
Enhancing Data Interoperability in
Multi-Platform Lakehouses with Apache Iceberg

Muhammad Hassan Shafiq, Zheying Zhang[0000−0002−6205−4210], and Kostas
Stefanidis[0000−0003−1317−8062]

Tampere University, Tampere, Finland
hassanshafiq17@outlook.com,zheying.zhang@tuni.fi,konstantinos.stefanidis@tuni.fi

Abstract. Managing data across diverse platforms poses significant chal-
lenges, including data duplication, vendor lock-in, and inconsistent gov-
ernance. Lack of a unified table format often leads to complex pipelines,
increased storage costs, and hindered interoperability. Apache Iceberg,
with its platform-agnostic design, presents a solution by providing a con-
sistent table format for large-scale analytical workloads while address-
ing cross-platform data accessibility. In this paper, we study the use
of Apache Iceberg as a unified table format to enable interoperability
between Snowflake and Databricks, with data stored on Amazon S3. Ex-
perimental setups include accessing Snowflake-managed Iceberg tables
in Databricks and vice versa. Key focus areas include examining query
performance, metadata synchronization, and the challenges of manag-
ing consistent data across platforms. Optimization strategies, specifi-
cally data reordering, were applied to test improvements in query perfor-
mance for various workloads. The results show that Iceberg reduces the
complexity of data management by automating metadata handling and
synchronization, ensuring real-time data consistency. Query performance
showed improvement in medium-complexity queries with optimized Ice-
berg tables, while highlighting potential areas for further optimization
in full-table scans. These findings underscore Iceberg’s potential as a
scalable, efficient solution for modern data lake architectures.

Keywords: Data Interoperability · Metadata Synchronization · Data
Lakes.

1 Introduction

The rapid expansion of data in enterprises has driven organizations to adopt
cloud-based solutions due to their flexibility, ease of resource provisioning, and
cost-effective pay-as-you-go models. Traditional data warehouses have been widely
used for structured data processing, offering strong consistency and query op-
timization. However, they are expensive and often lack the scalability needed
for handling semi-structured and unstructured data [1,7,11], leading to the rise
of data lakes. While data lakes provide scalable and cost-efficient storage, they
suffer from governance issues, data inconsistency, and slow query performance,
making them inefficient for enterprise analytics [6]. To address these challenges,



the data lakehouse architecture has emerged, combining the transactional sup-
port of data warehouses with the flexibility and scalability of data lakes [2].

According to a report from Virtana [12], over 80% of enterprises have adopted
a multi-cloud strategy, with 78% running workloads across more than three pub-
lic cloud platforms. Enterprises use these multiple cloud platforms, including
Databricks 1, Snowflake2, and others to address diverse needs: some excel in big
data and machine learning, while others specialize in SQL analytics and busi-
ness reporting. This multi-platform approach introduces significant challenges,
including data duplication, manual synchronization, and increased storage costs.
Moving large volumes of data between platforms requires custom integration
pipelines, leading to high operational overhead and governance complexities.
Furthermore, metadata management varies across platforms, making schema
evolution and access control enforcement inconsistent. Query performance also
differs due to variations in storage optimization and indexing strategies. As Mone
has pointed out, “Metadata management has emerged as a significant bottle-
neck in big data systems, where different platforms often have disparate ways of
accessing and managing data” [3]. Without a standardized approach, ensuring
real-time data synchronization across platforms remains a major challenge.

To mitigate these issues, organizations require a unified table format that
facilitates efficient metadata handling, transactional consistency, and interoper-
ability across cloud platforms. Furthermore, a unified table format would en-
hance cross-platform data sharing and accessibility. By having a common meta-
data structure, organizations could streamline the integration of data pipelines,
reducing the risk of data mismatches and versioning errors. This consistency
would support more accurate analytics and reporting, enabling them to make
data-driven decisions with greater confidence. As multi-platform data ecosys-
tems expand, a unified table format offers a clear path to building flexible, effi-
cient architectures that leverage each platform’s strengths without the complex-
ity of managing separate systems. It enables a single source of truth, reduces
operational overhead, and supports diverse analytics without redundant data
copies. Several open table formats, including Delta Lake3, Apache Hudi4, and
Apache Iceberg5, have been developed to address these needs. While Delta Lake
is tightly integrated with the Databricks ecosystem and Apache Hudi is op-
timized for real-time ingestion, Apache Iceberg has gained significant traction
due to its vendor-neutral architecture, broad compatibility, and advanced data
management capabilities. Iceberg provides ACID (Atomicity, Consistency, Iso-
lation, Durability) transactions, hidden partitioning, schema evolution without
full table rewrites, and time travel for historical analysis. Its ability to support

1 https://www.databricks.com/
2 https://www.snowflake.com/en/emea/
3 https://delta.io
4 https://hudi.apache.org/
5 https://iceberg.apache.org



multiple query engines, including Spark6, Trino7, Flink8, Hive9, Databricks10,
Snowflake11, and Redshift12, makes it a strong candidate for enabling multi-
platform data interoperability.

This work aims to understand the structure of Apache Iceberg, its features,
how it fits in the modern data architecture for cross-platform integrations, and
the reasons behind its growing adoption across cloud providers. This study also
explores the use of Iceberg as a unified table format for cross-platform data
access between Snowflake and Databricks, leveraging S3 13 as the underlying
storage layer. It aims to assess query performance across different workloads,
analyzing execution latency for simple, medium, and complex queries. Addition-
ally, it investigates Iceberg’s ability to maintain real-time data synchronization
and schema evolution across platforms, ensuring consistency without requiring
extensive manual intervention. By identifying potential limitations and areas for
improvement, this research contributes to a deeper understanding of Iceberg’s
role in modern multi-platform data architectures and its potential to drive seam-
less, efficient, and interoperable data management.

The rest of the paper is structured as follows: Section 2 covers related work;
Section 3 uncovers the current integration option and structure of Iceberg Table;
Section 4 presents a bi-directional integration between Snowflake and Databricks;
Section 5 outlines the experimental design; Section 6 presents results; and Section
7 concludes with key contributions.

2 Background and Related Work

In the early days of data management, data was primarily stored in flat files,
which provided a simple storage mechanism but suffered from redundancy, in-
consistency, and lack of efficient query capabilities. As data volumes increased,
Relational Database Management Systems (RDBMS) emerged, inspired by the
Relational Model [4], to offer structured storage with ACID transactions ensuring
data integrity. While RDBMS provided efficient indexing and query optimiza-
tion, they were limited by proprietary storage formats that were tightly coupled
with their specific implementations. The increasing demand for large-scale dis-
tributed data processing led to the development of Hadoop [4], which introduced
the Hadoop Distributed File System (HDFS) for scalable storage and MapRe-
duce as a parallel processing framework. However, writing complex MapReduce
jobs required significant expertise, limiting its usability. To address this, Apache

6 https://iceberg.apache.org/spark-quickstart/
7 https://trino.io/docs/current/connector/iceberg.html
8 https://iceberg.apache.org/docs/1.4.3/flink-connector/
9 https://iceberg.apache.org/docs/latest/hive/

10 https://docs.databricks.com/en/delta/uniform.html
11 https://docs.snowflake.com/en/user-guide/tables-iceberg
12 https://docs.aws.amazon.com/redshift/latest/dg/querying-iceberg.html
13 https://aws.amazon.com/s3/



Hive14 introduced an SQL-like language, i.e. HiveQL, making it easier for ana-
lysts to query big data without extensive programming knowledge.

As data processing evolved, columnar file formats such as Apache Parquet15,
ORC16 were introduced to improve storage efficiency and query performance.
These formats enabled faster analytical processing by optimizing data compres-
sion and retrieval patterns. As data needs grew beyond traditional systems, the
concept of data lakes emerged, offering a more flexible, scalable way to store
vast amounts of raw and processed data. Modern data lakes are cloud-based
storage systems designed to accommodate data in its original format, whether
it is structured, semi-structured, or unstructured [10]. Unlike traditional file
systems or databases, data lakes decouple storage from computing, making it
possible to scale them independently based on demand. Building on the foun-
dation of HDFS, data lakes take the benefits of distributed storage to the next
level. While HDFS was designed for on-premises environments, data lakes lever-
age cloud-native architecture to provide infinite scalability, high availability, and
cost-effective storage. Unlike files in directories in HDFS, Data is stored as ob-
jects in data lakes, which are durable and can be accessed from anywhere. How-
ever, data lakes suffered from a lack of transactional consistency, governance
challenges, and poor query performance. This makes it difficult to maintain data
integrity across multiple analytical workloads [9].

To address the limitations of traditional data lakes, modern open table for-
mats were developed to introduce transactional consistency, schema evolution,
and efficient metadata management and support the lakehouse architecture [8].
The open table architecture (see Figure 1) extends traditional data lake stor-
age by implementing a metadata layer that tracks schema changes, partitions,
and transactional states. By decoupling the table structure from the underly-
ing storage, these formats offer enhanced data consistency, reliability, and easy
management of large datasets in data lakes. These formats separate logical and
physical data organization by abstracting the physical file structure. They track
the table’s state, including partitions, within a metadata layer at the file level.

Existing research has largely focused on comparing data warehouse and data
lake architectures, examining how data lakes enable the storage and processing of
both structured and unstructured data [1,10]. Additionally, studies have explored
the emergence of the lakehouse architecture, which integrates the strengths of
both approaches, offering enhanced performance and efficiency compared to
querying raw files directly in data lakes [2].

Further research has extensively compared the most widely used lakehouse ta-
ble formats, such as Delta Lake, Apache Hudi, and Apache Iceberg. These studies
focus on performance benchmarking, transaction guarantees, schema evolution
capabilities, and metadata handling efficiency [9]. Comparisons have analyzed
read and write performance, assessing each format’s ability to handle real-world
workloads involving frequent updates, deletes, and large-scale batch processing.

14 https://hive.apache.org/
15 https://parquet.apache.org/
16 https://orc.apache.org/



Data integration remains a fundamental challenge since the early days of
database systems, particularly in merging data from diverse sources into a uni-
fied, coherent view. Research has explored the issues associated with cross-
platform data integration, including schema heterogeneity, data quality, and
query rewriting—especially in autonomous, distributed systems [13,14]. These
challenges are further amplified in modern architectures, where data is spread
across different cloud platforms, technologies, and formats.

Research has also explored various data integration techniques and identi-
fies recurring challenges such as data heterogeneity, scalability, and performance
across platforms [14]. These limitations often stem from a lack of standardized
data representation and tight coupling between processing engines and storage
formats.

This study tackles the challenges outlined above by proposing the use of the
Apache Iceberg open table format to standardize and automate data integra-
tion across platforms. It specifically examines Iceberg’s effectiveness in a multi-
platform environment, focusing on its query performance, metadata synchroniza-
tion, schema evolution, and scalability when used with Snowflake, Databricks,
and data stored in Amazon S3. Unlike previous implementations that rely on
copying terabytes of data across platforms—a process that is both tedious to
maintain and prone to scalability and performance issues—this research aims to
provide a comprehensive understanding of Iceberg’s potential as a unified table
format for seamless cross-platform data sharing, all while maintaining a single
copy of the data.

3 Enabling Cross-Platform Data Interoperability

3.1 Introduction to Medallion Architecture in Modern Lakehouse
Systems

As organizations increasingly adopt cloud-native architectures and leverage mul-
tiple data platforms, the need for structured, scalable data processing pipelines
has grown substantially. One widely adopted paradigm that addresses this need
is the Medallion Architecture, which provides a layered approach to data or-
ganization within lakehouse environments [15]. The architecture is composed of
three layers:

– Bronze Layer: This foundational layer captures raw, unfiltered data from
diverse sources, such as transactional systems, IoT devices, logs, and APIs,
and stores it in a cost-effective, schema-flexible format within a data lake
or lakehouse. This layer ensures that all incoming data is preserved in its
original form for future processing or reprocessing.

– Silver Layer: The intermediate layer applies data transformation workflows
including cleansing, deduplication, normalization, and the enforcement of
referential integrity. These transformations are commonly performed using
ETL or ELT tools and can occur within the same platform or be transferred
to another engine optimized for data processing.



– Gold Layer: At the top of the medallion stack, this layer contains curated
datasets tailored for business intelligence, advanced analytics, and machine
learning workflows. Data in this layer is typically aggregated, joined, and
enriched to support domain-specific use cases, such as real-time dashboards,
forecasting models, and operational analytics.

To fully leverage each layer’s capabilities, different tools and platforms opti-
mized for specific tasks, such as cloud warehouses for BI, lakehouses for trans-
formation, and separate engines for machine learning, are deployed in different
layers based on the architecture and use case. This heterogeneous tooling intro-
duces the need for robust data integration pipelines that ensure consistency and
accessibility across layers and systems. Traditionally, several different integration
approaches have been developed to enable cross-platform data integration [14]:

1. ETL Pipelines: These extract data from one system, transform it, and load
it into another. While widely used, ETL workflows are often rigid, complex
to scale, and prone to latency and data duplication.

2. Data Virtualization: Offers real-time access to data across platforms with-
out physical movement. However, it introduces performance bottlenecks and
lacks robust support for transactional guarantees, particularly in analytical
workloads.

3. API-Based Integration: Exposes data or services through APIs to facili-
tate communication between platforms. While flexible, APIs require custom
development, introduce security and versioning challenges, and may not be
optimized for large-scale, high-throughput data transfers.

4. Centralized Data Lakes: Use cloud object storage to aggregate raw and
processed data from multiple systems. Though flexible, data lakes typically
lack standardized support for table-level operations, making schema evolu-
tion, version control, and concurrent access management difficult.

3.2 Standardizing Data Integration Across Platforms Using Apache
Iceberg

To address the fragmentation caused by legacy methods, we will adopt the Ice-
berg format to enhance cross-platform integrations. Iceberg tables are an open-
source, high-performance table format designed to enable reliable and efficient
data lake analytics. Developed initially by Netflix and now governed by the
Apache Software Foundation, Iceberg addresses many limitations of older ta-
ble formats. The official definition describes Iceberg as "an open table format
for huge analytic datasets" that brings SQL-like reliability and performance to
the realm of distributed data lakes [8]. Iceberg’s architecture is optimized for
cloud environments, allowing efficient integration with modern data processing
frameworks while eliminating issues related to file listing operations in object
stores.



Layered Architecture of Iceberg Tables Iceberg employs a structured, lay-
ered architecture that enhances scalability, query performance, and data consis-
tency. The architecture consists of three key layers as seen in Figure 2.

Fig. 1. Open Table Format Architec-
ture Fig. 2. Iceberg Table Structure.

The Metadata Layer in Iceberg plays a crucial role in managing table state
through structured metadata files. The Snapshot Metadata File captures schema,
partition details, and links to the Manifest List, enabling time travel and roll-
back. The Manifest List maps snapshots to Manifest Files, which store data file
paths and column-level statistics for optimized query performance. The Data
Files, stored in formats like Parquet, ORC, or Avro, ensure compatibility with
various tools while supporting partition evolution without rewriting data. The
Data Storage Layer supports diverse storage systems like Amazon S3 and Google
Cloud Storage, preserving native formats without conversion overhead. The ice-
berg catalog integrates with execution engines like Spark, Flink, Trino, and
Presto, leveraging metadata to optimize queries, ensure consistency, and prune
unnecessary files. This structured approach enhances data lake visibility, allow-
ing efficient data tracking via metadata pointers instead of costly file scanning.
Iceberg’s layered architecture improves performance, scalability, and interoper-
ability across analytics platforms.

Why Choose Iceberg? Iceberg’s architecture is purpose-built for efficient
cross-platform integration. Its metadata layer sits atop the data lake, allow-
ing query engines to quickly access the latest snapshot without scanning the
full dataset. The pointer-based structure adds clarity and control, bringing true
visibility to the data lake. As a result, Iceberg is gaining widespread adoption
and native support across diverse processing engines. With extensive support
from both commercial and open-source engines, and the recent announcement

https://iceberg.apache.org/spec/##overview


that S3 17 supports storing tables in Iceberg format, Iceberg ensures flexibility,
interoperability, and a vendor-neutral approach for modern data management.
By offering sophisticated metadata handling, schema evolution, and partition
pruning, Iceberg enables precise data management, unlocking the true potential
of data lakes for high-performance analytics. Its vendor-agnostic design ensures
compatibility with a wide array of query engines and storage systems, empow-
ering organizations to maintain flexibility and avoid vendor lock-in. This open
and scalable architecture positions Iceberg as a key enabler for modern data en-
gineering, seamlessly integrating with both existing data lakes and cutting-edge
analytics platforms. For these reasons, companies are increasingly focusing their
attention on the iceberg format, leading to its growing adoption.

4 Bi-Directional Data Integration Between Snowflake
and Databricks

To address the challenges of data interoperability and consistency across plat-
forms, in this section we will investigate the practical implementation of Apache
Iceberg tables as a unified table format between Snowflake and Databricks, with
data stored in Amazon S3. The experiments are designed to explore the research
question regarding the challenges and limitations of using Iceberg to enable cross-
platform data interoperability. This approach aims to simplify the complexities
of manual pipeline management while ensuring compatibility and interoperabil-
ity across diverse systems.

4.1 Architecture

The diagram 3 illustrates a generalized architecture for integrating Apache Ice-
berg tables across platforms (Snowflake and Databricks). The architecture com-
prises four main components. The source engine manages the Iceberg table,
ingesting incoming data, typically representing the silver or gold layers in the
Medallion Architecture, and writing it to a centralized data lake, such as Amazon
S3. It also interacts with a catalog that maintains metadata files and pointers to
the latest snapshot, ensuring transactional consistency. Both data and metadata
are stored in the data lake, which serves as the central repository. The source
engine requires write access to S3, typically controlled through IAM roles. A
query engine, used for analytics, BI, or ML workloads, connects to the catalog
to fetch the latest snapshot metadata and then reads the corresponding data
files from the lake. Access to the catalog can be established via JDBC/ODBC,
service principals, or native connectors, depending on the system. The query
engine also requires appropriate read permissions to access the data in S3. This
architecture ensures consistent, scalable, and efficient cross-platform data access
using a single, authoritative Iceberg table. The study uses the publicly available

17 https://aws.amazon.com/about-aws/whats-new/2024/12/amazon-s3-tables-apache-
iceberg-tables-analytics-workloads/



Yellow Taxi Trip Records 18 from NYC TLC, covering the first quarter of 2024.
With over 9.5 million rows and 19 columns, the dataset offers rich, real-world
attributes like timestamps, geolocations, and payment info—ideal for data lake
and analytical workload scenarios.

Fig. 3. Querying Iceberg Tables Across Platforms

5 Experimental Design

This section presents the methodology for evaluating Iceberg table integration
across platforms, emphasizing real-world scenarios encountered by data teams.
The experiment aimed to assess how efficiently Snowflake and Databricks can
access and process Iceberg-managed tables while ensuring real-time synchroniza-
tion and query optimization.

5.1 Integration Feasibility

Several detailed steps were followed 19, 20 to allow bidirectional integration of
Iceberg tables between Snowflake and Databricks.
18 https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
19 https://medium.com/snowflake/how-to-integrate-databricks-with-snowflake-

managed-iceberg-tables-7a8895c2c724
20 https://www.databricks.com/blog/read-unity-catalog-tables-in-snowflake



Snowflake Managed Iceberg Tables in Databricks
Step 1: Create an Amazon S3 bucket in the eu-north-1 region.
Step 2: Configure IAM role with read/write permissions for Snowflake to access S3.
Step 3: Create external volume to manage data transfers between Snowflake and S3.
Step 4: Create Snowflake-managed Iceberg table using the external volume and taxi
dataset.
Step 5: Apply security restrictions by creating a dedicated read-only user for
Databricks.
Step 6: On Databricks side, configure IAM role with read-only permissions.
Step 7: Set up Databricks cluster with 10.4 LTS runtime and required libraries (Ice-
berg, AWS bundle, JDBC) and the Snowflake user.

Databricks Managed Iceberg Tables in Snowflake
Step 1: Enable UniForm on the Delta table in Databricks (during creation or via
ALTER TABLE).
Step 2: Register Unity Catalog in Snowflake via Databricks service principal and
OAuth credentials.
Step 3: Grant Snowflake access to S3 with IAM role, trust policies, and define external
volume.
Step 4: Create Iceberg table in Snowflake referencing Unity Catalog metadata.
Step 5: Test integration by updating data in Databricks and verifying reflection in
Snowflake (via auto-refresh or ALTER ICEBERG TABLE REFRESH).

5.2 Data Synchronization with Varying Dataset Sizes

To evaluate performance and scalability, datasets of 3 million, 6 million, and 9
million rows were loaded into Iceberg tables, and synchronization performance
was observed. The test also included simultaneous access to multiple Iceberg
tables to assess concurrent query execution.

5.3 Schema Evolution Across Platforms

Schema evolution refers to structural changes in a dataset, such as adding new
columns, removing existing ones, or modifying column definitions (e.g., changing
a column’s data type or renaming it). It often represents a major challenge in
data pipelines, as changes to the structure of data can disrupt workflows and lead
to pipeline failures during data movement or integration. Schema evolution was
tested by adding a new RATING column (VARCHAR) to an Iceberg table and
updating it with default values. Additionally, type conversion from VARCHAR
to INT, which required a workaround—creating a new column RATING_INT, ap-
plying TRY_CAST, and renaming the column after validation.

5.4 Latency and Performance Testing

Latency and performance form a critical part of this experiment, as they demon-
strate how queries perform on both internally managed and externally managed
Iceberg tables. The dataset used for this evaluation contains over 9.5 million



rows. To enhance the analysis, external tables were also included in the evalua-
tion. External tables refer to datasets that reside in an external data lake, such
as AWS S3 in this case, where the query engine directly accesses the data files
without a dedicated metadata management layer. While this setup is similar to
Iceberg tables in terms of data location, the key difference lies in the presence
of Iceberg’s metadata layer. Furthermore, an optimization was applied to the
Iceberg table to enhance query performance. The data was reordered based on a
TIMESTAMP column, which should allow the query engine to read data more
efficiently by leveraging the sorted structure. Queries were designed in three
categories:

– Simple Queries – Basic operations like COUNT(*) to measure row counts.
– Medium Queries – Arithmetic or conditional computations based on col-

umn grouping with conditional logic.
– Complex Queries – Aggregations, with full join.

6 Results and Discussion

In this section, we will discuss the results to evaluate the performance and effi-
ciency of the integrations.

6.1 Integration Feasibility

The results showed that Iceberg table integrations between Snowflake and Databricks
were efficient and effective. When accessing Snowflake-managed Iceberg tables
from Databricks, Snowflake handles only lightweight metadata retrieval, while
Databricks performs the actual computation. Testing showed metadata retrieval
times within milliseconds. When Snowflake queried Databricks-managed Iceberg
tables, metadata retrieval worked as expected, but additional setup was required
to establish connectivity with Databricks’ Iceberg catalog.

6.2 Data Synchronization with Varying Dataset Sizes

Scaling the dataset size had no impact on synchronization. Netflix, managing
petabytes of data with Iceberg 21, further proves its scalability. The results were
the same for multiple datasets as they could be accessed concurrently without
issues, demonstrating the reliability of the integration. This capability ensures
that both current and future datasets can be easily managed and queried across
platforms without requiring significant reconfiguration or manual intervention.
If this process were implemented without Iceberg tables, it would require sig-
nificant overhead. For instance, syncing data between platforms would involve
setting up multiple services on both ends to ensure data transfer. Additionally,
scheduled jobs would be needed to refresh tables, taking considerable time and
21 https://netflixtechblog.com/optimizing-data-warehouse-storage-7b94a48fdcbe



Table 1. Differences between column data types

Snowflake Datatypes Databricks Datatypes

Number Decimal

Float Double

Varchar String

Timestamp Ntz(6) Timestamp

resources. Data quality checks would also be necessary at each step to verify
the accuracy and consistency of the data. By contrast, Iceberg simplifies this
process considerably. Since the data remains in the data lake and is accessed
via metadata updates, there is no need for duplicative jobs or complex synchro-
nization processes. As data resides solely in the data lake, any platform that
supports Iceberg can query it, giving organizations the flexibility to use different
platforms for varying use cases.

6.3 Schema Evolution Across Platforms

Schema evolution tests showed that Iceberg handles changes like adding, remov-
ing, or updating columns efficiently, with updates reflected instantly on querying
platforms—thanks to its metadata layer as they read the schema definition di-
rectly from the latest metadata files. This eliminates the need for manual schema
updates when the schema isn’t explicitly defined. However, direct type conver-
sion (e.g., VARCHAR to INT) isn’t supported and requires workarounds. Despite
this, features like column renaming and dropping worked seamlessly. We also ob-
served differences in data type handling across platforms (see Table 1), and noted
that Iceberg only supports microsecond precision for TIME and TIMESTAMP
types in both v1 and v2. Overall, Iceberg’s native support for schema evolution
reduces pipeline breakage and simplifies data operations by keeping platforms in
sync automatically. This capability significantly simplifies data operations, al-
lowing teams to focus on their analytical and operational goals without worrying
about the complexities of the manual schema management.

6.4 Latency and Performance.

Figure 4 shows Databricks-managed Iceberg tables were tested on both Databricks
and Snowflake, showing notable performance differences. In Databricks, simple
queries showed minimal difference between standard Iceberg and external ta-
bles, while medium queries executed 2 seconds faster than external tables and
4 seconds faster than standard Iceberg tables after optimization. For complex
queries, external tables outperformed others. In Snowflake, Iceberg tables out-
performed external tables by 4.5 times for medium queries and 9 times for hard
queries. Optimized Iceberg tables showed a slight performance improvement over
standard tables, highlighting the benefits of optimizations.



Fig. 4. Databricks managed Iceberg Table in Databricks(left), Snowflake(right)

Fig. 5. Snowflake managed Iceberg Table in Snowflake(left), Databricks(right)

Next Snowflake-managed Iceberg tables were tested on both Databricks and
Snowflake, showing notable performance differences. In Snowflake, Iceberg tables
outperformed external tables, being 9 times faster for medium queries and 12
times faster for hard queries, likely due to Snowflake’s use of its own catalog. In
Databricks, external tables generally performed better, except for medium-sized
queries as seen in Figure 5. Queries leveraging Iceberg features and scanning
fewer partitions were notably faster. Performance in Databricks varied based on
query type and operations.

This reveals several interesting observations. Iceberg tables outperformed ex-
ternal tables for queries that did not require a full table scan, such as conditional
calculations. This was consistent for both self- managed and external-managed
Iceberg tables in Databricks. However, in cases of full table scans, external tables
demonstrated faster performance. In Snowflake, Iceberg tables outperformed ex-
ternal tables across all query types, particularly when managed by Snowflake.
Iceberg tables also offer the advantage of automated synchronization, ensuring
near real-time data access and consistency, unlike external tables that require pe-
riodic refreshes, leading to delays, extra costs, and the risk of querying outdated
data.



6.5 Challenges and Limitations

Integrating external Iceberg tables in Databricks with Unity Catalog 22 enabled
presents challenges, as Unity Catalog uses Delta Lake as the primary metadata
format, limiting access to external Iceberg tables. While Databricks can read
Iceberg tables from external platforms when Unity Catalog is disabled, com-
patibility issues remain. Another important consideration is that as data size
increases, it’s crucial to implement policies for expiring outdated metadata and
data files. This ensures that the data doesn’t grow unnecessarily, helping to keep
storage usage in check according to specific requirements. While Iceberg tables
offer a promising solution for automating data synchronization across platforms,
their query performance for full table scans on certain platforms still falls short
and requires further optimization.

7 Conclusions

In this paper, we have explored the evolution of data management, the challenges
posed by different offerings, the emergence of the lakehouse architecture, the
advent of modern open table formats, and the complexities that arise when using
multiple table formats across different platforms. The challenges organizations
face in ensuring interoperability among these formats underscore the pressing
need for a unified table format. This need becomes even more critical in a data-
driven world where data sharing and efficient analytics are pivotal for success.

Apache Iceberg has emerged as a strong solution for modern data challenges,
offering performance, scalability, and cross-platform consistency. Its growing
adoption enables seamless interoperability between platforms like Snowflake and
Databricks, reducing latency, improving query efficiency, and simplifying data
management. Our comparative study showed that Iceberg enables near real-
time synchronization, handles schema evolution effectively, and minimizes data
duplication by maintaining a single data copy. While query performance was
strong—especially when avoiding full table scans—some integration aspects still
need refinement. Adopting Iceberg can streamline workflows, reduce operational
burdens, and unlock the full potential of data assets, empowering organizations
to make faster, more effective data-driven decisions.

Future research can explore several promising avenues to extend the find-
ings of this paper. A key focus could be evaluating Databricks functionality
when Unity Catalog begins supporting external Iceberg tables, with an empha-
sis on performance analysis. Additionally, expanding Iceberg’s integration with
platforms beyond Snowflake and Databricks could highlight its potential as a
truly universal table format. Investigating the adoption of advanced catalog sys-
tems, such as Apache Polaris 23, for managing metadata instead of relying solely
on storage engines, could enhance management and query performance. Fur-
thermore, advance optimization techniques could be tested for improving query
22 https://www.databricks.com/product/unity-catalog
23 https://polaris.apache.org/



performance. Iceberg’s time travel feature presents an exciting opportunity for
assessing its applications in historical data analysis and auditing. Exploring these
areas will provide valuable insights into Iceberg’s role in modernizing data ecosys-
tems and driving broader adoption across diverse platforms.

References

1. F.Ravat and Y. Zhao, "Data lakes: Trends and perspectives", International Con-
ference on Database and Expert Systems Applications, pp. 304-313, 2019.

2. Armbrust, Michael, et al. "Lakehouse: a new generation of open platforms that
unify data warehousing and advanced analytics". CIDR. Vol. 8. 2021.

3. Mone, A. (2020). "The Metadata Challenge in Big Data Systems". Journal of Data
Management, 23(4), 15-27.

4. Codd, E. F. (1970). A relational model of data for large shared data banks. Com-
munications of the ACM, 13(6), 377-387.

5. Jain, P., Kraft, P., Power, C., Das, T., Stoica, I., Zaharia, M. (2023). Analyzing
and Comparing Lakehouse Storage Systems. In CIDR.

6. F. Nargesian, E. Zhu, R. J. Miller, K. Q. Pu and P. C. Arocena, "Data lake
management: challenges and opportunities", PVLDB, vol. 12, no. 12, 2019.

7. V. Christophides, V. Efthymiou and K. Stefanidis, "Entity Resolution in the Web of
Data", Synthesis Lectures on the Semantic Web: Theory and Technology, Morgan
Claypool Publishers 2015, ISBN 978-3-031-79467-4.

8. Errami, Soukaina Ait, et al. "Spatial big data architecture: from data warehouses
and data lakes to the Lakehouse". Journal of Parallel and Distributed Computing
176 (2023): 70-79.

9. Armbrust et al. Delta Lake: High-Performance ACID Table Storage over Cloud
Object Stores. PVLDB, 13(12): 3411-3424, 2020.

10. J. Singh, G. Singh and B. S. Bhati, "The Implication of Data Lake in Enterprises:
A Deeper Analytics", ICACCS 2022.

11. T. Brasileiro Araújo, V. Efthymiou, V. Christophides, E. Pitoura and K. Stefanidis:
TREATS: Fairness-aware entity resolution over streaming data. Inf. Syst. 129:
102506 (2025).

12. https://www.virtana.com/press-release/virtana-research-finds-more-than-80-of-
enterprises-have-a-multi-cloud-strategy-and-78-are-using-more-than-three-public-
clouds/

13. Doan, AnHai, Alon Halevy, and Zachary Ives. Principles of data integration. Else-
vier, 2012.

14. Bagam, Naveen. "Data Integration Across Platforms: A Comprehensive Analysis
of Techniques, Challenges, and Future Directions." International Journal of Intel-
ligent Systems and Applications in Engineering 12 (2024): 902-919.

15. Bhatt, S., Sekar, D., Data Warehousing Modeling Techniques and
Their Implementation on the Databricks Lakehouse Platform, (2022).
https://www.databricks.com/blog/2022/06/24/data-warehousing-modeling-
techniques-and-their-implementation-on-the-databricks-lakehouse-platform.html.


	Enhancing Data Interoperability in Multi-Platform Lakehouses with Apache Iceberg

