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Abstract. With the rapid growth of the Web, keyword-based searches
become extremely ambiguous. To guide users to identify the results of
their interest, in this paper, we consider an alternative way for presenting
the results of a keyword search. In particular, we propose a framework
for organizing the results into groups that contain results with similar
content and refer to similar temporal characteristics. Moreover, we pro-
vide summaries of results as hints for query refinement. A summary of
a result set is expressed as a set of popular keywords in the result set.
Finally, we report evaluation results of the effectiveness of our approach.

1 Introduction

Keyword-based search is extremely popular as a means for exploring informa-
tion of interest without using complicated queries or being aware of the under-
lying structure of the data. Existing approaches for keyword search in relational
databases use either the database schema (e.g., [1,12]) or the given database
instance (e.g., [5]) to retrieve tuples containing the keywords of a posed query.
For example, consider the movie database instance depicted in Fig. 1. For the
keyword query @ = {comedy, J. Davis}, the results are the comedy movies De-
constructing Harry and Celebrity both with J. Dawvis.

Given the huge volume of available data, keyword-based searches typically
return overwhelming number of results. However, users would like to locate only
the most relevant results to their information needs. Previous approaches mostly
focus on ranking the results of keyword queries to help users retrieve a small piece
of them. Such approaches include, among others, adapting IR-style document
relevance ranking strategies (e.g., [11]) and exploiting the link structure of the
database (e.g., [5]). Still, this flat ranked list of data items could not make it easy
for the users to explore and discover important items relevant to their needs.

In this paper, we consider an alternative presentation of the results of the
queries expressed through sets of keywords. In particular, we add some structure
to the ranked lists of query results. Our goal is to minimize the browsing effort
of the users when posing queries, help users receive a broader view of the query
results and, possibly, learn about data items that they are not aware of.



Movies Play

idm | title genre year director idm | ida

m, | Annie Hall drama | 1977 | W.Allen m, | a Actors

ida | name gender | dob

m, Interiors drama 1978 | W.Allen m, ay

a, | D.Keaton | female | 1946

m; | Manhattan drama 1979 | W.Allen m; | a

a, | M.Farrow | female | 1945
m, | Broadway Danny Rose comedy | 1984 | W.Allen me | a 7

EN J. Davis female 1955

ms | The Purple Rose of Cairo comedy | 1985 | W.Allen ms | a,

mg | Hannah and her Sisters comedy | 1986 | W.Allen mg | a,

m, Deconstructing Harry comedy | 1997 [ W.Allen m, a

mg | Celebrity comedy | 1998 | W.Allen mg | a

Fig. 1: Database instance.

Towards this direction, we organize the keyword query results into groups,
trying to have groups that exhibit internal cohesion and external isolation. This
way, it is easier for the users to scan the results of their queries. Our primary
focus is on producing informative, expressive and meaningful groups containing
results with similar content that refer to similar temporal characteristics. For
example, assume the database instance of Fig. 1 and the keyword query Q =
{W. Allen, female}. Intuitively, for this query, we can construct three groups of
results; the first group refers to the movies Annie Hall, Interiors and Manhattan,
the second group refers to the movies Broadway Danny Rose, The Purple Rose of
Cairo and Hannah and her Sisters and the third one to the movies Deconstructing
Harry and Celebrity. Each group contains movies with the same actress (content
similarity) that are produced at the same time period (temporal similarity).

To help users refine their queries, we provide them with summaries over
the groups of their queries results. The summary of a group presents the most
important, in terms of popularity, keywords associated with the specific group of
results. Abstractly speaking, for the above constructed groups, we may have the
summaries {drama, D. Keaton}, {comedy, M. Farrow} and {comedy, J. Davis}.

Finally, we evaluate the effectiveness of our approach. Our results indicate
that users are more satisfied when grouping and summarizing of results are used.

In a nutshell, this paper makes the following contributions:

— It introduces a framework that offers a different way for presenting the results
of keyword-based searches.

— It exploits the content of results along with their temporal characteristics
to produce groups of results with similar content referring to the same time
periods. Summaries for the groups of results are presented to users as hints
for query refinement.

— It presents the results of a user study comparing our framework to a standard
keyword search technique.

The rest of the paper is organized as follows. In Section 2, we introduce our
framework for grouping and summarizing the results of keyword-based searches.
In Section 3, we present our evaluation findings. Section 4 describes related work



and finally, Section 5 concludes the paper with a summary of our contributions
and directions for future work.

2 Framework

Most approaches to keyword search (e.g., [1, 12]) exploit the dependencies in the
database schema for answering keyword queries. Consider a database D with n
relations R = {Ry, Ra,..., R,}. We assume that some relations in R include,
among other attributes, a time-related attribute B which represents the time
that the entity described by the tuple was created. The schema graph Gp of a
database D is a directed graph capturing the foreign key relationships in the
schema. Gp has one node for each relation R; and an edge R; — R;, if and only
if, R; has a set of foreign key attributes referring to the primary key attributes
of R;. We refer to the undirected version of the schema graph as Gy .

Let W be the potentially infinite set of all keywords. A keyword query Q
consists of a set of keywords, i.e., @ C W. Typically, the result of a keyword
query is defined with regards to joining trees of tuples (JTTs), which are trees
of tuples connected through primary to foreign key dependencies [1,5,12].

Our goal in this paper is twofold; first, we focus on organizing into groups the
results of a keyword query based on their content similarity and the similarity on
the values of their time-related attributes and then, we highlight the important
keywords in the produced groups of results.

We start this section with a short introduction to keyword search and then
present our approach for organizing the keyword query results in time-dependent
groups. Finally, we describe our method for offering the important keywords in
the constructed groups.

2.1 Keyword Search

This section gives some preliminaries on keyword search, starting by defining
the brick of a keyword query result, i.e., the joining tree of tuples.

Definition 1 (Joining Tree of Tuples (JTT)). Given an undirected schema
graph Gy, a joining tree of tuples (JTT) is a tree of tuples T, such that, for
each pair of adjacent tuples t;, t; in T, t; € R;, t; € Rj, there is an edge (R;,
R;) € Gu and it holds that (t; X t;) € (R; X R;).

For example, (m7, Deconstructing Harry, comedy, 1997, W. Allen) — (mz,
as) — (as, J. Davis, female, 1955) represents a JTT for the keyword query @ =
{comedy, J. Davis}. The size of a JTT is equal to the number of its tuples. In
this case the aforementioned JTT has a size equal to 3.

Total JTT: A JTT T is total for a keyword query @, if and only if, every
keyword of @) is contained in at least one tuple of T

Minimal JTT: A JTT T that is total for a keyword query @ is also minimal
for @, if and only if, we cannot remove a tuple from 7" and get a total JTT for
Q.

We can now define the result of a keyword query as follows:



Definition 2 (Query Result). Given a keyword query @, the result Res(Q)
of Q is the set of all JTTs that are both total and minimal for Q.

We use our movies example (Fig. 1) to briefly describe basic ideas of existing
keyword query processing. For instance, the query Q = {comedy, J. Davis} with
result @ = {comedy, J. Davis} consists of the JTTs: (i) (my, Deconstructing
Harry, comedy, 1997, W. Allen) — (my, a3) — (as, J. Davis, female, 1955) and
(ii) (msg, Celebrity, comedy, 1998, W. Allen) — (msg, a3) — (a3, J. Davis, female,
1955). Each JTT in the result corresponds to a tree at schema level. That is,
both of the above trees correspond to the schema level tree Moviesicomedy}t —
Playtt — Actors{/-Pavis} where each R¥X consists of the tuples of R; that contain
all keywords of X and no other keyword of Q). Such sets are called tuple sets and
the schema level trees are called joining trees of tuple sets (JTSs).

Several algorithms in the research literature aim at constructing such trees of
tuple sets for a query @ as an intermediate step of the computation of the final
results (e.g. [1,12]). We adopt the approach of [12] in which all JTSs with size
up to [ are constructed. In particular, given a query @, all possible tuple sets R
are computed, where R;X = {t | t € R; A Va, € X, t contains a, A Va, € Q\X,
t does not contain a,}. After selecting a random query keyword a., all tuple
sets R;X for which a, € X are located. These are the initial JTSs with only one
node. Then, these trees are expanded either by adding a tuple set that contains
at least another query keyword or a tuple set for which X = {} (free tuple set).
These trees can be further expanded. JTSs that contain all query keywords are
returned, while JTSs of the form R — Rj{} — RY, where an edge R; — R; exists
in the schema graph, are pruned, since JTTs produced by them have more than
one occurrence of the same tuple for every instance of the database.

2.2 Keyword Search Result Vector Representation

Our effort focuses on grouping results based on their content and some temporal
information associated with them. Regarding the content of a JTT, we may
think of a JTT as the equivalent of a “document”. Then, the textual content of
a JTT can be represented by a term-vector. For a query @ with result Res(Q),
let A be the set of keywords appearing in the JTTs of Res(Q). The importance
score z; ; of a keyword a; in A for the JTT T of Res(Q), is defined with respect
to the TF-IDF model [7]. Specifically, for each a; in A for T}, z; ; is equal to:
x;; = tfi; * log(N/df;), where tf; ; is the number of occurrences of a; in the
JTT T; and df; is the number of tuples in D that contain a;. IV is the maximum
df in the database. Then, a JTT-vector for a specific JTT is:

Definition 3 (JTT-vector). Let @ be a keyword query with query result Res(Q)
and A be the set of keywords appearing in the JTTs of Res(Q). The JTT-vector
of a JTT Tj in Res(Q) is a vector ur, = {(a1,21,5),--,(@m,Tm )}, where
a; € A, |[A| =m, and x; ; is the importance score of a; for Tj, 1 < i < m.

Many times, two JTTs may contain very similar information. Next, we will
exploit similarities between JTTs in order to construct groups of similar results.



2.3 Finding Groups of Keyword Search Results

In this work, we consider that each database relation includes in its schema a
time-related attribute B3. Then, for a tuple t; of a relation R;, 1 < j < n, we
refer to the value ¢;[R;.B] as the age of u. Naturally time-related attributes of
the database relations may vary. For instance, for a relation with mowvies consider
the production year as a time-related attribute or for a relation with actors the
date of birth. For two tuples t;, ¢, of the relations R;, R, we say that ¢; is more
recent than ¢,, if and only if, ¢;,[R;.B] > t;[R,.B], 1 < j,y <n.

Given a joining tree of tuples T', we define its age with respect to the age of
the tuples appearing in the tree. In particular, the age of T' is determined by the
age of the most recent of its tuples. The motivation behind this, is that before
the existence of the entity described in the most recent tuple the tree did not
exist. For example, let Movies.B be the attribute year of the relation Movies
and Actors.B be the attribute dob of the relation Actors. Furthermore, consider
that each tuple t; of the relation Play has value t;[Play.B] = 0. Then, the age
of the JTT (my, Deconstructing Harry, comedy, 1997, W. Allen) — (m7, a3) —
(ag, J. Davis, female, 1955) is 1997 which is the production year of the movie.
Formally:

Definition 4 (Age of JTT). Given a JTT T with tuples t; € R;,, ..., t, €
R;,, 1 < j1,Jp < n, the age of T, ager, is:

ager = lrg?é(p{ti [R;,-B]}

Our goal here is to detect groups of JTTs. Each group contains JTTs that:
(i) have similar content and (ii) are continuous in time, which means that their
age values increase. A straightforward way for quantifying the similarity between
two JTTs, is to use a cosine-based definition of similarity, which measures the
similarity between their corresponding vectors.

Definition 5 (Cosine JTT Similarity). Given two JTTs Ty and Ty with

vectorsur, = {(a1,211)s - - -, (@ms Tm,1)} and ur, = {(a1,21.2), - -+, (@my Tm2) },
respectively, the cosine JTT similarity between Ty and Ty is:

: T Xy
Simc(T]_’ TQ) _ uTl uTQ _ Zl—l 1,1 272

unlllunll /S @i1)2 % /o (w12)2

Given the similarity between JTTs, we focus on the grouping process. A
group of JTTs is expressed as a set of JTTs. The JTTs of a group G define a
time interval described by two time instances G;.s and Gj.e; G;.s denotes the
starting point of the interval and corresponds to the age of the oldest JTT in
the group, while G;.e denotes the ending point of the interval and corresponds
to the age of the most recent JTT. For example, for a group G; consisting of the

3 If a relation does not contain time-related data we consider B = 0 for all tuples in
the relation.



JTTs (i) (mq, Annie Hall, drama, 1977, W. Allen) — (m1, a1) — (a1, D. Keaton,
female, 1946), (ii) (mq, Interiors, drama, 1978, W. Allen) — (msg, a1) — (a1, D.
Keaton, female, 1946) and (iii) (ms, Manhattan, drama, 1979, W. Allen) — (ms,
a1) — (a1, D. Keaton, female, 1946), G;.s = 1977 and G;.e = 1979.

Similarly to the JTT-vector, we define the Group-vector which describes
the content of a group. In particular, the Group-vector of a group G; is an
aggregation of all vectors of the JTTs belonging to G;. For a query @ with
result Res(Q), let A be the set of keywords appearing in the JTTs of Res(Q)
and G; be a group of JTTs in Res(Q). The importance score s; ; of a keyword
a; in A for the group G is equal to: s; ; = Aggrr, eq, (Tiw), where Aggr defines
the average, sum, mazimum or minimum of the values z;,, of the JTTs of G;.

Definition 6 (Group-vector). Let G; be a group of JTTs belonging to the
query result Res(Q) of a query @ and A be the set of keywords appearing in
the JTTs of Res(Q). The Group-vector of G; is a vector ug; = {(a1,s1), ..,
(@m, Sm,j)}, where a; € A, |A| = m, and s;; is the importance score of a; for
Gj, 1 S 7 S m.

Given the query result Res(Q) of a query @, our aim is to partition the
JTTs of Res(Q) into non-overlapping groups. Our definition for non-overlapping
groups takes into account both time and content overlaps. Specifically, two
groups are: (i) non-overlapping with respect to time, if their time intervals are
disjoint and (ii) non-overlapping with respect to content, if they do not contain
common JTTs.

Definition 7 (Non-overlapping Groups). Let G;, G; be two groups of JTTs
with time-intervals [G;.s,G;.e], [G;.5,Gj.e|. Gi, G; are non-overlapping groups,
if and only if: (i) (G;.s > Gj.e and G;.s > G,.s) or (Gj.s > G;.e and G;.s >
Gi.s), and (i) G;NG; = 0.

To partition the joining trees of tuples into non-overlapping groups, we em-
ploy a bottom-up hierarchical agglomerative clustering method. Initially, the
JTT Partitioning Algorithm (Algorithm 1) places each JTT in a cluster of its
own. Then, at each iteration, it merges the two most similar clusters. The sim-
ilarity between two clusters is defined as the minimum similarity between any
two JTTs that belong to these clusters (max linkage). That is, for two clusters,
or groups, G17 Ga: Sim(Gla GZ) = minTiGGthEGQ{Simc(Tia7})}'

Clearly, two clusters, or groups, Gi, G2 can be merged if they are non-
overlapping groups. But this is not enough. For constructing groups with JTTs
with growing age values there is also a need to ensure that, for the groups Gy,
G, there is no other group G5 with time interval between the time intervals of
G, and G2. We refer to such groups as merge-able groups. Formally:

Definition 8 (Merge-able Groups). Let G;, G; be two groups of JTTs with
time-intervals [G;.s,Gj.€], [Gj.s, Gj.e]. G;, G; are merge-able groups, if and
only if: (i) Gi, G are non-overlapping groups, and (ii) G, with time interval
[Gp.s,Gp.€], such that, the groups G;, G, and Gy, G; are non-overlapping, and
(Gp.s > G,.e and Gj.s > Gp.e) or (Gp.s > Gj.e and G;.s > Gp.e)



Algorithm 1 JTT Partitioning Algorithm

Input: A set of JTTs.

Output: A set of groups of JTTs.
1. Create a group for each JTT;

2: Repeat

3 =1

4: Locate the two merge-able groups with the maximum similarity;
5: If there are no merge-able groups or only one group existsthen
6: End loop;

T Else

8: Merge the two groups;

9: Compute K;, C;

10: 1++;

11: Select the partitioning that constructs K™ groups;

Thus, in overall, we proceed in merging two groups only if the groups are
merge-able. The algorithm stops either when a single cluster containing all the
JTTs of Res(Q) has already produced or when no more clusters can be merged.
As a final step, the algorithm selects to return the clusters of the iteration that
present the maximum clustering quality. The clustering quality C;, computed
after merging the two clusters of a specific iteration i, is:

K;
C; = Z Z ur, - UG, (1)

J=1VT,eG;

where K; is the number of clusters after the merging operation of iteration 3.
The selected iteration is the one that constructs K* clusters, such that:

K* = argmax;(C; — AK;) (2)

where A is a penalty for each additional cluster.

Algorithm 1 presents a high level description of the JTT Partitioning Al-
gorithm. Although it is possible to pre-specify the number of clusters K* and
directly select to return the clusters of the iteration that produces the K* ones,
we opt for following the above described procedure to ensure high clustering
quality, even if the resulting processing cost is high.

We illustrate our approach with the following example. Assume the keyword
query @ = {W. Allen, female}. For the database instance of Fig. 1, the result
Res(Q) consists of the JTTs:

(i) T1: (m1, Annie Hall, drama, 1977, W. Allen) - (m1, a1) - (a1, D. Keaton, female,
1946), (ii) T»: (me, Interiors, drama, 1978, W. Allen) - (m2, a1) - (a1, D. Keaton,
female, 1946), (iil) T5: (ms, Manhattan, drama, 1979, W. Allen) - (ms, a1) - (a1, D.
Keaton, female, 1946), (iv) Tu: (ma, Broadway Danny Rose, comedy, 1984, W. Allen)
- (ma, a2) - (a2, M. Farrow, female, 1945), (v) Ts: (ms, The Purple Rose of Cairo,
comedy, 1985, W. Allen) - (ms, a2) - (a2, M. Farrow, female, 1945), (vi) Ts: (me,
Hannah and her Sisters, comedy, 1986, W. Allen) - (ms, a2) - (a2, M. Farrow, female,



1945), (vii) T7: (mz, Deconstructing Harry, comedy, 1997, W. Allen) - (m7, as3) - (as,
J. Davis, female, 1955) and (viii) Ts: (ms, Celebrity, comedy, 1998, W. Allen) - (ms,
a3) - (as, J. Davis, female, 1955),

with ages 1977, 1978, 1979, 1984, 1985, 1986, 1997 and 1998, respectively. Ap-
plying the JTT Partitioning Algorithm results in producing three groups G1, G»
and Gg with trees {’111,7‘12,713}7 {T4,T5,T6} and {T7,T8}.

2.4 Summaries of Keyword Query Results

In this section, we describe the notion of group summaries that put in a nutshell
the results within groups of keyword searches. In general, group summaries pro-
vide hints for query refinement and can lead to discoveries of interesting results
that a user may be unaware of.

Let Res(Q) be the query results of a query @ and A be the set of keywords
appearing in the JTTs of Res(Q). Let also Gy, ...,G, be the groups of JTTs
produced for Res(Q). Our goal is to compute an importance score s; ; for each
keyword a; in A for each group G, 1 < j < z. Then, for each group G, the
top-k keywords, that is, the k keywords with the highest importance scores are
used as a summary of the JTTs in G;. Formally:

Definition 9 (Group Summary). Let G; be a group of JTTs belonging to
the query result Res(Q) of a query @ and A be the set of keywords appearing
in the JTTs of Res(Q). The group summary Sg,, Sa; € A, of G is a set of k
keywords, such that, s; ; > sp j, Ya; € Sa,, ap € A\Sg; .

For example, for the keyword query Q@ = {W. Allen, female}, the group
summaries of the produced groups G, G2 and Gs, for k = 2, are Sg, = {drama,
D. Keaton}, Sq, = {comedy, M. Farrow} and Sg, = {comedy, J. Davis}.

To provide users with more detailed summaries that include some information
about the schema of the results, we extend the notion of group summaries to take
into account the relations that a keyword belongs to. Specifically, for each group
G, instead of reporting the set of the k keywords with the highest importance
scores, we report these keywords along with their associated relations. This way,
users obtain an overview about the possible origination and meaning of the
keywords. We refer to these summaries as enhanced group summaries. Formally:

Definition 10 (Enhanced Group Summary). Let G; be a group of JTTs
and Sq; be the corresponding group summary of G; with keywords a,...,a.
The enhanced group summary Eg, of G is a set of k pairs of the form (a;, P;),
such that, there is one pair Va; € Sg, and P is the set of relations that contain
a; for the JTTs of G.

Returning to our previous example, the enhanced group summaries of G1, G5
and G35 are represented as g, = {(drama, {Movies}), (D. Keaton, {Actors})},
Ea, = {(comedy, {Movies}), (M. Farrow, {Actors})} and £g, = {(comedy,
{Movies}), (J. Davis, {Actors})}, respectively.

Based on the summaries of the produced groups of results, we define the
summary of the query result as a whole, as follows:



Definition 11 (Query Result Summary). Let Gy,...,G, be the groups of
JTTs produced for the query result Res(Q) of a query Q. The query result sum-
mary Sq is a set of z group summaries, Sg = {Sq,,...,Sa.}, such that, Sg,
is either the group summary Sg, or the enhanced group summary Eq, of Gj,
1<j<z.

That is, for Q@ = {W. Allen, female}, the query result summary Sg taking
into account the group summaries is {{drama, D. Keaton}, {comedy, M. Far-
row}, {comedy, J. Davis}}, while for the enhanced group summaries we have the
summary {(drama, { Movies}), (D. Keaton, { Actors}), (comedy, { Movies}), (M.
Farrow, {Actors}), (comedy, { Movies}), (J. Davis, { Actors})}.

We could also consider other versions for summaries. For instance, assume
that the importance of each keyword is computed separately for each relation.
Then, we may report important keywords with respect to their relation-specific
scores or keywords for relations of high user interest.

Summary-based Exploratory Keyword Queries. Besides presenting
summaries to the users and offering, this way, a side mean for further explo-
ration, we also plan to use the summaries to directly discover interesting pieces
of data that are potentially related to the users’ information needs. Specifically,
to locate such related information, special-purpose queries, called summary-based
exploratory keyword queries, can be constructed. The focus of these queries is on
retrieving results highly correlated with the results of the original users queries.

Our plan is to employ the keywords of summaries to emerge new interesting
results. An exploratory keyword query for a query @ will consist of a set of
keywords, that is a subset of the keywords in a group summary G; of @, that
frequently appear together in the JTTs of G;. There are also other ways for
constructing exploratory queries that qualify different properties. For example,
sets of keywords that frequently appear in the result and, at the same time, rarely
appear in the database ensure high surprise, or unexpectedness, as a measure
of interestingness, as surprise used in the data mining literature (e.g., [17]).
Recently, exploratory queries are used for exploration in relational databases
through recommendations [8].

3 Evaluation

To demonstrate the effectiveness of grouping and summarizing keyword search
results, we conducted an empirical evaluation of our approach using a real movie
dataset* with 30 volunteers with a moderate interest in movies. The schema of
our database is shown in Fig. 2 while the size of the database is 1.1 GB.

We run our experiments for queries of different sizes, i.e., number of key-
words, and keywords of a different selectivity. We presented the results to the
participants using two methods, 1) without any grouping (baseline method) and
2) with groups produced by our approach (grouped method). In the baseline
method, for each query, we presented an enhanced group summary of the whole

* http://www.imdb.com /interfaces



Movies Genres

_,,._){ mid ‘ title ‘ year ‘ keywords ‘ mid | genre
T |
Writers Movies2Writers Movies2Actors Actors

wid | name | gender | [wid | mid ‘mid ‘aid ‘cha,acm ‘ ‘aid ‘name ‘gender ‘ dob ‘
) L] )

Producers Movies2Producers Movies2Directors Directors

pid name | gender pid | mid m ‘did

name ‘ gender ‘ dob ‘

Fig. 2: Movies database schema.

result-set, considering the whole result-set as one group. To help the users under-
stand the context of the significant terms we presented them also the attribute
value in which a significant term appeared in. We give also the participants
the ability to examine the set of produced JTTs. The results, i.e., the JTTs,
are ranked based on their size that corresponds to the relevance of the trees to
the query. In the grouped method, the participants are initially presented the
groups of JTTs which were formed on the same results that were presented in
the baseline. The groups are indicated to the participants by the time period
each group covers. When a participant focuses on period he/she is provided with
the summary of the group’s content and the results belonging to that group.

The participants were asked to evaluate the quality of the results. For char-
acterizing the quality, we use four measures: (i) group coherence, which evaluates
the similarity of the results content inside a group , (ii) baseline summary quality,
which evaluates how descriptive is the summary of the baseline method for the
whole result set, (iii) group summary quality, which evaluates how descriptive is
the summary of each group, and (iv) usefulness evaluation, that evaluates if the
participant found the grouping method more helpful than the baseline method.

For grading the grouping, the participants were asked to evaluate for each
group if the movies in the group fit well together. We used 3 values: not coherent
(0), quite coherent (1), and very coherent (2). The users were also asked for each
summary if it was descriptive of the result and if it was helpful for them to
understand the content of the results. The summaries were also graded using
three values: not descriptive (0), quite descriptive (1), and very descriptive (2).
The degree of overall usefulness was graded with two values: our method is not
helpful (0), and our method is helpful (1). Each query was evaluated by at least
3 participants while 95% of the queries were evaluated by at least 4 and 75% by
at least 8. On average there were 8 evaluators per query.

Group coherence. Table 1 shows the average values of the coherence mea-
sure for each query as they were estimated by the participants. According to the
average group coherence value, that is 1.52, the participants found the grouping
of the results to be meaningful and helpful for them to understand the results.



Table 1: Group coherence evaluation for each query.

Query Average group coherence
“Daniel Craig” movies 1.50
“James Bond” movies 1.50
“James Bond” male actors 1.50
“Woody Allen” female actors 1.27
“Clint Eastwood” movies 1.50
“Peter Jackson” male actors 1.75
“Peter Jackson” movies 1.33
“Denzel Washington” Action 1.88
“Julia Roberts” Comedy 1.71
“Julia Roberts” movies 1.75
“Kevin Spacey” drama 1.27
“Jack Nicholson” female actors 1.44
“Al Pacino” movies 1.45
“Al Pacino” male actors 1.50
“Al Pacino” directors 1.50
“Stanley Kubrick” actors 1.75
“Stanley Kubrick” movies 1.60
“Lord of The Rings” Tolkien 1.30
“Robert De Niro” directors 1.60
“Francis Ford Coppola” male actors 1.75

Summary quality. Table 2 reports the average values of the quality mea-
sures for each query (we omit the detailed per person scores due to space limita-
tions). As it can be seen, in 90% of the queries the quality of group summaries
was better than (or equal to) the quality of the baseline summary according to
the participants. This comes to complete accordance with the percent of partic-
ipants (85%) who found our approach helpful. We can also draw the conclusion
that while in all queries the majority of participants found the grouped sum-
maries to be quite or very descriptive, the baseline summary was evaluated as
quite or very descriptive in only 30% of the queries.

Time overhead. Finally, we study the overall impact of grouping and sum-
marizing keyword search results in terms of time overhead for the above query
examples. In particular, we measured the time needed to build the JTTs and
the time needed for creating the groups and summaries. The additional com-
putational cost of our approach is small in comparison with the generation of
the actual keyword search results. On average, the additional time consumed
for creating the summaries and groups was a magnitude smaller than the JTT
building time, and in no case was the creation of groups and summaries sig-
nificantly more expensive in terms of time than the building of the JTTs. For
example, the time overhead for the query {Stanley Kubrick, movies} is 3.7% and
for the query {Francis Ford Coppola, male actors} is 9.5%.



Baseline Group

Query summary quality | summary quality||Usefulness
“Daniel Craig” movies 0.75 1.50 0.75
“James Bond” movies 0.70 1.60 0.90
“James Bond” male actors 1.00 1.50 0.75
“Woody Allen” female actors 0.82 1.45 0.82
“Clint Eastwood” movies 1.36 1.57 0.86
“Peter Jackson” male actors 0.50 1.75 1.00
“Peter Jackson” movies 1.67 1.67 0.67
“Denzel Washington” Action 1.13 1.88 1.00
“Julia Roberts” Comedy 0.88 1.43 0.86
“Julia Roberts” movies 1.13 1.75 0.88
“Kevin Spacey” drama 0.64 1.28 0.82
“Jack Nicholson” female actors 0.22 1.56 0.89
“Al Pacino” movies 1.00 1.45 0.82
“Al Pacino” male actors 0.50 1.63 0.88
“Al Pacino” directors 0.50 1.50 1.00
“Stanley Kubrick” actors 1.00 2.00 1.00
“Stanley Kubrick” movies 1.50 1.30 0.80
“Lord of The Rings” Tolkien 1.36 1.20 0.60
“Robert De Niro” directors 0.30 1.60 0.90
“Francis Ford Coppola” male actors 1.00 2.00 1.00

Table 2: Summary quality evaluation for each query.

4 Related Work

Keyword search in relational databases has been the focus of much current re-
search. Schema-based approaches (e.g., [1,12]) use the schema graph to generate
join expressions and evaluate them to produce tuple trees. Instance-based ap-
proaches (e.g., [5]) represent the database as a graph in which there is a node for
each tuple. Results are provided directly by using a Steiner tree algorithm. Based
on [5], several more complex approaches have been proposed (e.g., [10, 13]). There
have also been proposals for providing ranked keyword retrieval, which include
incorporating IR-style relevance ranking [11], authority-based ranking [3], auto-
mated ranking based on workload and data statistics of query answers [6] and
preference-based ranking [18, 20].

Our approach is different, in that, we propose grouping keyword search re-
sults to help users receive the general picture of the results of their queries. A
comparison between a flat ranked list of results and a clustering web search in-
terface shows that the users of the clustering approach view more documents
and spend less time per document [21]. However, the relevance of the viewed
documents is unknown. [15] presents an approach for clustering keyword search
results based on common structure patterns without taking into account the as-
pect of time. Recently, [2] introduces a prototype and framework for interactive
clustering of query results. This technique is applied in document collections,
while our work focuses on structured data.



Summaries of keyword queries results resemble the notion of tag clouds. A tag
cloud is a visual representation for text data. Tags are usually single words, al-
phabetically listed and in different font size and color to show their importance®.
Tag clouds have appeared on several Web sites, such as Flickr and del.icio.us.
With regard to our approach for summaries, data clouds [14] are the most rele-
vant. This work proposes algorithms that try to discover good, not necessarily
popular, keywords within the query results. Our approach follows a pure IR tech-
nique to locate important, in terms of popularity, keywords. From a database
perspective, [9] introduces the notion of object summary for summarizing the
data in a relational database about a particular data subject, or keyword. An
object summary is a tree with a tuple containing the keyword as the root node
and its neighboring tuples containing additional information as child nodes.

Finally, our work presents some similarities with faceted search (e.g., [4, 16]).
Faceted search is an exploration technique that provides a form of navigational
search. In particular, users are presented with query results classified into mul-
tiple categories and can refine the results by selecting different conditions. Our
approach is different in that we do not tackle refinement. [8,19] present a differ-
ent way for database exploration by recommending to users items that are not
part of the results of their query but appear to be highly related to them. Such
items are computed based on the most interesting sets of attribute values that
appear in the results of the original query. The interestingness of a set is defined
based on its frequency in the results and the database.

5 Conclusions

In this paper we propose a framework for organizing the keyword search results
into groups that contain results with similar content that refer to similar tem-
poral characteristics. We employ summaries of results to help users refine their
searches. A summary of a result set is expressed as a set of important attribute
values in the result set. In addition we evaluate the effectiveness of our approach.
Our usability results indicate that users are more satisfied when results are or-
ganized with respect to content and time than when results are simply ordered
with respect to relevance.

Clearly, there are many directions for future research. Our plans include
studying different functions for computing similarities between JTTs, as well
as more efficient clustering algorithms. Finally, in this paper, we compute sum-
maries based on popularity; other properties, such as the dependence on the
query, should also be sought for.
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