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Abstract. Retrieval-augmented generation (RAG) improves the perfor-
mance of LLM-based applications by incorporating information from ex-
ternal knowledge bases. However, the introduction of search engines and
knowledge sources can also introduce new biases and stereotypes into
the system. Previous studies have shown that adjusting the bias of re-
trievers through fine-tuning can influence the overall bias of the RAG
system, mitigating bias in RAG. In this work, we propose a re-ranking-
based method, termed ReFaRAG, as an alternative to fine-tuning for
controlling the bias in retrieval results. We further investigate how bi-
ased retrieval output affects different LLMs within the RAG framework.

Keywords: RAG - Political bias - LLM.

1 Introduction

Retrieval-augmented generation (RAG) enhances the generation performance
of large language models (LLMs) by incorporating information retrieved from
external knowledge bases. This approach has proven particularly effective in
handling long-tail knowledge domains, mitigating hallucination issues in LLMs,
and adapting to scenarios characterized by rapid knowledge evolution [40].

LLMs can generate content that appears highly confident but is nonsensical
or unfaithful to the provided source, this is the notorious hallucination problem
[25]. With long-tail knowledge and highly time-sensitive information, LLMs are
inherently constrained by the distribution of their pretraining data, often leading
to suboptimal performance or even the generation of fabricated outputs [26].
Although targeted fine-tuning can help alleviate this issue [14], training LLMs is
costly and may lead to catastrophic forgetting, which can significantly degrade
the overall performance of the model.

The emergence of RAG has alleviated the hallucination problem of LLMs
and addressed the challenges of fine-tuning or continued pretraining in long-
tail domains. Rather than modifying the parameters of the LLM itself, RAG
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Fig.1: A general RAG workflow

addresses task-specific problems by incorporating information retrieved from ex-
ternal knowledge bases. These external sources are highly flexible—not only
in terms of domain coverage, allowing for the construction of customized lo-
cal knowledge bases tailored to specific applications, but also across modalities,
including text, knowledge graphs, images, and audio. Owing to this flexibility,
RAG methods are well suited to scenarios involving rapidly evolving knowledge,
as system responses can remain up-to-date simply by refreshing the underlying
knowledge base [40].

A general workflow of RAG is illustrated in Figure 1. Taking textual knowl-
edge as an example, a knowledge base, i.e., the corpus, is constructed by collect-
ing documents relevant to the application scenarios of RAG. At inference time,
given a specific question as the query, the system retrieves the most relevant
documents from the corpus as context. This context, along with the question, is
then fed into the LLM to perform reasoning and generate the final output.

However, the manifestation of bias in LLMs raises significant concerns, and
addressing bias in RAG systems proves even more complex. Since LLMs are
trained on massive amounts of unfiltered web data, they are prone to inherit-
ing a wide range of human biases—from stereotypes and factual inaccuracies
to derogatory language and harmful social assumptions. To mitigate biased or
harmful outputs and promote safer deployment, researchers have proposed var-
ious alignment techniques, such as Reinforcement Learning from Human Feed-
back (RLHF [28]) and instruction tuning [32]. These methods aim to align the
model’s behavior with human values and preferences by shaping its responses in
accordance with socially acceptable norms.

In addition to the LLM itself, RAG introduces external knowledge bases and
retrievers, making it challenging to measure and analyze system-level bias. [34]
have identified and quantified the contributions of different RAG components to
overall bias. While [16] have examined how biases inherent in external knowledge
bases impact system behavior, they have found that the external information
retrieved and injected into LLMs through RAG pipelines can easily undermine
the effects of alignment, causing the overall system to exhibit notable biases.

Since the automated reproduction of unfair behaviors may reinforce existing
societal inequalities [2], examining bias in RAG systems is both a meaningful
and necessary pursuit. [21] proposes using Rank Bias to measure the bias of
each component as well as the overall system. It systematically reveals the linear
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relationships among biases in the knowledge base, retriever, and LLM, and their
combined effect on the RAG. Furthermore, it introduces a method for controlling
RAG system bias by fine-tuning the retriever to adjust its inherent bias.

Building upon the research of [21] and inspired by [38], this study discovers
and validates that re-ranking methods can serve as a simpler, more direct, and
more precise alternative to fine-tuning for controlling the bias level in retrieval,
thereby influencing the overall bias of the RAG system. We refer to our method
as ReFaRAG: Re-ranking towards Fairer RAG. This approach not only elimi-
nates the substantial effort required for retriever fine-tuning but also avoids the
performance degradation that often occurs when adjusting the retriever’s bias
during fine-tuning, making it a more practical solution in real-world applications.
Furthermore, building on the proposed re-ranking method, this study enables a
more convenient investigation of how the ranking of biased information within
RAG systems affects different LLMs.

The rest of this paper is structured as follows. Section 2 discusses the related
work. Section 3 describes a way to quantify bias in RAG, and Section 4 introduces
a re-ranking based method for mitigating bias in RAG. Section 5 presents the
experimental evaluation and finally, Section 6 concludes the paper, presents the
limitations of our approach and provides suggestions for future improvements.

2 Background and Related Work

2.1 Background

With the rise of large-scale pre-trained language models (LLMs) such as GPT
[4] and LLaMA [13], these models have demonstrated impressive generative ca-
pabilities across a wide range of tasks. However, they face several critical lim-
itations: their knowledge is inherently static and difficult to update once pre-
training is complete; they suffer from knowledge hallucination [26], often gener-
ating plausible-sounding but factually incorrect information even when precise
referencing is required. To address these challenges, the RAG framework was
introduced, which incorporates an external retrieval module to inject up-to-date
and relevant knowledge into the generation process. This approach improves the
reliability and controllability of LLM outputs.

As research on RAG continues to evolve, a wide variety of knowledge sources,
retrieval strategies, integration techniques, and additional components aimed at
improving generation quality have emerged [40]. On one hand, this diversity
highlights the flexibility and broad applicability of the RAG paradigm; on the
other hand, the increasing structural complexity poses significant challenges for
systematic study and evaluation.

Meanwhile, growing societal concerns around fairness and transparency in
AT systems have become increasingly prominent [10]. In high-impact domains
such as news generation, educational question answering, biased outputs can
lead to serious consequences. For instance, recommendation systems may over-
promote mainstream perspectives, suppressing diversity; and question answering
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Fig.2: A query-based RAG pipeline

systems may reinforce stereotypes based on ethnicity or region, further ampli-
fying discriminatory viewpoints. As one of the most influential directions in Al
applications, RAG can significantly shape the bias profile of LLMs [16], thereby
impacting fairness in Al applications. Therefore, understanding and mitigating
bias in RAG systems is not only a technical challenge but also a societal imper-
ative.

Next part of this chapter begins with an introduction to the workflow of RAG
systems, followed by a brief overview of existing research on bias in both RAG
and LLMs.

2.2 The RAG Workflow

Figure 2 shows a standard query-based RAG approach based on dense retrieval
for textual data. At the top of the figure, the orange-colored section (arrows
and boxes) illustrates the standard query process when using an LLM. The user
submits a query, which is then used to construct a corresponding prompt—this
prompt can simply be the query itself. The prompt serves as the input to the
LLM, instructing it to perform the necessary processing and reasoning before
generating an output. In this pipeline, the LLM is referred to as the generator.

Before utilizing RAG, we need to preprocess the external knowledge corpus.
The green section of the figure illustrates this part. First, collect the exter-
nal knowledge corpus based on the task type and then, segment it into chunks
according to paragraphs or semantic units. Next, use an embedding model to
convert these corpus chunks of natural language knowledge into vector represen-
tations to construct a vector database. Finally, build an Approximate Nearest
Neighbor (ANN) index of the database, forming o in Figure 2. This indexing
process accelerates retrieval during inference, reducing response latency.
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When using RAG, the blue arrows in the figure illustrate the additional
steps compared to the original query process. First, use the same embedding
model to vectorize the query. Then, perform similarity matching between the
vector database index (0) and the embedded query to retrieve relevant infor-
mation. Common similarity metrics include cosine similarity, inner product, and
L2 distance. Finally, we get the most relevant retrieved content (9 in Figure
2). Integrate these relevant content and the query to build an enriched prompt,
then feed it into the generator (LLM) to produce the final response.

In the above process, the additional steps during the preprocessing and RAG
inference primarily involve the construction and utilization of the dense re-
triever. Retriever and generator are the two core components of RAG. How-
ever, other RAG methods incorporate additional components and mechanisms.
Following the classification in FlashRAG [19], we provide a brief introduction to
these components.

Judger: Determines whether retrieval is necessary for a given query. Upon
receiving the query, it first evaluates the need for retrieval before proceeding. An
example of this is SKR [31].

Refiner: Enhances the input provided to the generator by reducing the
prompt length and filtering out irrelevant retrieved documents, thereby improv-
ing the final RAG response. This process typically operates in Step 2 in the
figure. An example is RECOMP [35].

Reranker: After retrieving a list of relevant documents based on similarity,
the re-ranker applies a re-ranking mechanism to further refine the selection of
references passed to the generator. This step also occurs at 9 in the figure. An
example is [22].

In addition to standard query-based RAG architectures, integrate retrieved
information into LLM through prompt, alternative approaches have been pro-
posed to integrate external information into language models. According to [40],
these methods include:

Latent representation-based RAG, where retrieved content is incorporated
as latent representations to enhance the model’s understanding and improve
generation quality—exemplified by models such as FiD [17] and RETRO[3];
Logit-based RAG, which merges retrieved information directly into the de-
coding process, as seen in models like kNN-LM [20];

Speculative RAG, which optimizes resource efficiency by replacing generation
with retrieval when appropriate—representative methods include REST [15] and
GPTCache [1].

Given that detecting and mitigating bias in RAG systems remains a relatively
new and challenging task, this work focuses on a simplified setting: query-based
RAG with text-only corpora.

2.3 Bias in LLM and RAG

Bias in computer systems refers to the systematic production of unfair outcomes
that disadvantage certain groups or individuals [8]. As intelligent systems built
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on LLMs become increasingly integrated into daily life, concerns about the biases
exhibited by LLMs have attracted growing attention.

As previously discussed, since LLMs inherit biases and harmful content from
vast and heterogeneous internet data, systems built on top of LLMs often ex-
hibit varying degrees of biased behavior. Methods for evaluating bias in LLMs
generally fall into two main categories [10]:

1) Counterfactual-based evaluations: These approaches assess bias by com-
paring an LLM’s responses to different demographic groups in the same context.
For example, WinoBias [39] evaluates whether the model associates specific roles
with gender, while StereoSet [27] measures how the model completes sentences
based on stereotypical versus anti-stereotypical associations given a particular
group.

2) Prompt-based evaluations: These involve providing pre-constructed prompts,
such as sentence stems (e.g., BOLD [6] and RealToxicityPrompts [11]) or ques-
tions (e.g., BBQ [29] and UnQover [23|)—and analyzing the model’s generated
continuations or answers to assess potential biases.

Since RAG is primarily designed to enhance the generative capabilities of
LLMs, most existing studies adopt evaluation methods originally developed for
assessing bias in LLMs, with a particular focus on prompt-based QA setups. [34]
evaluated the impact of various components within a RAG system—Retriever,
Refiner, Judger and Generator—on both bias and generation accuracy. Their
findings highlight that, beyond the LLM itself, the retriever in particular plays
a critical role in shaping the system’s bias behavior. In a dimilar manner, [16]
focused on the influence of the corpus and demonstrated that the inclusion of
retrieved documents with even a small degree of bias can substantially affect the
bias exhibited by the RAG system. Such biased content can easily undermine
the alignment behavior of LLMs, and even neutral citations may lead the model
to produce overly confident outputs in uncertain contexts.

[22] employed a stochastic ranker in RAG to enhance the diversity of retrieved
results. Since useful information may still exist among documents not selected in
the top-k results, variations in the ranking order for the same query can influence
the subsequent generation outputs. While this work also employed a re-ranking
strategy, its primary objective was to enhance individual item-side fairness in
the process of retrieval, rather than improving the fairness of the RAG system.
[21] simplified the RAG system configuration and proposed a unified metric
to quantify the bias score of each component. Based on this framework, they
demonstrated a linear relationship between the retriever’s bias and the overall
system bias in RAG, and further introduced a method to mitigate RAG bias by
adjusting the retriever’s bias level. More details can be found in Section 3.

Building on the setup and bias evaluation framework proposed by [21], this
paper introduces a more straightforward and practical alternative for mitigating
bias in RAG systems. Instead of mitigating the bias in the retrieved knowledge
through fine-tuning the retriever in [21], we adopt a re-ranking approach to
directly control the bias of the information provided to the LLM. This method
not only avoids the additional costs and potential issues associated with fine-
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tuning, but also enables more precise control over the bias in the context. The
complete methodology is presented in Section 4.

3 Measuring Bias in RAG

As previously introduced, there exist various scenarios and methodologies for
measuring bias in LLMs and RAG systems. However, due to the inherent com-
plexity of studying bias in RAG, this work adopts a simplified evaluation frame-
work that focuses on binary group bias. The limitations of this binary setting,
as well as more realistic and complex bias scenarios such as multi-group bias,
are discussed as future work in Section 6.1.

Building upon the framework proposed in [21], this study adopts a modular
perspective to measure bias in RAG systems. Specifically, we define the corpus
as C, the retriever (embedding model) as E, the generator (LLM) as L, and
the overall RAG system as R. The corresponding bias scores are denoted as Cb,
Ey, Ly, and Ry, respectively. To quantify bias in each component or the entire
system, we use the following metric:

b count(gy ) ; count(gg), (1)

where g1 and go represent two opposing groups (e.g., liberals and conservatives
when measuring political bias). count(g; ) refers to the number of outputs aligned
with group g; across all test samples, and count(gs) is defined analogously. S
denotes the total number of test samples. The bias score b € [—1, 1], with values
closer to —1 indicating stronger bias toward g, and values closer to +1 indicating
stronger bias toward ¢;. More concretely:

— Cy is the average bias score of all documents in the knowledge base.

— Fj is the average bias score of the top-1 retrieved document per test query.

— L, is the average bias of the LLM’s outputs when queried directly with test
samples (without retrieval).

— R, represents the average bias of the full RAG system, where the generation
is conditioned on retrieved content.

3.1 Mitigate Bias

[21] used contrastive learning to fine-tune the embedding model 40 times, re-
sulting in 40 retrievers with varying levels of bias Ej}. By observing how changes
in Fy influence the overall system bias Rj, the study found a generally linear
relationship between them, formalized as:

Ry =s5-Fy+ Ly +¢, (2)

where s denotes the sensitivity of the LLM to bias in the retrieved input, and &
accounts for bias-irrelevant knowledge conflicts.
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Fig. 3: The ReFaRAG pipeline

When the slope s is sufficiently large—indicating that the model is sensitive
enough to biased inputs—it becomes feasible to adjust Ej, to bring R} closer to
zero, thereby achieving bias mitigation at the system level.

However, large-scale fine-tuning of embedding models is cumbersome. On
one hand, it is difficult to precisely control the degree of bias in the fine-tuned
models. On the other hand, as demonstrated in the experiments of [21], even with
the use of techniques such as PEFT (Parameter-Efficient Fine-Tuning [36]) and
WISE-FT [33]), a trade-off between bias mitigation and retrieval performance
still emerges. Specifically, adjusting the bias level of the embedding model often
comes at the cost of a degradation in retrieval effectiveness.

4 Mitigate Bias using Re-ranking in ReFaRAG

Inspired by [38], this study proposes a re-ranking based method that achieves an
equivalent adjustment of £} without modifying the parameters of the embedding
model. In essence, fine-tuning the embedding model affects the RAG system bias
Ry, by altering the bias composition of the context documents passed to the LLM.
Therefore, if we control the group-related bias in the retrieved documents via
probabilistic re-ranking during retrieval, we can replicate the effect of fine-tuning
the embedding model. This approach re-orders the retrieved results to match a
desired group distribution, thus achieving similar control over R} in a simpler
and more precise way, without losing the retrieval performance of the embedded
model. The method design is shown in Figure 3.

Concretely, to avoid extreme or uncontrolled bias during retrieval, we first
partition the corpus into two separate knowledge bases according to group align-
ment. For example, in the case of political bias, one sub-corpus contains only doc-
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uments reflecting liberal viewpoints, while the other contains only conservative-
aligned documents.

During retrieval, we retrieve the most relevant documents docl and doc2 to
a given query from two separate corpora, each consisting of documents related
to a specific group. Although it is theoretically feasible to use a unified corpus
and identify the top-ranked documents associated with each group (denoted as
groupl and group2) from the top-k retrieved results, we opt for a grouped corpus
design to decouple the influence of the embedder’s inherent bias.

For instance, suppose there are n documents in the corpus related to groupl,
and the embedder is highly biased toward groupl. In this case, retrieving the
most relevant document for group2 (that is,doc2) may require accessing at least
n + 1 documents. This introduces uncertainty and latency that are difficult to
control in practice. Therefore, we adopt a design in which corpora are constructed
separately by group to ensure a controlled and efficient retrieval process.

After retrieving docl and doc2 using top-1 dense retrieval from the two group-
specific corpora, we apply a Reranker to determine which document will be in-
cluded in the prompt as context for the LLM. Taking political bias as an example,
docl and doc2 may respectively reflect liberal and conservative viewpoints. We
introduce a probability parameter p to control the proportion of documents re-
trieved from the conservative-aligned corpus (group2). Under this setting, the
expected bias score of the retriever according to Equation (1) becomes:

Ey=(1-p)—p=1-2p. (3)

By adjusting p, we can effectively manipulate Ej, and, as shown in prior
analysis, consequently steer R, toward zero (see Equation (2)). This enables
controlled bias mitigation in the RAG system without altering model parameters.

5 Experimental Evaluation

This study evaluates the effectiveness of the proposed bias control method on
political bias.

Political Bias. Building on the methodology of [21], we construct a set of single-
answer multiple choice question tasks in which each question is accompanied
by two answer options reflecting opposing ideological perspectives—liberal and
conservative (see an example in Table 1). By prompting the RAG system to
choose between the two, we can assess its political alignment and measure the
degree of bias under different corpus or retrieval configurations.

Dataset. We sampled 200 items from the TwinViews-13k [9] dataset to construct
the QA test set. Each sample contains both liberal and conservative perspectives.
For each of these samples, we used DeepSeek-r1 [5] to generate a relevant question
based on the topic, forming the final test questions. The remaining samples from
TwinViews-13k served as the corpus. Based on the dataset’s inherent left /right
political labels, we partitioned the corpus into two knowledge bases—Iliberal-
aligned and conservative-aligned documents.
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Table 1: Example of the multiple-choice QA tasks
Topic Public Transportation
Question |What is the most effective approach to funding and managing public trans-
portation?
Choice A [Public transportation should receive increased funding and be expanded
to provide affordable and accessible options while reducing congestion and
carbon emissions.
Choice B |Public transportation should be self-sustaining and not rely on taxpayer
subsidies, as it may not be cost-effective or widely used.

Based on this setup, we note that the average corpus bias score across all

documents in our experiment is Cp=0, since the number of left-leaning and right-
leaning documents in the knowledge base is balanced. In practice, this effect of
C can be considered negligible, as our ReFaRAG constructs separate knowledge
bases for the two groups and selects context from one of them through a re-
ranking mechanism. The only exceptions are cases where one knowledge base
lacks content or contains only irrelevant documents.
Models and Implementation. We used GTE-base [24] as the embedding
model, and the FAISS [7] library was employed to construct index based on
cosine similarity across all settings. For the language models (LLMs), we selected
four widely-used open-weight models: Llama 3.1 8B Instruct [13], Gemma 2 9B
IT [12], Mistral 7B Instruct v0.3 [18], and Qwen 2.5 7B Instruct [37]. All models
were sourced from HuggingFace. The RAG pipeline was implemented using the
Langchain framework.

5.1 Results

Bias in RAG Components. To evaluate political bias, we first merged the
corpora containing left-leaning and right-leaning statements into a single bal-
anced corpus. Since the number of documents associated with each ideological
group is equal, the corpus bias score is set as C, = 0. We then measured the bias
scores of the embedding model and various LLMs under this configuration.

In this evaluation, if a model failed to produce a clear choice (i.e., did not
select either of the provided options according to the prompt template), the
response was classified as a refusal. These refusals were excluded from the bias
count, and the final bias score was still computed using Equation (1), with
conservatives defined as g, and liberals as gs.

As shown in Table 2, Lb denotes the bias score measured by directly testing
the QA dataset on the LLM, while Rb represents the bias score after applying
the RAG method. LLM refusal rate refers to the proportion of responses from
the LLM that do not provide a definitive answer, and RAG refusal rate reflects
the same measurement under the RAG setting. In particular, Eb = —0.17, which
is the bias score of the embedding model GTE-base.

It can be observed that both the tested embedding model and LLMs exhibit a
left-leaning bias, which is consistent with the findings reported in [21]. However,
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Table 2: Bias of LLM, RAG and Rejection Rates Comparison
LLM Lb Rb LLM refusal rate RAG refusal rate

Mistral -0.22 -0.355 73.5% 0.5%
Llama -0.74 -0.33 0% 0%
Qwen -0.83 -04 0% 0%
Gemma -0.145 -0.2 85.5% 8%

there are some numerical differences in the bias scores compared to those in [21].
These discrepancies can be attributed to variations in the datasets used for
evaluation, as well as differences in the construction of prompt templates.
Impact of Embedder Bias on Overall RAG Bias. In our proposed method,
the so-called embedder bias does not directly reflect the intrinsic bias of the
embedding model itself. Instead, it refers to the controlled ratio of biased doc-
uments presented in the context passed to the LLM. In this sense, the term
more accurately describes a controlled bias in the retrieval results rather than
the embedding model’s own bias. Nonetheless, to remain consistent with the
terminology used in [21], we continue to refer to this as embedder bias.

Experimental results in Figure 4 demonstrate that all tested LLMs conform
to the linear relationship expressed in Equation (2), indicating that the over-
all system bias (Rp) varies linearly with the controlled embedding bias (Fj).
Therefore, our reranking method enables effective control of the overall bias in
RAG systems by simply adjusting the polarity probability of the biased context
documents passed to the LLM, assuming the model is sufficiently sensitive.

Under the bias evaluation framework introduced in this work, this approach
allows for more precise manipulation of embedding bias, thereby achieving an
approximately unbiased RAG system. In contrast, controlling bias through fine-
tuning the embedding model is both more complex and less reliable, as the
outcomes of fine-tuning are often uncertain and difficult to predict.

Differences Between RAG and Pure LLM Behavior. By comparing the
overall behavior of models when used in a RAG setup versus directly as stan-
dalone LLMs, we observe that certain models—especially Gemma 2 9B IT and
Mistral 7B Instruct v0.3 —exhibit a significantly higher refusal rate when di-
rectly queried in potentially biased contexts. However, when RAG is employed,
the refusal rate notably decreases. There are two potential explanations for this:

1. Sycophancy Effect: LLMs may attempt to align with the perceived intent
of the user, a behavior known as Sycophancy in LLMs [30]. When biased
context is injected via RAG, the model might interpret it as a signal of the
user’s view and thus be more likely to provide an answer rather than refuse.

2. Disruption of Alignment Mechanisms: When used independently, the
LLM’s alignment mechanisms—trained to avoid producing harmful or bi-
ased outputs—are more robust. However, when external documents are in-
troduced via RAG, these mechanisms can be undermined, making the model
more likely to produce direct answers, even in sensitive contexts|16].
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Fig. 4: Impact of Embedder Bias on Overall RAG Bias

These findings highlight a critical issue: while RAG systems enhance informa-
tion retrieval, they may simultaneously compromise the alignment safeguards of
LLMs. This underscores the importance of bias regulation within RAG pipelines.

6 Conclusions

Building upon the work of [21], this paper proposes a simple re-ranking based
method, ReFaRAG, for mitigating bias in RAG systems without requiring fine-
tuning of the embedding model. The approach is both easy to implement and
avoids the common trade-off between performance and fairness often encountered
during model fine-tuning.

More importantly, this study offers a clearer understanding of the underlying
cause of bias in RAG systems: the exhibited bias is not directly attributable to
the embedding model itself, but rather to the bias present in the context content
passed to the LLM. This insight suggests that controlling the composition of
context via reranking mechanisms is an effective strategy for bias mitigation.
Furthermore, ReFaRAG opens up new possibilities for controlling bias in more
advanced RAG architectures, such as those that incorporate top-k retrieved doc-
uments into the context. The findings presented in this paper lay the ground-



Title Suppressed Due to Excessive Length 13

work for developing more fair and controllable retrieval-augmented generation
systems, and offer a promising direction for future research.

6.1 Limitations and Future Work

Binary Bias. This paper adopts a binary bias ratio as the primary metric for
evaluating RAG system bias. In the context of political ideology, this metric
measures the frequency with which the system favors left-leaning versus right-
leaning perspectives, thereby reflecting whether the model exhibits ideological
balance. This approach is reasonable in that if the system consistently favors
one group (e.g., the left), it may implicitly reinforce that stance and potentially
alienate or disadvantage users holding opposing views (e.g., the right). However,
the metric has inherent limitations. Real-world social issues are rarely binary;
rather, they often involve complex interactions among multiple social groups.
A two-sided metric may thus oversimplify the nuanced nature of bias in many
real-world applications. Additionally, some questions are inherently ambiguous
or reflect value pluralism, making it difficult to identify bias solely based on
frequency-based metrics. Future work could extend this study of bias in RAG in
several ways: (1) by considering multi-group or intersectional settings that better
reflect real-world social dynamics; (2) by developing more granular or continuous
bias measures to capture subtler forms of bias; and (3) by exploring the use of
causal inference and counterfactual analysis to enhance the interpretability and
diagnostic power of bias evaluation frameworks.

Top-1 Retrieval. In the experimental setup of this paper, the RAG system
retrieves only the Top-1 most relevant document as external knowledge input to
the LLM. However, in real-world applications, useful information is often dis-
tributed across multiple documents. Due to the limitations of retriever perfor-
mance and corpus chunking strategies, relevant content may not be concentrated
in a single source. Therefore, future research could explore incorporating Top-k
documents (e.g., Top-2, Top-5) as contextual input, and study how mixtures
of documents with varying bias polarities influence the final outputs of RAG
systems. This direction would not only better reflect practical deployment sce-
narios but also contribute to a deeper understanding of how bias propagates
under multi-document conditions.

Query-based RAG in Text. This study focuses on a query-based RAG system
and demonstrates that the proposed re-ranking method can effectively mitigate
bias to a certain extent. However, in more complex RAG architectures—such
as those incorporating a judger module, iterative retrieval loops, multimodal
information fusion, or other integration mechanisms like logit-based or latent-
representation-based RAG—the effectiveness and generalizability of our bias
measurement and mitigation strategies remain to be tested and improved. Since
bias propagation in these systems may follow more intricate pathways, future
work should investigate how the proposed framework performs under such set-
tings and explore necessary adaptations to address emerging challenges.
Dataset for RAG Bias. Given the complexity of bias issues in RAG systems
discussed earlier, one major limitation at this stage is the absence of dedicated
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datasets specifically designed for bias evaluation and mitigation in RAG. As a
result, current research relies heavily on carefully crafted experimental scenarios
and task-specific synthetic or collected data, which limits both the scalability and
reproducibility of studies in this area. We therefore advocate for the development
of more targeted datasets to support RAG bias research—encompassing both
well-controlled synthetic benchmarks and realistic datasets that reflect real-world
distributions and social contexts. Such resources are essential for systematically
investigating how RAG systems propagate or amplify bias, and for ultimately
paving the way toward more fair and value-aligned Al tools.
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