters. Combining all users from the clus-
ters u belongs to is advantageous, as we gain an extensive
and diverse selection of like-minded people for wu, since it is
based on different subsets of items. Thus, we are able to re-
flect on different characteristics © might feature to calculate
the most promising recommendations for him/her.

To enhance the quality of recommendations, we refine the
set of like-minded users based on their common ratings to
u. In particular, we order these users according to their full-
dimensional distance (based on their common dimensions)
to u. Using full-dimensional distance instead of subspace
distance for user ranking, allows us to capture the overall
similarity of preferences between users. By employing a sub-
space distance function during clustering, we are able to de-
tect like-minded users, which might share just part of their
interests with v. When ranking the like-minded users, how-
ever, we are interested in finding the most promising ones,
i.e., those that also agree or at least do not disagree too
strongly with u in the rest of their commonly rated items.

A distance based on a higher number of common items
should be more significant than a distance based on consid-
erably less or just one item, therefore we weight the distances

between u and his/her friends based on the number of their
common items. Formally, the weighted distance between u
and his/her friend v € U is given by:

diStwezghted(u U) 1 \/Zz 1 'LEI,[“,(- U'L)Q

Cu v

Iy is the set of common items between v and v and ¢y,
is their normalized share items. To compute ¢, min-max
normalization is employed:

Yu,v €U :cypw = T p——

where ity , is the number of common ratings between u and
v and itmin (itmaz) is the minimum (maximum) number of
common ratings between u and the like-minded users of w.

Finally, the weighted top friends (shortly, friends) used for
recommendations are those featuring a distance to u, which
is below a weighted distance threshold . More formally:

iy, v —itmin

DEFINITION 3. LetU be a set of users and © = {61,...,0.}
the subspace clustering model upon U, such that © = U6;.
The friends F., of a user u € U are the users v’ € U that are
members of the same clusters 0; as u and their weighted dis-
tance is below the weighted distance threshold (3, i.e., F,, =
{u' € U|F0; € © : u,u € 0;, distyeigntea(u,u’) < B}.

6. EXPERIMENTAL EVALUATION

We evaluate the efficiency and quality of the (i) naive,
(ii) fullClu, (iii) gridF'TSC, (iv) hybridFTSC, and (v) den-
FTSC approaches using two MovieLens datasets®. The ML-
100K dataset contains 100,000 ratings given by 983 users for
1,682 movie items. The ML-1M dataset includes 1,000,000
ratings of 6,040 users over 3,952 movie items. For effi-
ciency, we study how the runtime of the algorithms is af-
fected by different parameters. For quality, we use accuracy
measures that directly compare the predicted user ratings
with the actual ones. The Mean Absolute Error (MAE)
signifies the average of absolute errors of the predictions
compared to the actual given ratings for a user: MAE =
EY = > i |predicted; — actual;]. The Root Mean Squared Error
(RMSE) expresses the average of squares of absolute errors
of the prediction compared to the existing rating for a user:

RMSE = \/% > (predicted; — actual;)?. The smaller the

values, the better the quality of recommendations. As there
are ratings only for single users, for group recommendations,
we experiment with different characteristics of query groups,
choosing from heterogeneous to homogeneous groups, and
report on the average MAE and RMSE over all group mem-
bers. We also study the number and size of generated clus-
ters as an indirect measure of quality. Intuitively, when a
user belongs to a very small cluster, his friends selection is
limited and the recommendations are worse compared to a
user that gets recommendations from a larger pool of friends.

Experiments run on a 2.5 GHz Quad-Core i5-2450M ar-
chitecture featuring 8.00 GB RAM and a 64-bit operating
system. The distance between two users is evaluated as the
Euclidean distance over their commonly rated items. When
a specific subspace is considered, the distance relies only on
the items that comprise the subspace.

6.1 Parameter Settings and Efficiency

We study the execution time of our methods under dif-
ferent settings, and the number and dimensionality of the
resulting clusters. We do not report on the naive approach
here; according to [14], it takes 4 times longer than fullClu®.

2http://www.grouplens.org/node/73

3 Although there are more efficient methods for kNN acqui-
sition, here we refer to the naive approach that does not use
any special index structure, does not produce approximate
results [5], neither it refers to a distributed environment [4].

mSetting1 D@Setting2 DSetting 3

TN e e

fullClu gridFTSC hybridFTSC ~ denFTSC fullClu gridFTSC hybridFTSC ~ denFTSC

(a) Runtime (b) # Clusters

Figure 4: ML-100K dataset: Runtime (in logarithmic scale)
and #clusters for different parameter settings (c.f. Table 1).

mSetting1 DSetting2 DSetting 3

runtime (sec)

For fullClu, the smaller the number of clusters, the bet-
ter, since this indicates clusters of large cardinality, which is
what we need for a broad selection of friends. For subspace
clustering, a good clustering features many subspace clus-
ters, because each user potentially belongs to several clus-
ters, offering a wider and more diverse selection of friends.

6.1.1 Dataset ML-100K

We experimented with different parameter settings (Ta-
ble 1). The runtime and number of generated clusters for
each approach are depicted in Figure 4.
fullClu: The user similarity threshold delta has a strong im-
pact on the algorithm performance. The higher its value,
the smaller the number of clusters and the bigger (on aver-
age) the clusters. For example, for § = 0.2, there are 3-15
users per cluster, and 3 big clusters containing 27, 38 and
96 users, respectively. For § = 0.7, the range is 3-28 users
and there is one big cluster of 138 users. The execution time
also depends on J; the lower it is, the longer the algorithm
takes. fullClu has the smaller runtime, however its clus-
tering might be problematic for determining users’ friends,
since it consists of a small number of clusters with imbal-
anced cluster cardinalities. This way, the selection of friends
for a user of one of the (many) small clusters, is very narrow
and therefore, the quality of the recommendations might be
poor. The problem is not so severe for a user of a (usually
one) big cluster, as his friends selection is more broad.
gridFTSC: The lower the density threshold minPts, the
larger the number of clusters and the more higher-dimensional
the clusters, since more grid cells are considered as dense.
This way, the runtime increases with a decreasing value
of minPts, as the number of clusters and the number of
items to be considered for extension increases. For instance,
for minPts = 50, the algorithm detects 494 subspace clus-
ters, whose dimensionality lies in [1-4] range. The higher-
dimensional subspace clusters are based mostly on the same
subset of items. This implies that the dataset features some
prominent items, which “derive” big clusters. When we lower
the threshold, the number of clusters as well as the running
time increase drastically, however the maximum subspace
dimensionality of the clusters not; the maximum dimension-
ality is 5 for both minPts = 40 and minPts = 50. Higher-
dimensional subspace clusters are desirable, as they demon-
strate a higher agreement in terms of the included users
preferences. Therefore, the choice of minPts is a trade-off
between algorithm run-time and clustering result quality.
Compared to the other approaches, gridF'TSC generates the
larger number of clusters and is the slowest method.
hybrid FTSC': Similarly to gridFTSC, with a decreasing value
of minPts, the number of clusters and the dimensionality of
subspaces increase. However, due to the significance thresh-
old, the runtime is only a fraction of gridF'TSC’s runtime,
while being able to detect a similar amount of clusters. For
minPts = 40, the dimensionality of the detected clusters is
in the [1-3] range, with mostly 1-item clusters. The large
number of l-item clusters comes from the comparatively

runtime (min)

fullClu hybridFTSC denFTSC fullClu

(a) Runtime (b) # Clusters

Figure 5: ML-1M dataset: Runtime (in logarithmic scale)
and #clusters, for the parameters of Table 2.

hybridFTSC denFTSC

high significance threshold used to speed up the algorithm.
Nevertheless, the quality of recommendations, as we will see
later, does not suffer from this. The algorithm also finds
all the prominent items which have been determined by the
grid-based approach. The dimensionality of the detected
clusters increases for minPts = 30, while the increase in
runtime is considerably low. For minPts = 20, the number
of clusters significantly increases but still, the run-time is far
below that of gridFTSC (5 vs 29 minutes). As the dimen-
sionality of subspace clusters ranges in [1-4], the algorithm
is able to compete with gridFTSC in terms of clustering
quality at a significantly lower run-time.

denFTSC: This approach is superior in both runtime and
clustering quality. For all parameter settings, it determines
high-dimensional subspace clusters, while its runtime is un-
equaled. For minPts = 35, the dimensionality of the sub-
spaces lie in the [1-5] range. All prominent items retrieved
by the previous approaches are detected by the extracted
subspace clusters, but also new items are added to the sub-
space cluster definitions. The variety in the items of the sub-
space clusters of denFTSC is significantly higher compared
to the other approaches. Without an observable increase
in runtime, the algorithm determines a noticeable higher
number of subspace clusters comparing to hybridFTSC. For
minPts = 20, even more clusters were detected at almost 1
minute, whereas comparative results by gridFTSC and hy-
bridFTSC were achieved in approximately 30 and 6 minutes.

6.1.2 Dataset ML-1M

The parameter settings are depicted in Table 2, whereas
the results are shown in Figure 5.
fullClu: Compared to ML-100K, the runtime increases dras-
tically. In general, the overall behavior is analogous to the
observations made so far: we receive plenty of small clusters
and few clusters that are exceptionally big.
gridFFTSC'": Due to heap space limitations, we were not able
to examine its performance on this dataset.
hybrid FTSC: The performance deteriorates drastically. As
it differs from denFT'SC at the point where users are divided
in two sets, we conclude that this operation is highly expen-
sive. The number of discovered subspace clusters is similar
to denFTSC. The dimensionality of the resulting subspace
clusters for minPts = 100 and a significance threshold of
0.17 ranges between 1 and 3 items.
denFTSC: Although there is an increase in runtime com-
pared to ML-100K dataset, it is not as drastic as with the
other approaches. The performance is stable and superior
to the other approaches in efficiency and effectiveness. For
minPts = 100 and a threshold of 0.15, the algorithm de-
termines 2,894 subspace clusters in 23 minutes. The dimen-
sionality of the subspace clusters ranges from 1 to 4 items.

Concluding, denFT'SC is superior to the other approaches
in both datasets, as it exhibit a runtime comparable to full-
Clu, while deriving many subspace clusters and the larger
subspace variety among the subspace clustering methods.
Both gridFTSC and hybridF'TSC face major difficulties when

Table 1: ML-100K dataset: Parameter settings and results

[[[Parameter settings [Runtime | # Clusters [[Setting ID |
fullClu 6 =0.2 39s 585ms 141 1
6 = 0.5 41s T15ms 87 2
0 =07 41s 237Tms 83 3
gridFTSC* minPts = 50, grid = 3 13min 33s 55ms 494 1
minPts = 40, grid = 3 29min 53s 364ms 1038 2
minPts = 30, grid = 3 2h 3min 41s 655ms 4308 3
hybridETSC (¥)(+) minPts = 40, e = 0.1 Imin 54s 555ms 516 1
minPts = 30, e = 0.1 3min Os 345ms 754 2
minPts = 20, e = 0.1 5min 51s 895ms 1265 3
denFTSC (¥)(+) minPts = 35, ¢ = 0.1 42s 399ms 667 1
minPts = 30, € = 0.1 48s 586ms 819 2
minPts = 20, ¢ = 0.1 Imin 23s I5ms 1349 3

(*) parameters for FTSC: €, = 0.4, e, = 0.3, ¢, = 0.4, (4) parameters for significance threshold: 8 = 0.13,c = 2

Table 2: ML-1M dataset: Parameter settings and results

[[[Parameter Settings [Run-time [#Clusters |
fullClu 6 =05 3h 22min 57s 869ms | 384
hybridF'TSC (¥) minPts = 100, e = 0.1 =0.17,c =2 15h 43min 50s 50ms | 2946
denFTSC (%) minPts = 100, e = 0.1, d = 0.15, ¢ = 2 51min 5s 957s 2894

= 0.4, = 0.

(*) parameters for FTSC. €o

Oruntime (msec) O# friends OMAE ORMSE

21—

fullClu gridFTSC hybridFTSC denFTSC naive fullClu

(a) Runtime & #friends

GridFTSC hybridFTSC denFTSC

(b) MAE & RMSE

Figure 6: Top-10 user recommendations statistics (ML-
100K dataset, Setting 1 from Table 1).

they come to cluster large datasets. hybridFTSC outper-
forms gridFTSC in runtime, while determining a cluster-
ing result that is qualitatively comparable. The fullClu ap-
proach, in general, is not a good option for determining user
clusters, as it produces too many small clusters.

6.2 Quality of User Recommendations

For examining the qualitative differences of our approaches,
we randomly choose users with different demographics (oc-
cupation, age and sex) and a number of ratings equal to the
average number of ratings per user. We issue the 10 most
promising recommendations to users. For subspace cluster-
ing, we use 8 = 0.15, and, for the naive approach, we employ
the distance threshold of the fullClu.

ML-100K: Next, we present results for a 34 years old ed-
ucator with 70 ratings. According to his ratings, he seems
to be interested in Drama, Action, Comedy and Romance
movies (30, 18, 18 and 14 ratings), and not in Documen-
tary, Fantasy, Horror or Western movies (0 ratings). For
calculations, we employed the parameters settings 1 (Ta-
ble 1), which give the less promising clustering results for
all approaches. fullClu results in the smallest clusters and
therefore, in a limited choice of friends. Subspace cluster-
ing approaches also result in the lower number of generated
subspace clusters and the lower number of considered dimen-
sions for these clusters. The results are shown in Figure 6.

The runtime is a great deal lower when employing user
clusters, since naive scans the whole database to determine
the friends of the query user. fullClu is the fastest method,
however its quality of predictions suffers heavily from the
small set of friends considered. The set of friends gener-
ated by the subspace clustering approaches is larger com-
pared to fullClu, but still small compared to the naive ap-

3, € = 0.4)

Oruntime O# friends DMAE BDRMSE

010
000
fullClu hybridFTSC denFTSC hybridFTSC

(a) Runtime & #friends (b) MAE & RMSE

Figure 7: Top-10 user recommendations statistics (ML-1M
dataset, Figure 7 (a) is depicted in logarithmic scale).

naive naive fullClu denFTSC

proach. MAE and RMSE, however, show that the pre-
dictions quality of the subspace clustering approaches in-
creases when compared to naive, due to the careful selection
of friends. gridF'TSC is the slowest among the fault toler-
ant approaches due to the employed significance threshold,
while all subspace clustering approaches issue the same sug-
gestions, though their ranking might differ.

ML-1M: Here, we present results for a female scientist
at the age of 56. She has submitted 148 ratings, prefer-
ring movies from the genres Drama, Comedy, Romance and
Thriller (95, 33, 24, 20 ratings), whereas she does not seem
to be interested in Western, Documentary, Sci-Fi, Film Noir
or Fantasy movies (1, 1, 2, 2, 2 ratings).

Calculating recommendations on this dataset further am-
plifies the effects already observed (Figure 7). The runtime
increases, except for fullClu which requires approximately
the same time as before, since the cluster of our user con-
tains only 9 users. Naive considers more than half of the
overall users as friends, which is obviously too wide. Thus,
both fullClu and naive suffer from a poor selection of friends,
as reflected in the corresponding MAE and RMSE scores.
On the other hand, hybridFTSC and denFTSC performed
quite well. Their runtime is smaller than the one required by
naive, thanks to the significance threshold, while the quality
of recommendations does not suffer from this pruning heuris-
tic, as MAE and RMSE show. hybridFTSC and denFTSC
agree in all recommended items; there is a slight difference
in their rankings. Naive calculated similar recommenda-
tions and gives the same top-2 items as the density-based
approaches. fullClu though, totally disagrees with the other
approaches in its recommendations. This confirms that the
narrow selection of friends leads to poor recommendations.

mavg runtime per user @runtime

LIINn

fullClu gridFTSC hybridFTSC denFTSC naive fullClu gridFTSC hybridFTSC denFTSC

(b) MAE & RMSE

Figure 8: Runtime, avg runtime and avg quality values for a
homogeneous query group (ML-100K dataset, Setting 1 from

mavg MAE per user @avg RMSE per user

(a) Runtime

Table 1, Figure 8 (a) is depicted in logarithmic scale).

To conclude, fault tolerant subspace clustering approaches
overcome the friends selection problems of naive and full-
Clu at a reasonable runtime. Although, subspace clustering
leads to a larger selection of friends, the weighted ranking
based on full dimensional distance and number of globally
shared dimensions, refines the selection of friends and leads
to more qualitative recommendations comparing to naive

and fullClu.

6.3 Quality of Group Recommendations

Since there is no ground truth for group recommendations,
for the quality evaluation, we rely on the quality of the indi-
vidual group members recommendations. We report results
for the fair design for groups with different user demograph-
ics. For the naive approach, we used the distance threshold
of fullClu, whereas for subspace clustering, a weighted rank-
ing with 8 = 0.15. The group has 10 members, and we issue
the 10 most promising recommendations in each experiment.

6.3.1 Homogeneous Query Group

We randomly generate query groups with users that ex-
hibit homogeneity w.r.t. their demographics. In particular,
we choose users sharing the same occupation, age range and
sex, assuming that due to these similar characteristics their
movie taste will be also similar.

ML-100K: For clustering, we used the parameters set-
ting 1 (Table 1). We choose 10 young male programmers
with age between 28 and 30. Figure 8 displays the total
runtime, the average runtime per user, and the MAE and
RMSE scores averaged over all group members. The run-
time of the naive approach increases rapidly, since a sequen-
tial scan of the database is required for each group member
to detect the set of friends. denF'T'SC is the best among the
subspace clustering approaches, while the best runtime is
achieved by fullClu. Regarding quality, fullClu is the worst
and denFTSC the best. All subspace clustering approaches
agree in their top-5 recommendations, although their rank-
ings slightly differ. denFTSC and hybridFTSC even comply
with each other in their top-7 recommendations.

ML-1M: Here, we consider a group with 10 female home-
makers aged between 35 and 44. Figure 9 displays the run-
time, average runtime and quality scores per user. The ob-
servations are similar to the ones for ML-100K. The differ-
ence in runtimes is even greater now, due to the dataset size.
Naive requires double time compared to denFTSC. fullClu is
the fastest and the one with the worst quality, and denFTSC
the one with the best quality. hybridFTSC and denFTSC
agree in 8 out of 10 items; their rankings slightly differ.

In overall, denF'T'SC offers the best trade-off between run-
time and quality. Although fullClu is the fastest, its quality
is the worst, since it depends on the positioning of the group
members in clusters; small clusters result into narrow friends
sets and poor recommendations. denFTSC offers a wide se-
lection of friends due to the different subspace clusters that
a group member belongs to. Also, due to the weighted rank-

Davg runtime per user Bruntime

L

naive fullClu hybridFTSC ~ denFTSC naive fullClu hybridFTSC denFTSC

(a) Runtime (b) MAE & RMSE

Figure 9: Runtime, avg runtime and avg quality values for

Davg MAE per user Bavg RMSE per user

a homogeneous query group (ML-1M dataset, Figure 9 (a) is

depicted in logarithmic scale).
Davg runtime per user Eruntime

ni

nnnnn fullClu gridFTSC hybridFTSC denFTSC naive fullClu gridFTSC hybridFTSC denFTSC

(b) MAE & RMSE

mavg MAE per user @avg RMSE per user

(a) Runtime

Figure 10: Runtime, avg runtime and avg quality values
for a heterogeneous query group (ML-100K dataset, Setting
1 from Table 1, Figure 10 (a) is depicted in logarithmic scale).

ing filtering of these friends, the resulting set of friends upon
which the recommendations are based is highly qualitative.

6.3.2 Heterogeneous Query Group

Next, we examine groups of users that have been ran-
domly selected by considering different demographics.

ML-100K: For the clustering approaches, we used the pa-
rameters setting 1 (Table 1). The query group consists of
5 women (an executive, an artist, a student, an engineer
and a retired lady) and 5 men (a librarian, two students, a
scientist and an educator). Figure 10 displays the runtime,
the average runtime and quality measures per user. For ef-
ficiency, the conclusions drawn so far hold. The worst run-
time is that of naive. fullClu is the fastest with the worst
quality. In general, subspace clustering offers good qual-
ity at acceptable runtimes; the best quality is achieved by
denFTSC. Concerning the actual results, hybridBF'TSC and
denFTSC agree in 8 out of 10 recommendations and in their
top-3 items, while fullClu shares on average 6 out of 10 items
with the subspace clustering approaches.

ML-1M: Here, the females are a grad student, a writer, a
doctor, an executive, and a self-employed lady. The males
are a programmer, an engineer, an artist, a tradesman, and
a retired man. The results are shown in Figure 11. Again,
naive is the slowest and fullClu is the fastest with the low-
est quality scores. hybridFTSC and denFTSC finish signif-
icantly faster than naive and their quality scores are better
from those of naive and fullClu. Therefore, they compromise
a good trade-off. Regarding the actual recommendations,
hybridF'TSC and denFTSC agree in 9 out of 10 recommen-
dations, and they even agree in their rankings.

To conclude, the effects we observed for single user rec-
ommendations are stronger in case of a group. The runtime
of naive increases rapidly, since the database needs to be
scanned for each user in the group. The quality, which de-
pends on the quality of the individuals recommendations,
relies on the selection of the friends set. Neither a very nar-
row friends selection, like in fullClu, nor a very wide one, as
in naive, perform well. Our experiments show that a broad
pool of diverse friends achieved by subspace clustering and
a qualitative selection among them based on weighted rank-
ing, offer the best recommendations at a fair runtime.

Davg Runtime per user Bruntime

' 000

naive fullClu hybridFTSC denFTSC naive fullClu hybridFTSC ~ denFTSC

(a) Runtime (b) MAE & RMSE

Bavg MAE per user Bavg RMSE per user

Figure 11: Runtime, avg runtime and avg quality values for
a heterogeneous query group (ML-1M dataset, Figure 11 (a)
is depicted in logarithmic scale).

7. RELATED WORK

Typically, recommendation approaches are distinguished
between content-based and collaborative filtering. Content-
based approaches recommend items similar to those the user
previously preferred (e.g., [13]), while collaborative filtering
approaches recommend items that users with similar pref-
erences liked (e.g., [9]). Several extensions have been pro-
posed, such as time-aware recommendations (e.g., [18, 17])
and group recommendations (e.g., [3, 14]). Lately, there are
also approaches on extending database queries with recom-
mendations [10, 16].

To facilitate the selection of similar users to a query user,
clustering has been employed to pre-partition users into clus-
ters of similar users and rely on cluster members for rec-
ommendations. For example, [14] employ full-dimensional
clustering; as explained though, full dimensional clustering
is not the best option due to the high dimensionality and
sparsity of data. Dimensionality reduction techniques, like
PCA, could be applied to reduce dimensionality, however
clusters existing in subspaces rather than in the original (or
reduced) feature space will be missed.

[1] proposes a research paper recommender system that
augments users through a subspace clustering algorithm.
However, only binary ratings are considered, and therefore,
the problem is simplified, since typically ratings lie in a value
range with higher values indicating stronger preferences. On
the contrary, we use full range of ratings. [12] also uses sub-
space clustering to improve the diversity of recommenda-
tions, the dimensions considered though, are not the items
but rather more general information extracted upon these
items (like movie genres). This way, neither the high di-
mensionality of the data nor the missing values problem is
confronted. In our approach, we use subspace clustering
upon item ratings to diversify the resulting set of friends
and a fault-tolerant approach to deal with missing ratings.
Initial ideas on employing subspace clustering for recom-
mendations appeared in [15]. In this work, we proceed fur-
ther by proposing two density based fault tolerant subspace
clustering approaches which, as we show, perform better.
Moreover, we introduce the significance threshold pruning
to reduce the runtime and the weighted ranking approach
to combine subspace friends into a final friends set for recom-
mendations. We also provide an extensive experimentation
for both users and groups of users.

8. CONCLUSIONS

In this work, we integrate subspace clustering into the rec-
ommendation process to improve its efficiency and effective-
ness. We examine a fault tolerant approach, which relaxes
the cluster model, so that missing ratings can be tolerated.
We extend grid-based fault tolerance to the density-based
clustering paradigm and propose the hybrid FTSC and den-
FTSC approaches. To improve runtime, we introduce the
notion of significance threshold that identifies prominent di-

mensions for subspace cluster extension. To improve the
quality of predictions, we combine the wide selection of di-
verse friends offered by subspace clustering with a weighted
ranking based on full-dimensional distances between users.
Such a concurrent consideration of both local and global dis-
tances (in clustering and raking, respectively) allows for a
wide selection of friends and a fine selection of the best ones
for computing recommendations. Our experiments show
that fault tolerant subspace clustering approaches outper-
form, in terms of runtime and quality, both the naive and
the fullClu approaches.

Acknowledgments

This work was partially supported by the European project
DIACHRON (IP, FP7-ICT-2011.4.3, #601043).

9['1] NREggvﬁ%Nggg H. Liu, and L. Parsons. Research
paper recommender systems: A subspace clustering
approach. In WAIM, 2005.

[2] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan.
Automatic subspace clustering of high dimensional data for
data mining applications. In SIGMOD, 1998.

[3] S. Amer-Yahia, S. B. Roy, A. Chawla, G. Das, and C. Yu.
Group recommendation: Semantics and efficiency. PVLDB,
2(1):754-765, 2009.

[4] A. Boutet, A.-M. Kermarrec, D. A. Frey, R. Guerraoui, and
A. Jegou. Whatsup: A decentralized instant news
recommender. In JPDPS, 2013.

(5] W. Dong, M. Charikar, and K. Li. Efficient k-nearest
neighbor graph construction for generic similarity
measures. In WWW, 2011.

[6] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in large
spatial databases with noise. In KDD, 1996.

[7] S. Giinnemann, E. Miiller, S. Raubach, and T. Seidl.
Flexible fault tolerant subspace clustering for data with
missing values. In ICDM, 2011.

[8] K. Kailing, H.-P. Kriegel, and P. Kroger. Density-connected
subspace clustering for high-dimensional data. In SIAM,
2004.

[9] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R.
Gordon, and J. Riedl. Grouplens: Applying collaborative
filtering to usenet news. Commun. ACM, 40(3):77-87, 1997.

[10] G. Koutrika, B. Bercovitz, and H. Garcia-Molina. Flexrecs:
expressing and combining flexible recommendations. In
SIGMOD, 2009.

[11] H.-P. Kriegel, P. Kroger, and A. Zimek. Clustering
high-dimensional data: A survey on subspace clustering,
pattern-based clustering, and correlation clustering. ACM
Trans. Knowl. Discov. Data, 3(1):1:1-1:58, Mar. 2009.

[12] X. Li and T. Murata. Using multidimensional clustering
based collaborative filtering approach improving
recommendation diversity. In Web Intelligence/IAT
Workshops, 2012.

[13] R. J. Mooney and L. Roy. Content-based book
recommending using learning for text categorization. In
ACM DL, 2000.

[14] E. Ntoutsi, K. Stefanidis, K. Ngrvag, and H.-P. Kriegel.
Fast group recommendations by applying user clustering.
In ER, 2012.

[15] K. Rausch, E. Ntoutsi, K. Stefanidis, and H.-P. Kriegel.
Exploring subspace clustering for recommendations. In
SSDBM, 2014.

[16] K. Stefanidis, M. Drosou, and E. Pitoura. You May Also
Like results in relational databases. In PersDB, 2009.

[17] K. Stefanidis, E. Ntoutsi, M. Petropoulos, K. Ngrvag, and
H.-P. Kriegel. A framework for modeling, computing and
presenting time-aware recommendations. T. Large-Scale
Data- and Knowledge-Centered Systems, 10:146—172, 2013.

[18] L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang,
J. Sun, and J. Sun. Temporal recommendation on graphs
via long- and short-term preference fusion. In KDD, 2010.

