SPBv: Benchmarking Linked Data Archiving
Systems

Vassilis Papakonstantinou!, Giorgos Flouris!, Irini Fundulaki', Kostas
Stefanidis?, and Giannis Roussakis'

! Institute of Computer Science-FORTH, Greece
2 University of Tampere, Finland

Abstract. As Linked Open Data (LOD) datasets are constantly evolv-
ing, both at schema and instance level, there is a need for systems that
efficiently support storing and querying of such evolving data. However,
there is a limited number of such systems and even fewer benchmarks
that test their performance. In this paper, we describe in detail the first
version of the SPBv benchmark developed in the context of the HOBBIT
EU H2020 project. SPBv aims to test the ability of archiving systems to
efficiently manage evolving Linked Data datasets and queries evaluated
across multiple versions of these datasets. We discuss the benchmark data
generator and the query workload, and we describe a set of experiments
we conducted with Virtuoso and R43ples systems.

Keywords: RDF, Linked Data, Versioning, Archiving, SPARQL, Bench-
marking

1 Introduction

A key step towards abolishing the barriers to the adoption and deployment of
Big Data is to provide companies with open benchmarking reports that allow
them to assess the fitness of existing solutions for their purposes.

There exist a number of storage benchmarks that test the ability of Linked
Data systems to store and query data in an efficient way without addressing the
management of data versions. To the best of our knowledge, only a limited num-
ber of systems (mostly academic) and benchmarks exist for handling evolving
data, and testing the proposed solutions respectively.

However, the existence of such systems and benchmarks is of utmost impor-
tance, as dynamicity is an indispensable part of the Linked Open Data (LOD)
initiative [1,2]. In particular, both the data and the schema of LOD datasets are
constantly evolving for several reasons, such as the inclusion of new experimental
evidence or observations, or the correction of erroneous conceptualizations [3].
The open nature of the Web implies that these changes typically happen with-
out any warning, centralized monitoring, or reliable notification mechanism; this
raises the need to keep track of the different wversions of the datasets and in-
troduces new challenges related to assuring the quality and traceability of Web
data over time.

In this paper, we discuss the SPBv benchmark developed in the context
of HOBBIT project® for testing the ability of archiving systems to efficiently
manage evolving datasets and queries, evaluated across the multiple versions
of said datasets. The benchmark is based on Linked Data Benchmark Council’s
(LDBC)* Semantic Publishing Benchmark (SPB). It leverages the scenario of the
BBC media organisation, which makes heavy use of Linked Data Technologies,
such as RDF and SPARQL. We extend SPB to produce SPBv, a versioning
benchmark that is not tailored to any strategy or system. We followed a choke
point-based design [4] for the benchmark, where we extend the SPB queries with
features that stress the systems under test.

The outline of the paper is the following. In Section 2, we discuss the state of
the art of archiving strategies, benchmarks and query types. We present HOB-
BIT’s versioning benchmark SPBv in Section 3, and experiments are provided
in Section 4. Finally, Section 5 concludes and outlines future work.

2 State of the Art

This section presents the state of the art of archiving (a) strategies (Section 2.1),
(b) different types of queries (Section 2.2), and (c) benchmarks (Section 2.3). A
detailed presentaton is provided in [5].

2.1 Archiving Strategies

Three alternative RDF archiving strategies have been proposed in the literature:
full materialization, delta-based, and annotated triples approaches, each with its
own advantages and disadvantages. Hybrid strategies (combining the above) have
also been considered. Next, we provide a description of those approaches.

Full Materialization was the first and most widely used approach for storing
different versions of datasets. In this strategy, all different versions of an evolving
dataset are stored explicitly in the archive [6].

Delta-based approach is an alternative proposal where one full version of the
dataset needs to be stored, and, for each new version, only the set of changes with
respect to the previous/next version (also known as the delta) has to be kept.
There are various alternatives in the literature, such as storing the first version
and computing the deltas according to it [7-9] or storing the latest (current)
version and computing reverse deltas with respect to it [10, 11].

Annotated Triples approach is based on the idea of augmenting each triple with
its temporal validity. Usually, temporal validity is composed of two timestamps
that determine when the triple was created and deleted; for triples that exist in
the dataset (thus, have not been deleted yet) the latter is null [12]. An alternative
annotation model uses a single annotation value that is used to determine the
version(s) in which each triple existed in the dataset [9].

3 https://project-hobbit.eu/
4 1dbc. council. org

Modern version
materialization

Modern single-version
structured queries

Historical version
materialization

Historical single-version
structured queries

Delta
materialization

Single-delta structured
queries

Single
Version

Type

Cross-delta structured
queries

Cross-version structured
queries

Fig. 1: Different queries organized by focus and type.

Hybrid Approaches [13] aim at combining these strategies to enjoy most of the
advantages of each approach, while avoiding many of their respective drawbacks.
This is usually implemented as a combination of the full materialization and
delta-based strategies [14]. Another combination is the use of delta-based and
annotated triples strategies as there are systems that store consecutive deltas,
in which each triple is augmented with a value that determines its version [9].

2.2 Query Types

An important novel challenge imposed by the management of multiple versions
is the generation of different types of queries (e.g., queries that access multiple
versions and/or deltas). There have been some attempts in the literature [15, 13,
16, 17] to identify and categorize these types of queries. Our suggestion, which is
a combination of such efforts and was presented in detail by Papakonstantinou
et al. [5], is shown in Figure 1.

Firstly, queries are distinguished by focus (i.e., target), in version and delta
queries. Version queries consider complete versions, whereas delta queries con-
sider deltas. Version queries can be further classified to modern and historical,
depending on whether they require access to the latest version (the most common
case) or a previous one. Obviously, the latter categorization cannot be applied
to delta queries, as they refer to time changes between versions (i.e., intervals),
which have no specific characteristics that are related to time.

In addition, queries can be further classified according to type, to materializa-
tion, single-version and cross-version queries. Materialization queries essentially

request the entire respective data (a full version, or a full delta); single-version
queries can be answered by imposing appropriate restrictions and filters over a
single dataset version or a single delta; whereas cross-version queries request data
related to multiple dataset versions (or deltas). Of course, the above categories
are not exhaustive; one could easily imagine queries that belong to multiple cat-
egories, e.g., a query requesting access to a delta, as well as multiple versions.
These types of queries are called hybrid queries. More specifically the types of
queries that we consider are:

— QT1 - Modern version materialization queries ask for a full current
version to be retrieved. For instance, in a social network scenario, one may
want to ask a query about the whole network graph at present time.

— QT2 - Modern single-version structured queries are performed in the
current version of the data. For instance, a query that asks for the number
of friends that a certain person has at the present time.

— QT3 - Historical version materialization queries on the other hand ask
for a full past version. E.g., a query that asks for the whole network graph
at a specific time in the past.

— QT4 - Historical single-version structured queries are performed in a
past version of the data. For example, when a query asks for the number of
comments a post had at a specific time in the past.

— QTS5 - Delta materialization queries ask for a full delta to be retrieved
from the repository. For instance, in the same social network scenario, one
may want to pose a query about the total changes of the network graph that
happened from some version to another.

— QT6 - Single-delta structured queries are performed on the delta of two
consecutive versions. One, for instance, could ask for the new friends that a
person obtained between some version and its previous one.

— QT7 - Cross-delta structured queries are evaluated on changes of several
versions of the dataset. For example, a query that asks about how friends of
a person change (e.g., friends added and/or deleted) belongs in this category.

— QT8 - Cross-version structured queries must be evaluated on several
versions of the dataset, thereby retrieving information common in many ver-
sions. For example, one may be interested in assessing all the status updates
of a specific person through time.

2.3 Benchmarks for Evolving RDF Data

A benchmark is a set of tests against which the performance of a system is eval-
uated. A benchmark helps computer systems to compare and assess their per-
formance in order to become more efficient and competitive. To our knowledge,
there have been only two proposed benchmarks for systems handling evolving
RDF data in the literature, which are described below (see [5] for more details).

BEAR [18,15] benchmark is an implementation and evaluation of a set of opera-
tors that cover crucial aspects of querying and versioning Semantic Web data for
the three archiving strategies (Full Materialization, Delta-Based and Annotated

Triples) described in Section 2.1. As a basis for comparing the different strate-
gies, the BEAR benchmark introduces some features that describe the dataset
configuration. Such features are I) the data dynamicity that measures the num-
ber of changes between versions, II) the data static core that contains the triples
that exist in all dataset versions, III) the total version-oblivious triples that com-
pute the total number of different triples in an archive and finally IV) the RDF
vocabulary that represents the different subjects, predicates and objects in an
RDF archive. Regarding the generation of the queries of the benchmark, the
result cardinality and selectivity of the query are considered to guarantee that
potential retrieval differences in response times are attributed to the archiving
strategy. In order to be able to judge the different systems, BEAR introduces var-
ious categories of queries, which are similar to the ones we discuss in Section 2.2.
In particular, the authors propose queries on versions (i.e., modern and histori-
cal version materialization queries), deltas (delta materialization and structured
queries), as well as the so-called change materialization queries, which essentially
check the version in which the answer to a query changes with respect to previ-
ous versions. Even though BEAR provides a detailed theoretical analysis of the
features that are useful for designing a benchmark, it lacks configurability and
scalability as its data workload is composed of a static, non configurable dataset.

EVOGEN [17] is a generator for evolving RDF data that is used for benchmark-
ing archiving and change detection systems. EVOGEN is based on the LUBM
generator [19], by extending its schema with 10 RDF classes and 19 proper-
ties to support schema evolution. Its benchmarking methodology is based on a
set of requirements and parameters that affect the data generation process, the
context of the tested application and the query workload, as required by the
nature of the evolving data. EVOGEN is a Benchmark Generator, and is exten-
sible and highly configurable in terms of the number of generated versions and
the number of changes occurring from version to version. The query workload
produced by EVOGEN leverages the 14 LUBM queries, appropriately adapted to
apply for evolving versions. In particular, the following six types of queries are
generated: I) Retrieval of a diachronic dataset, II) Retrieval of a specific version
(QT1, QT3 from our categorization), III) Snapshot queries (QT2, QT4), IV)
Longitudinal (temporal) queries (QT8), V) Queries on changes (QT5, QT6),
VI) Mized queries. Regarding the data generation, in EVOGEN, the user is able
to choose the output format of the generated data (e.g., fully materialized ver-
sions or deltas); this allows supporting (and testing) systems employing different
archiving strategies.

EVOGEN is a more complete benchmark, as it is a strategy-agnostic, highly
configurable and extensible benchmark generator. However, its query workload
seems to exhibit some sort of approach-dependence, in the sense that the delta-
based queries require that the benchmarked systems store meta data about un-
derlying deltas (addition/deletion of classes, addition/deletion of class instances
etc.) in order to be answered.

Moreover, to successfully answer 11 of the 14 original LUBM queries, the
benchmarked systems must support RDFS reasoning (forward or backward).

3 Versioning Benchmark

In this section, we present the versioning benchmark SPBuv, that we developed
in the context of the HOBBIT project. The full source code of the benchmark
can be found in the HOBBIT github page®. Figure 2 presents an overview of the
HOBBIT platform components. The orange ones are those which SPBv is built
on, and are described in the following sections.

Evaluation |«----------------1 Benchmark |«------------------—{ Platform Front End
Module Controller Controller
Task Data ! Analysis
Eval. Storage Generator Generator Storage
\ Benchmarked System Logging
data flow

----------------- - creates component

Fig. 2: Overview of the HOBBIT platform components

As mentioned in Section 1, the benchmark is based upon LDBC’s Semantic
Publishing Benchmark for RDF database engines inspired by the Media/Publishing
industry, particularly by the BBC’s Dynamic Semantic Publishing approach. The
application scenario considers a media or a publishing organization that deals
with a large volume of streaming content, namely news, articles or “media as-
sets”. This content is enriched with metadata that describes it and is linked
to reference knowledge, such as taxonomies and databases that include rele-
vant concepts, entities and factual information. This metadata allows publishers
to efficiently retrieve relevant content, according to their business models. For
instance, some news publishers, like BBC, can use it to maintain rich and inter-
active web presence for their content, while others, e.g. news agencies, would be
able to provide better defined content feeds.

3.1 Choke Point-based benchmark design

“Choke points” are those technological challenges underlying a benchmark, whose
resolution will significantly improve the performance of a product [4]. So, a
benchmark can be characterized as valuable if its workload stresses those choke

® https://github.com/hobbit-project/versioning-benchmark

points that systems should manage. In SPBuv, the following choke points are
considered:

— CP1: Storage Space tests the ability of the systems to efficiently handle
the storage space growth as new versions are stored.

— CP2: Partial Version Reconstruction tests the ability of the systems to
only reconstruct the part of the version that is required from the targeted
query in order to be answered, instead of the whole version.

— CP3: Parallel Version Reconstruction tests the ability of the systems
following the delta-based or hybrid archiving strategies to reconstruct in
parallel multiple versions when a query asks for information from more than
one versions.

— CP4: Parallel Delta Computation tests the ability to compute in parallel
multiple deltas when a query asks for information from more than one delta.

— CP5: On Delta Evaluation tests the ability of the systems that follow
the delta-based or hybrid archiving strategies, to evaluate queries on top of
deltas when requested by the query (delta-based queries).

3.2 Data Generation

The data generator of SPBv extends the data generator of SPB that was de-
scribed by Kotsev et al. [20]. SPB’s data generator uses seven core and three
domain RDF ontologies (see Table 1) for the data production. Also, a set of
reference datasets are employed by the data generator to produce the data of
interest.

Domain Core
creativework 0.9|company 1.4| tagging 1.0 cnews-1.2
coreconcepts 0.6/ CMS 1.2 |provenance 1.1 sport 2.3

person 0.2 curriculum 4.0

Table 1: BBC Core & Domain Ontologies

The SPB data generator produces RDF descriptions of creative works that
are valid instances of the BBC creative work core ontology. A creative work can
be defined as metadata about a real entity (or entities) that exist in reference
datasets. A creative work collects all RDF descriptions of creative works created
by the publisher’s editorial team. A creative work has a number of properties
such as title, shortTitle, description, dateCreated, audience and format; it has
a category and can be about or mention any entity from the reference datasets.
That way a creative work provides metadata (facts) about one or several entities
and defines relations between them. SPB’s data generator models three types of
relations in the data, as described later and shown in Figure 3.

Clustering of data. The clustering effect is produced by generating creative
works about a single entity from reference datasets and for a fixed period of time.

correlations

random distribution
388,335 g3p8388g,
s .
“ LIEINEE)
°‘a°°§¢°°a°°¢°aaa‘°°°¢°°
Jan.2012 Time Dec.2012

Fig. 3: Data generator and types of produced models in generated data.

The number of creative works, referencing an entity, starts with a high peak at
the beginning of the clustering period and follows a smooth decay towards its
end. The data generator produces major and minor clusters with sizes (i.e.,
number of creative works) of different magnitude.

Correlations of entities. The correlation effect is produced by generating
creative works about two or three entities from reference data in a fized period
of time. Each entity is tagged by creative works solely at the beginning and end
of the correlation period, whereas in the middle of this period the same creative
work tags both of them.

Random tagging of entities. Random data distributions are defined with
a bias towards popular entities created when the tagging is performed, that is
when values are assigned to about and mentions creative work properties. This is
achieved by randomly selecting 5% of all the resources from reference data and
marking them as popular while the remaining ones are marked as regular. When
creating creative works, 30% of them are tagged with randomly selected popular
resources and the remaining 70% are linked to the regular ones.

Creative works, as journalistic assets, are highly dynamic, since the world of
online journalism is constantly evolving through time. Every day plenty of new
“creative works” are published, while the already published ones, often change.
As a result, editors need to keep track of changes occurred as times goes by. This
is the behaviour that the data generator of SPBv tries to simulate, by extending
the generator of SPB in such a way that generated data is stored in different
versions according to their creation date (creative work’s creation date).

The following parameters can be set to configure SPBv’s data generator.

1. Generator seed: used to set the random seed for the data generator. This
seed is used to control all random data generation happening in SPBuv.
2. Generated data format: serialization format for generated synthetic data.

Available options are: TriG, TriX, N-Triples, N-Quads, N3, RDF /XML,

RDF/JSON and Turtle.

3. Seed year: defines a seed year that will be used as starting point for gener-
ating the creative works date properties.

4. Substitution parameters amount: The amount of queries that will be
produced for each query type.

5. Generation period: the period of generated data in years.

6. Size: defines the size of generated synthetic data in triples produced by the
data generator.

7. Number of versions: defines the total number of versions in which gener-
ated data will be stored.

In order for the data generator to be able to tag creative works with entities
it is necessary for such entities to be extracted from the previously described
reference datasets. To do so, all instances from the different domain ontologies
that exist in the reference datasets are identified. Such identification process
consists of the execution of queries that collect data about the stored entities.
As this extraction would burden the benchmarking procedure we did it offline
once and stored the result entities in files, so that they can be used as input by
the data generator when tagging a generated creative work.

By having such exported entities as input, the data generator proceeds as
follows:

— Retrieves entities, DBpedia locations and Geonames locations from the ap-
propriate files.

— Selects the popular and regular entities from the previous set of retrieved
instances.

— Adjusts the number of major/minor events and number of correlations, in
order to let the ratio of the three types of modelled data (clusterings, corre-
lations, random) to be 33%, 33% and 33%, respectively.

— Major and minor events and correlations are distributed to all available data
generator instances. This is an indispensable step, as each instance has to
produce the whole event/correlation in order for the event to be valid.

— Each data generator instance produces the creative works according to the
three strategies previously discussed and sends the generated data to the
system that will be benchmarked, as shown in Figure 2.

— One of the data generator instances generates the SPARQL queries based
on the already generated data, and sends them to the Task Generator com-
ponent, as shown in Figure 2.

— The same instance that previously generated the SPARQL queries, computes
the Gold Standard, for comparison against the results of the benchmarked
system. In particular, the generated data loaded into VIRTUOSO triplestore
and the SPARQL queries evaluated on top of them. The results that such
queries return, compose the gold standard which sent to the Task Generator
component.

3.3 Task Generation

As shown in Figure 2, the Task Generator of SPBv (which may consist of sev-
eral instances running in parallel) is responsible for sending the gold standard,

previously received from the Data Generator, to the Evaluation Storage compo-
nent. Moreover, its main job is to provide all the tasks (that should be solved
by the system) to the benchmarked system which, in turn, sends the results to
the Evaluation Storage. In detail, there are three types of tasks:

— Ingestion tasks, which trigger the system to report the time required for
loading a new version.

— Storage Space task prompts the system to report the total storage space
overhead for storing the different versioned datasets.

— Query Performance tasks are used to test query performance. For each
versioning query type (QT1-QTS in Section 2.2), a set of SPARQL queries
is generated. The generated SPARQL query uses templates for its parame-
terization, so by using parameter substitution, a set of similar queries of the
same type is generated. The amount of the different substitution parame-
ters, determines the amount of different queries of the same type that are
provided, and is given in the configuration of the benchmark. Given that
there is neither a standard language, nor an official SPARQL extension for
querying RDF evolving data, the definition of our query templates assumed
that each version was stored in its own named graph. Each benchmarked
system should rewrite such queries in order to be compatible with the query
language it implements. [21] provides a detailed description of all query tasks
that were produced, including query type, text representation and related
choke points.

3.4 Evaluation Module

Finally, as we can see in Figure 2, the Evaluation Storage sends the gold standard
and the results reported by the benchmarked system to the Evaluation Module
that is responsible for evaluating the performance of the system under test.
Analogous to task types, there are three performance metrics that can be used
to evaluate such performance:

1. The space required to store the different versioned datasets. Such a metric
is essential to understand whether a system can choose the best archiving
strategy (as explained in Section 2.1) for storing the versions or to identify
the benefits of systems using compression techniques for storing their data.

2. The time that a system needs for storing a new version is measured. By
doing so, the possible overhead of complex computations, such as delta com-
putation, during data ingestion can be quantified.

3. The time required to answer a query is measured. In particular, we measure
the average execution time of all queries of each different query type as
described in Section 2.2.

In order to evaluate the success of systems to cope with the previously de-
scribed metrics, we define the following Key Performance Indicators (KPIs):

— Initial version ingestion speed (in triples per second): the total triples
that can be loaded per second for the dataset’s initial version. We distinguish
this from the ingestion speed of the other versions because the loading of the
initial version greatly differs in relation to the loading of the following ones,

10

where different underlying procedures as, computing deltas, reconstructing
versions, storing duplicated information between versions, may take place.

— Applied changes speed (in changes per second): tries to quantify the
overhead of such underlying procedures that take place when a set of changes
are applied to a previous version. To do so, this KPI measures the average
number of changes that could be stored by the benchmarked systems per
second after the loading of all new versions.

— Storage cost (in KBs): This KPI measures the total storage space required
to store all versions.

— Average Query Execution Time (in ms): The average execution time, in
milliseconds for all different query types, as those described in Section 2.2.

4 Experiments

In order to test the benchmark’s implementation on top of the HOBBIT plat-
form, from the different archiving systems described by Papakonstantinou et
al. [5], we managed to conduct experiments only for R43PLES (Revision for
triples) [8], which uses JENA TDB as an underlying storage/querying layer.
Also, for having a baseline system we decided to implement the full materi-
alization archiving strategy (see Section 2.1), by assuming that each version is
represented in its own named graph, to a triple store that cannot handle evolving
data. Such triplestore was the OpenLink VIRTUOSO Opensource®

For our experiments we produced four datasets of different sizes that corre-
spond to around 100K, 500K, 1M and 5M triples. The generated data follows
the three models described in Section 3.2 starting from January 1st 2016 and
for a duration of 1 year. According to their creation date, they were divided in
5 different versions of equal time intervals of around 2 and half months. 5 dif-
ferent queries were produced per query type, and the average execution time of
these queries was computed. For fairness, we run three experiments per dataset
size and computed the average values for all reported results. The experiment
timeout was set to 30 minutes for both R43PLES and VIRTUOSO systems.

Regarding the full materialization strategy that we implemented on top of
VIRTUOSO we report the following results:

In the left histogram of Figure 4 we can see for all datasets the initial version
ingestion speed for VIRTUOSO triple store. For the ingestion of new triples we
used the bulk loading process offered, with 12 RDF loaders so that we can
parallelize the data load and hence maximize loading speed.

As we can see, the speed ranges from 35K to 185K triples per second and
increases as the dataset size, and consequently the size of its initial version,
increases. This is an expected result, as VIRTUOSO bulk loads files containing
much more triples, as the dataset size increases. The same holds for the applied
changes speed, shown in the right side of the same figure, which increases from
10K to 115K changes per second. We can observe here that the time required to

S https://virtuoso.openlinksw.com/

11

perform the changes is larger than the time required to insert initially the triples
in the archive. This is an overhead of the chosen archiving strategy i.e., full
materialization (Section 2.1). Recall that the unchanged information between
versions is duplicated when a new version is coming, so the time required for
applying the changes of a new version is significantly increased as it includes the
loading of data from previous versions.

In Figure 5 we can see the storage space required for storing the data for
all different datasets. For measuring such space we measured the size of "vir-
tuoso.db” file before and after the loading of all versions’ triples. The space
requirements expectantly increase as the total number of triples increases, from
30 MB to 1450 MB. This significant overhead on storage space is due to the
archiving strategy used (i.e., Full Materialization).

Ingestion speeds Storage space overhead (MB)
200K I 100K 1600 I 100K
[s00k I 500K
o 150K M & 1200 Y
8 Y] s Y]
§ 100k E 800
= g
g S
@ 50K @ 400
0K 0
Initial version ingestion Applied changes speed storage
speed (triples/sec) (changes/sec)
Fig. 4: Ingestion speeds Fig. 5: Storage space overhead

In Figures 6, 7, 8, 9 and 10 we present the average execution time (in ms)
for the five queries of each versioning query type, and for each dataset size.

In Figure 6 we can see the time required for materializing I) the modern
(current) version; II) an historical (past) one; or III) the difference between
two versions (delta). In the left and middle histograms the times required for
materializing the modern and a historical version are presented respectively. As
expected, the execution time increases as the dataset size increases and the time
required for materializing a historical version is much shorter than the modern
one, as it contains less triples. In both cases, although we do not have a system
implementing the delta-based approach, we observe that execution times are
short enough, as all the versions are already materialized in the triple store. For
the 5M triples dataset VIRTUOSO failed to execute the modern and historical
materialization queries, as it has hard-coded limits for the result size of the
queries — upper limit 1.048.576 results. In the right side of the same Figure
we can see the time required for materializing a delta. Since deltas have to be
computed on the fly when the queries are evaluated, we see a significant increase
in the time required for evaluation.

In Figures 7, 8 , 9 and 10 we can see the execution times for all types of
structured queries. In most of the cases, similarly to materialization queries, the

12

Materialization queries
80000 B 100K
I 500K
60000 M
& N 5v
S
o 40000
£
=
20000
. -I . |
Modern version Historical version Delta
materialization materialization materialization

Fig. 6: Execution times for materialization queries

execution time increases as the number of triples increases. Although someone
would expect that delta-based queries were to be slower than the version-based
ones, as deltas have to be computed on the fly, this does not seem to be the
case. This is happening as the version-based queries are much harder regarding
query evaluation than the delta-based ones. According to the performance of
version-based structured queries which, as shown in the Appendix of [21], are
all of the same form, we observe that the oldest the version queried, the shorter
execution time we have. This is an expected result, as the number of triples from
which a version is composed of, is decreased as the version becomes older.

Regarding the R43PLES system, we only managed to run experiments for
the first dataset, composed of 100K triples, so we do not report the results
graphically. For the remaining datasets the experiment time exceed the timeout
of 30 minutes.

In Figure 11 we can see the results after running the three experiments for
the dataset of 100K triples, as shown in the GUI of the HOBBIT platform. At
first, we can see that R43PLES failed to execute all queries on deltas (delta ma-
terialization, single/cross-delta structured queries). Such queries are composed
of MINUS operations between revisions and this does not seem to be supported
by the system.

Regarding the speeds for ingesting the initial version and applying new
changes, we can see that changes were applied slower than the initial version
is loaded. This is an expected result as the version that is kept materialized
is the current one, so for every new delta, the current version has to be com-
puted. Compared to VIRTUOSO, R43PLES is 1 order of magnitude slower, but
the changes’ speed is much closer to the ingestion speed than the correspond-
ing speeds for VIRTUOSO, as in R43PLES the unchanged information between
versions is not duplicated (Delta-based archiving strategy).

To quantify the storage space overhead, we measured the size of the directory
(ptriplestore.url property in the config file) where JENA TDB stores all data,

13

Single-version structured queries Single-delta structured queries
400 I 100K 40 I 100K
I 500K [500K
300 M 30 M
. B sv . I 5v
£ £
@ 200 @ 20
S S
100 10
o 0
Modern singl Historical singl Single-delta structured queries
structured queries structured queries
Fig. 7: Execution times for single Fig. 8: Execution times for single
version structured queries delta structured queries
Cross-version structured queries Cross-delta structured queries
2000 I 100K 80 I 100K
I 500K [500K
1500 M 60 M
- | __BY] N I 5M
§ 1000 E 40
500 20
o 0
Cross-version structured queries Cross-delta structured queries
Fig. 9: Execution times for Fig. 10: Execution times for
cross-version structured queries cross-delta structured queries

before and after the loading of all versions. As we can see the overhead is ex-
tremely high, even for the small dataset of 100K triples. Someone would expect
R43PLES to outperform VIRTUOSO as in VIRTUOSO we implemented the Full
Materialization strategy, but that seems not to be the case, as the underlying
storage strategies of VIRTUOSO and JENA TDB (that is used as triplestore from
R43PLES) seem to be very different.

Next, regarding the query execution times, we can see that in most cases
R43PLES queries take too much time to be executed. More specifically, for ma-
terializing the current version (QT1) R43PLES requires similar time compared to
VIRTUOSO and this is something that we expected, as the current version is kept
materialized just like in VIRTUOSO, where all versions are materialized. This is
not happening when a historical version was retrieved (QT3), as R43PLES is 1
order of magnitude slower than VIRTUOSO. This is also an expected result as
R43PLES needs to reconstruct the queried version on-the-fly.

Concerning the single-version structured queries, R43PLES also answers them
much slower than VIRTUOSO, as it requires 1 and 3 orders of magnitude more
time for answering the QT2 (modern) and QT4 (historical) query types re-
spectively. The reason why the historical single-version structured queries were
answered much slower (20 times) than the corresponding modern version ones
is also the need for on-the-fly queried version reconstruction. The same holds
for the answering of cross-version queries (QT8) by R43PLES where the time

14

that is required is 2 orders of magnitude higher than the corresponding one for

VIRTUOSO.

Parameter
© Experiment
© Experiment Parameter
© KPIs

Applied changes speed (changes/sec)
Initial version ingestion speed (triples/sec)

QT1, average execution time (ms)
QT2, average execution time (ms)
QT3, average execution time (ms)
QT4, average execution time (ms)
QTS, average execution time (ms)
QT6, average execution time (ms)
QT7, average execution time (ms)
QT8, average execution time (ms)
Queries failed

Storage cost (KB)

1499342884042

2699.546630859375
3113.054443359375
6832.0
554.29998779296875
13762.2001953125
10394.75

0.0

0.0

0.0
30360.099609375
15

1313293.875

1499344919362

2629.922119140625
3354.5634765625
6774.0
546.1500244140625
14126.7998046875
10534.4501953125
0.0

0.0

0.0
31481.30078125

15

1304905.375

1499344902238

2630.691650390625
3367.92822265625
6248.0
525.04998779296875
13990.400390625
10536.0

0.0

0.0

0.0
31122.650390625
15

1296516.625

Fig. 11: Experiment results for R43PLES system from the HOBBIT platform

5 Conclusions and Future work

In this paper we first described the state-of-the-art approaches for managing
and benchmarking evolving RDF data. We presented the basic strategies that
archiving systems follow for storing multiple versions of a dataset, and described
the existing versioning benchmarks along with their features and characteristics.
Subsequently, we described in detail a first version of the versioning Benchmark
SPBuv, along with a set of preliminary experimental results.

In the future we will extend the data generator in order to produce more
realistic evolving data. In particular, not only additions will be supported, but
deletions or modifications of existing data as well. Furthermore, we will let the
benchmarked systems decide the generated data format, according to the archiv-
ing strategy they implement. So, if a system implements the full materialization
archiving strategy, it will receive the generated data as separate versions. On
the other hand, if a system implements the delta-based strategy, it will get the
data as expected: the initial version and the subsequent sets of added/deleted
triples. Also, we will try to re-design some types of queries (e.g., delta-based),
in order to be comparable with the corresponding version-based. Therefore, we
will be able to identify benefits or pitfalls of systems according to the archiving
strategy they implement.

Acknowledgments

The work presented in this paper was funded by the H2020 project HOBBIT
(#688227).

15

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Tobias Kéfer, Ahmed Abdelrahman, et al. Observing linked data dynamics. In

ESWC, 2013.

Jurgen Umbrich, Michael Hausenblas, et al. Towards Dataset Dynamics: Change
Frequency of Linked Open Data Sources. In LDOW, 2010.

Fouad Zablith, Grigoris Antoniou, et al. Ontology evolution: a process-centric
survey. Knowledge Eng. Review, 30(1):45-75, 2015.

Peter Boncz, Thomas Neumann, et al. TPC-H Analyzed: Hidden Messages and
Lessons Learned from an Influential Benchmark. In TPCTC, 2013.

Vassilis Papakonstantinou, Giorgos Flouris, et al. Versioning for linked data:
Archiving systems and benchmarks. In BLINK, 2016.

Max Volkel and Tudor Groza. SemVersion: An RDF-based ontology versioning
system. In IADIS, volume 2006, page 44, 2006.

Steve Cassidy and James Ballantine. Version Control for RDF Triple Stores. IC-
SOFT, 7:5-12, 2007.

Markus Graube, Stephan Hensel, et al. R43ples: Revisions for triples. LDQ, 2014.
Miel Vander Sande, Pieter Colpaert, et al. R&Wbase: git for triples. In LDOW,
2013.

Dong-Hyuk Im, Sang-Won Lee, et al. A version management framework for RDF
triple stores. IJSEKE, 22(01):85-106, 2012.

Haridimos Kondylakis and Dimitris Plexousakis. Ontology evolution without tears.
Journal of Web Semantics, 19, 2013.

Thomas Neumann and Gerhard Weikum. x-RDF-3X: fast querying, high update
rates, and consistency for RDF databases. VLDB Endowment, 3(1-2):256-263,
2010.

Kostas Stefanidis, Ioannis Chrysakis, et al. On designing archiving policies for
evolving RDF datasets on the Web. In ER, pages 43-56. Springer, 2014.

Paul Meinhardt, Magnus Knuth, et al. TailR: a platform for preserving history on
the web of data. In SEMANTICS, pages 57—64, 2015.

Javier David Fernandez Garcia, Jirgen Umbrich, et al. BEAR: Benchmarking the
Efficiency of RDF Archiving. Technical report, Department fiir Informationsverar-
beitung und Prozessmanagement, WU Vienna University of Economics and Busi-
ness, 2015.

Marios Meimaris, George Papastefanatos, et al. A query language for multi-version
data web archives. Expert Systems, 33(4):383-404, 2016.

Marios Meimaris and George Papastefanatos. The EvoGen Benchmark Suite for
Evolving RDF Data. MeDAW, 2016.

Javier David Fernandez Garcia, Jurgen Umbrich, et al. Evaluating Query and
Storage Strategies for RDF Archives. In SEMANTiCS, 2016, forthcoming.
Yuanbo Guo, Zhengxiang Pan, et al. LUBM: A benchmark for OWL knowledge
base systems. Web Semantics: Science, Services and Agents on the World Wide
Web, 3(2):158-182, 2005.

Venelin Kotsev, Nikos Minadakis, et al. Benchmarking RDF Query Engines: The
LDBC Semantic Publishing Benchmark. In BLINK, 2016.

Vassilis Papakonstantinou, Irini Fundulaki, et al. Deliverable 5.2.1: First version
of the versioning benchmark. https://project-hobbit.eu/wp-content/uploads/
2017/06/D5.2.1_First_Version_Versioning_Benchmark.pdf.

16

