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From Part I

Entity resolution via blocking:
* Token blocking

* Attribute clustering

* Blocking based on infixes



Token Blocking vs Attribute Clustering

Token blocking uses a
Attribute clustering uses loose similarity
a not so loose similarity function function

Matching pairs
of entity
descriptions

\ /

~

Set of all pairs
of entity
descriptions

/

el = {(name, Smith), (country, USA)}

e2 = {(about, R. Smith), (livesln, California)}

e3 = {(brand, Jeep), (headquarters, USA)}

e4 = {(name, Ulrich), (country, Denmark)}

e5 = {(about, D. Brunson), (livesin, Nevada)}
e6 = {(title, California Dreamin’), (length, 2:34)}




Prefix-Infix(-Suffix) - Evaluation

Matching pairs
of entity

Infix Blocking
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Entity Resolution in the Web of Data

So far...
Rely on the values of the descriptions
A good way to handle data heterogeneity and low structuredness

=> Deal with loosely structured entities

=> Deal with various vocabularies
(side effect)

Still, many redundant comparisons are performed!
 Can we also use the structural type of the descriptions?




For further enhancing efficiency of entity resolution

Block Post-Processing



Block Post-Processing

STEP 1

Block

Block

Building FOSE

Processing




Block Post-Processing

The goal: Reduce further the number of comparisons

* Remove oversized blocks

— Threshold on the number of descriptions in a block
* Order blocks

— Examine first the blocks which are more likely to contain matches

* Remove low-order blocks

— We do not gain much by examining them
* Order comparisons

— Perform first the comparisons that are more likely to result in matches
 Remove low-order comparisons

— Similar to removing low-order blocks



Removing Oversized Blocks

N I

e, e, ey, e, e, €, Block size
e, e, e, threshold =3

€5 €3 €1 €y €1, €



Removing Oversized Blocks

€4, €4 e,, €3

e,, €, e, €, e, €,

Block size
threshold =3
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Block Post-processing

The goal: Reduce further the number of comparisons

» Remove oversized blocks
— Threshold on the number of descriptions in a block

* Order blocks
— Examine first the blocks which are more likely to contain matches

* Remove low-order blocks

— We do not gain much by examining them

e QOrder comparisons

— Perform first the comparisons that are more likely to result in matches

e Remove low-order comparisons

— Similar to removing low-order blocks
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Ordering Blocks [Papadakis et al. 2011(a)]

Assign a utility value to each block:
* u(b,) = gain(b,) / cost(b,)

gain(b,) : #superfluous comparisons spared in subsequently examined blocks
cost(b,) : #comparisons entailed in b,

Estimation for Clean-Clean Entity Resolution: u(bi) = 1 / max(|b;,|, |b;,|)

b, ; are the contents of block i that come from entity set j
Order the blocks in descending utility values

e This is the order in which they will be processed
 Low-order blocks will not be processed at all
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Ordering Comparisons [Papadakis et al. 2011(b)] &
[Whang et al. 2013]

Comparisons are ranked by the likelihood that they result in a match

E.g. based on the number of blocks they appear together [Papadakis et al. 2011Db]

Match_likelihood(e;, ;) = Jaccard(blocks(e;), blocks(e))) =
| blocks(e;) N blocks(e)) | / |blocks (e;) U blocks(e)) |

Low-ordered comparisons are:

» performed last (irrespective of the block in which they appear)
[Whang et al. 2013]

* not performed at all [Papadakis et al. 2011Db]

This way, matches are identified faster!

13



Meta-Blocking

STEP 1

Block
Building

Block

Post-
Processing
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Meta-Blocking

STEP 1 STEP 2 STEP 3

Block
Post-
Processing

Block Meta-

Building Blocking
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Meta-blocking [Papadakis et al. 2013 (b)]

A generic procedure for block re-construction
* Create blocks resulting in fewer comparisons
* Preserve effectiveness

Blocking graph: abstract graph representation of the original set of blocks

* Nodes: entity descriptions
 Edges: connect descriptions co-occurring in blocks

Use the blocking graph for discarding redundant comparisons

* l.e.comparisons already performed

Prune edges, not satisfying a criterion, for discarding superfluous comparisons

* l.e.comparisons between non-matches
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about Eiffel Tower

architect Sauvestre

Meta-blocking - Example

year 1889
] located Paris ed
name Eiffel Tower | name Statue of Liberty | about Lady liberty
architect | Sauvestre architect | Bartholdi Eiffel architect | Eiffel nElnis White Tower
year 1889 year 1886 location | NY e3 location Thessaloniki
location | Paris el | located NY e2 year- 1450
constructed e5
Blocks: Blocking graph: Pruned blocking graph:
(with token blocking) (remove edges with weight < 2)
€1, €y €1, €4 €, €3
€3, €4 €s
e,, €; e, €, e, €, .
edge weights = #common blocks 2 comparisons

13 comparisons

. : to identify 2 matches 5
to identify 2 matches




Iterative blocking as a procedure of blocking
post-processing
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Iterative Blocking [Whang et al. 2009]

Entity resolution results of a processed block, may help identifying more matches
in another block

— Newly created entity descriptions, i.e. merges of descriptions, are
distributed to other blocks

Blocks are processed multiple times, until no new matches are found

Disk-based algorithm is used to scale the process
— Use segments, each fitting in the main-memory
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Iterative Blocking - Example

Name | Year |Architects ___|location _____

€, Eiffel Tower 1889  Sauvestre Paris
e, StatueofLiberty 1886  Bartholdi, Eiffel NY
e, Lady Liberty 1885  Eiffel Liberty Island, NY
Eiffel Tower 1889 Paris
e
) Miss Liberty 1886  Gustave Eiffel Liberty Island
€s

Blocks generated if blocking keys are the year and the 15t letter of the location:

e, e, e,, e
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Iterative Blocking - Example

€, Eiffel Tower 1889

e, Statue of Liberty 1886

e, Lady Liberty 1885

Eiffel Tower 1889

:4 Miss Liberty 1886
5

Blocks generated if blocking keys are the year and the 15t letter of the location:

e, €, e, e, e

Sauvestre Paris

Bartholdi, Eiffel NY

Eiffel Liberty Island, NY
Paris

Gustave Eiffel Liberty Island

e,, e, match! they are merged as e,
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Iterative Blocking - Example

Name | Year |Architects ___|location _____

e, Eiffel Tower 1889  Sauvestre Paris
e, StatueofLiberty 1886  Bartholdi, Eiffel NY
e, Lady Liberty 1885  Eiffel Liberty Island, NY
Eiffel Tower 1889 Paris
e
e4 Miss Liberty 1886  Gustave Eiffel Liberty Island
5

Blocks generated if blocking keys are the year and the 15! letter of the location:

1886 1885

€, €5
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Iterative Blocking - Example

e, Eiffel Tower 1889

e, StatueofLiberty 1886

e Lady Liberty 1885

Eiffel Tower 1889

24 Miss Liberty 1886
5

Blocks generated if blocking keys are the year and the 15t letter of the location:

e]_/ e41 e14 e2 e3, e5

Sauvestre Paris

Bartholdi, Eiffel NY

Eiffel Liberty Island, NY
Paris

Gustave Eiffel Liberty Island

e,, s match! they are merged as e,
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Iterative Blocking - Example

e, Eiffel Tower 1889  Sauvestre Paris
e, Statue of Liberty 1886  Bartholdi, Eiffel NY
e Lady Liberty 1885  Eiffel Liberty Island, NY
Eiffel Tower 1889 Paris
e
) Miss Liberty 1886  Gustave Eiffel Liberty Island
€s

Blocks generated if blocking keys are the year and the 15t letter of the location:

e,, e. match! they are merged as e
2 5 25
el; e4; e14 le e5' e25 e3

€1 €4 €14 €2 €5 €3, €5, €55
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Iterative Blocking - Example

Name | Year |Architects ___|location _____

e, Eiffel Tower 1889  Sauvestre Paris
e, StatueofLiberty 1886  Bartholdi, Eiffel NY
e, Lady Liberty 1885  Eiffel Liberty Island, NY
Eiffel Tower 1889 Paris
e
e4 Miss Liberty 1886  Gustave Eiffel Liberty Island
5

Blocks generated if blocking keys are the year and the 15! letter of the location:
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Iterative Blocking - Example

Name | Year |Architects ___|location _____

e, Eiffel Tower 1889  Sauvestre Paris
e, StatueofLiberty 1886  Bartholdi, Eiffel NY
e, Lady Liberty 1885  Eiffel Liberty Island, NY
Eiffel Tower 1889 Paris
e
e4 Miss Liberty 1886  Gustave Eiffel Liberty Island
5

Blocks generated if blocking keys are the year and the 15t letter of the location:

e]_l e4l e14 eZ' e5' e25

II--

€,, €5 €3, €5, €55
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Iterative Blocking - Example

Name | Year |Architects ___|location _____

e, Eiffel Tower 1889  Sauvestre Paris
e, StatueofLiberty 1886  Bartholdi, Eiffel NY
e, Lady Liberty 1885  Eiffel Liberty Island, NY
Eiffel Tower 1889 Paris
e
) Miss Liberty 1886  Gustave Eiffel Liberty Island
€s

Blocks generated if blocking keys are the year and the 15t letter of the location:

e]_l e4l e14 eZ' e5' e25

€3, €5, €55
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Iterative Blocking - Example

Name | Year |Architects ___|location _____

e, Eiffel Tower 1889  Sauvestre Paris
e, Statue of Liberty 1886  Bartholdi, Eiffel NY
e, Lady Liberty 1885  Eiffel Liberty Island, NY
e, Eiffel Tower 1889 Paris
o Miss Liberty 1886  Gustave Eiffel Liberty Island
5

Blocks generated if blocking keys are the year and the 15t letter of the location:

e]_l e4l e14 eZ' e5' e25

e;, e,c match! they are merged as e, ;.
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Iterative Blocking - Example

Name | Year |Architects ___|location _____

e, Eiffel Tower 1889  Sauvestre Paris
e, Statue of Liberty 1886  Bartholdi, Eiffel NY
e, Lady Liberty 1885  Eiffel Liberty Island, NY
Eiffel Tower 1889 Paris
e
) Miss Liberty 1886  Gustave Eiffel Liberty Island
€s

Blocks generated if blocking keys are the year and the 15t letter of the location:

e;, e, match! they are merged as e, ;.

elr e4l e14 e2' e5' e25' e3’ e235
ol

€14 €3, €55, €335
€75, €535
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Iterative Blocking - Example

e, Eiffel Tower 1889  Sauvestre Paris
e, StatueofLiberty 1886  Bartholdi, Eiffel NY
e Lady Liberty 1885  Eiffel Liberty Island, NY
Eiffel Tower 1889 Paris
e
) Miss Liberty 1886  Gustave Eiffel Liberty Island
€s

Blocks generated if blocking keys are the year and the 15t letter of the location:

process continues iteratively, until no new
€14 €2 €5, €5, €3, €535 matches are found

€135

€14 €3, €35, €335
€5, €535



Extend iterative blocking by using MinHash
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HARRA [Kim & Lee 2010]

Extends iterative blocking by employing MinHash (for Jaccard approximation)

MinHash key

Inputentity | | 5
generation by h,

descriptions

Hash table in i-th iteration Outpu.t e.ntlty
descriptions
key;, Sia
keyk,, S, Semi-clean set

Iterative descriptions match- l

merge in each bucket

Scalability: A single hash table is used

— Before placing a description in a block, the description is compared to

the contents of the block
32



HARRA - Example

e, should be placed in the blue bucket

Hash Table:

Keys Values

e | | €D €D
Y
Black r@

\
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HARRA - Example

Before placing it there, we check if it matches e, or e,

@
= )2 ves

Hash Table:

Keys Values

Blue 6 G

i | | D €D

Black Q

\




HARRA - Example

Before placing it there, we check if it matches e, or e,

. @
6 ? YES @ is the result of merging e, and e,

@D -
Keys Values
Blue 6 @
Red Q °
Black Q

. J

Hash Table:

35



HARRA - Example

Continue until:
* no merge occurs, OR

* saved comparisons > threshold, OR

* # iterations > constant

Values

7

\

7

Re-initialize the input: Hash Table:
Keys
» Blue
Red

Black
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Blocking vs Iterative Blocking

Matching pairs

Set of all pairs

- Iterative
descriptions of entity

Blocking

Blockin
of entity 6 }

descriptions

\N /
Iterative Blocking
(pros) Lead to more
identified matches
(cons) Lead to more
comparisons




For handling huge volumes of data

MapReduce

38



MapReduce

Input data are partitioned

Input data partitions are sent to different nodes (mappers) in the cluster
 Map phase: distribute the current partition to multiple nodes (reducers)
— Emit (key, value) pairs
— Pairs with the same key are processed by the same reducer

* Reduce phase: process the pairs having the same key
— Emit (key, value) pairs — the output of the program

39



MapReduce

For handling huge volumes of data:

Proceed entity resolution in partitions!

The map phase reflects blocking (re-distribute descriptions)

The reduce phase reflects entity resolution (check for matches)

40



el

e2

e3

ed

e5

e6

e”/

e8

MapReduce - Input Data
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el

e2

e3

ed

e5

-

e6

e”/

e8

MapReduce — Input Data Partitioning

el

e2

e3

e4

e6

e’/

e8
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el

e2

e3

ed

e5

-

e6

e”/

e8

MapReduce — Mapper Input

el

e2

e3

Mapper 1

e4

e6

Mapper 2

e’/

e8

Mapper 3
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el

e2

e3

e4

e5

e6

e”/

e8

MapReduce — Mapper Example

»

el

e2

e3

a1 [l e [ia e
» OEne
o Jeafia es.

Mapper 1

Input

el= {(name Auguste Bartholdi),(year,1834)} - - -

e2={(about, Auguste Bartholdi)}

e3={(architects, Bartholdi Eiffel)

Qutput :

5 DTEE rrEen

cifel [ e3J Bartholdi [ e3

44



el

e2

e3

e4

e5

-

e6

e’/

e8

MapReduce — Mapper Output

el

e2

e3

a1 [l e [ia e
» OEne
o Jeafia es.

Mapper 1

e4

e6

» EEEae
2 e6 | 1o | es Jis] o5

Mapper 2

e’/

e8

= EE e
a8 Jk5 ] es

Mapper 3
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el

e2

e3

e4

e5

-

e6

e’/

e8

MapReduce — Shuffling & Sorting

el

e2

e3

e4

e6

e’/

e8

[CYEY CIE FIE
» OEne
ool lo

2] ea | 1a [ ea B
» EEEae ~ 5
2 e6 | 1o es [is] o5

= EE e
a8 Jk5 ] es
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el

e2

e3

e4

e5

» -

e6

e’/

e8

MapReduce — Merging

«|  [EHE] IS I
=iy CIE e
= [AErE
«| EECes

-« EIEEESE

7 = EE e
s a8 Jk5 ] es

» EEEae » B .

i [ e2
e
k1

1 [ e1 [ e2 e3 ] ed

Reducer 1

2 | e1 ] e2 ed | e6

Reducer 2

i3 el es |7

Reducer 3

4 &3

4 66

s | e

L e3 e6 o8

Reducer 4

K5 | e6
5 | e7
=

5| e5 [ e6 o7 | e8]

Reducer 5
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el

e2

e3

e4

e5

» -

e6

e’/

e8

MapReduce — Reducer

el

e2

e3

e4

e6

e’/

e8

a1 Jief e Jio o1
» OEEe
o [ea fa e

» EEEae » B .

2 o6 | ks les Jis e

= EE e
a8 Jk5 ] es

i [ e2
e
k1

f1

vl

a1 ] e 3 e | P8

v2

Reducer 1

2 o1 2] ea ] es [ T

vl

Reducer 2

vl

i3 el es |7

Reduderd.

4 &3

4 66

s | e

it [ e3 [ e | o3 [

v2

Reducer 4

K5 | e6
5 | e7
=

v2

f
i [ es Lo [ o7 [ s [ 22

f1

v3

Reduce

5_
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MapReduce — Reducer Example

fi vl
o 1] ez ] e3 | es [ PO
Reducer 1

Output :

Input :
ETEEEEE B e meo

e3-e4 | match

49



Dedoop — Standard Blocking [Kolb et al. 2012]

Dedoop performs standard blocking using MapReduce

Map function
— Input: an entity description
— Output: a (key, value) pair
» key: the BKV of the description
» value: the description having this BKV

The partitioning operates on the BKVs and distributes (key, value) pairs
among reduce tasks

— All entities sharing the same BKV are assigned to the same reduce task

Reduce function: Computes in each block the similarities between all
description pairs within the block

— Input: A BKV along with descriptions with this BKV
— Output: (key, value) pairs

» key: a pair of descriptions

e value: match/non-match

50



el

e2

e3

e4

e5

» -

e6

e”/

e8

el

e2

e3

e4

e6

e’/

e8

Dedoop — Mapper: BKVs as intermediate keys

a1
» e
o a3

a ea
» Eas
e

i3 7
» 4 [e8
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el

e2

e3

e4

e5

» -

e6

e”/

e8

Dedoop — Mappers: Build Blocks

el

e2

e3

e4

e6

e’/

e8

me.

‘ 2 | « »EIEY
-m Block 1
b k1
 ka |e
r B e N
kl | ed oC
Bl k2 | 6 |
» Eas
b 3 | o5
m : BIOCk3
' K3 | e7
o O . L QT
| ka |8 o m




el

e2

e3

e4

e5

» -

e6

e”/

e8

el

e2

e3

e4

e6

e’/

e8

et

= e

[
» Eas
2 ]

»

S

e
~CAE

Block 1

Block 2

Block 3

Block 4

$ ¥ ¥

Dedoop — Reducers: Compare Block Contents

el-e4

match

e2-e6

non-match

e5-e7

non-match

e3-e8

match




Chaining MapReduce Jobs

el

e2

e3

Mapper 1

ed

e6

Mapper 2

N

e8

Mapper 3

Chaining MapReduce reflects

iterative entity resolution

/7
Mapper 1
Reducer 1 Reducerl
—>
Mapper 2
Reducer 2 Reducer 2
Job 1
Mapper 3

54
The output of a MapReduce Job can be the input of another



el

e2

e3

e4

e5

-

e6

e”/

e8

el

e2

e3

e4

e6

e’/

e8

i e
» s
210 a3

i es
» s
i | e5

213 |7
» 2.1 [e8

Dedoop — Sorted Neighborhood [Kolb et al. 2011]

composite key = (partitionID, BKV)
partitionID(BKV) = 1, if BKV < “k3”
partitionID (BKV) = 2, else

(we know that we have two reducers available)



el

e2

e3

e4

e5

» -

e6

e”/

e8

Dedoop SN: Sorting the Keys

el

e2

e3

e4

e6

e’/

e8

m\
» IEs 1 [E
L e

210 a3
i | e
i es ——
» s
24 e
i | e5 -

» 243 |e7 |
244 [e8 B —pre




el

e2

e3

e4

e5

» -

e6

e”/

e8

Dedoop SN: Reducers Apply the Sliding Window

el

e2

e3

e4

e6

e’/

e8

ﬂ\
» IEs EE -
B i [es
2ka Je3
Wie 2
B IPIPE  Reducer 1
243 [e5
~ i 23 [es
- B Bl 2k3 [e7 |
7
N
mm_ Reducer 2




el

e2

e3

e4

e5

» -

e6

e”/

e8

el

e2

e3

e4

e6

e’/

e8

Lk et

Window 1

Reducer 1

Dedoop SN: Reducers Apply the Sliding Window

el-e4

match

el-e2

match

e4d-e2

non-match

Window 1

Reducer 2

e5-e7

match

e5-e3

non-match

e7-e3

match




el

e2

e3

e4

e5

» -

e6

e”/

e8

el

e2

e3

e4

e6

e’/

e8

Lk et

Window 2

Reducer 1

Dedoop SN: Reducers Apply the Sliding Window

ed-e2

non-match

e4-eb

match

e2-eb

non-match

Window 2

Reducer 2

e7-e3

match

e7-e8

non-match

e3-e8

match




el

e2

e3

e4

e5

e6

e”/

e8

Dedoop SN: We Also Need To Compare The

B

-

oundary Entities

el

e2

e3

e4

e6

e’/

e8

i e
» s
210 a3

i es
» s
i | e5

213 |7
» B -

Reducer 1

Reducer 2




Dedoop SN: Reducers Also Output the Boundary
Descriptions

Add a boundary number prefix
to the output composite keys

L1k et
L1 e

.,

M || Reducer1l
243 |5
243 |e7
240 a3
Reducer 2

boundary
number

Boundary number:
The last w-1 descriptions of reducer i
are assigned the boundary number 1

The first w-1 descriptions of reducer i
+1 are also assigned the boundary
number 1

The actual blocking key of

B —> eJis k3, it was assigned to

reducer 2 and it is associated
with boundary number 1



Dedoop SN: New MapReduce Job for the
Boundary Pairs

L1k et
L1 e

.,
102 |es

Reducer 1

Reducer 2

Identical map
112 ez » 112 |e2
1102 |6 1102 |6

1243 |5 » 1243 |5



Dedoop SN: Partition by Boundary Number

L1k et

EN

1k2 |e2
M || Reducer1l

243 |5

243 |e7

240 a3
Reducer 2

Identical map

Reducer applies
sliding window

Window 2

non-match

match

non-match

non-match

e6-e7

match

e5-e7

match




Still, there are repeated comparisons

64



Dedoop SN: Skipping Repeated Comparisons

L1k et
L1 e

F-----

e
ME

Reducer 1

Reducer 2

m ‘$m
121 s »%ﬂ

reducer #

TTon-racch |

e2-e5

match

e6-e5

non-match

e6-e5

non-match

e6-e7

match

natin

These comparisons are not performed again:
They have been performed in the previous
MapReduce job (they come from the same reducer)



Don’t match twice [Kolb et al. 2013]

Overlapping blocks lead to repeated comparisons

Adopt Comparison Propagation [Papadakis et al. 2012] to MapReduce:
* Descriptions need to be compared only within their least common block

66



Overlapping Blocks Lead to Repeated Comparisons

el

e2

e3

e4

e5

e6

e’/

e’/

e8

e8

kS| e5 | e6  e7  e8 ' ’

e6-e7 match

67



Map: Append the Subset of Smaller Keys for the
Same Description

el el
02 e2
e3 e3
e4 ed
e5 » e5
eb eb
e’/

e/
e8

e8

CIET] AT EREe
Ly e
FIET e

ol e i)
» DEN EEr
a0 T

= i3 | o7, ks ] o7, i3}
EEY SBE
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Map: Append the Subset of Smaller Keys for the
Same Description

el el
02 e2
e3 e3
e4 ed
e5 » e5
eb eb
e’/

e/
e8

e8

et ke etk ks et k)

RHEER
> 2 | e2, () 010 010
el e2 e4 e6
{k1} | {k1} | {k1} | {}

o Jes, 0
o
e | ot ) w2100

5 OEn CErE »ﬂ
{k1}| {k2}| {}

2 6, 1) K5 6, (12, k)
 IFREE
{k3} | {k2, k4}| {k3} | {k4}

= i3 | o7, ks ] o7, i3}
EEY SBE
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Resulting Comparisons

el

| IEN ERENT BTN

e2

2 W) e

e3

= | e3, k1)

e4

es 2 | ed, (k1)

e5

e6

| [N K5 | e6, (K2, k)

e’/

e8

7 = i3 | o7, ks ] o7, i3}

s [IEN FEEXTY

ki |el|e2]|e3
(4| {

el e2 e4
{k1} | {k1} | {k1}

el | e5
{k1,| {} )
k2} e4-eb
el-e5
- & mEmoE % ey
{k1}

eb
{k2}

e5 eb e7 e8
{k3} | {k2, | {k3} | {k4}
ka}




Large-Scale Collective Entity Matching
[Rastogi et al. 2011]

Assume that there is a rule R: Match(el, e2) => Match(e4, e5)
and that we have inferred: Match(el, e2)

In C2, we cannot infer Match(e4, e5) map: assign each Cito a
cluster node and run entity

resolution on it

reduce: bring all the new
evidence for each Ci
together

We should somehow inform C2 that el matches e2
 Then we could infer that e4 matches €5, according to rule R

Solution: message passing

« After matching in C1 finishes, send a message “Match(el, e2)”

* In the next MapReduce round, entity resolution runs with the new

evidence and infers Match(e4, e5)
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Linda [Béhm et al. 2012]

 Works on an entity graph constructed from RDF triples having URIs as
subject, predicate and object

— Literals are stored for each entity e as L(e)

* Matches are identified using two kinds of similarities:

— String similarity (token-based) of their literal values L(e)
* Checked once

— Contextual similarity (based on neighbors in the entity graph)
* Checked iteratively
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Contextual Similarity

What is context?

— Let node n in an entity graph correspond to an RDF subject or object,
identified by a URI
— The context C(n) of n is a set of tuples (p;, z;, w;), where
* 2 is a neighboring node of n
* p;is the predicate associated with an edge connecting n with z

* w;, is a numeric weight (how discriminative this information is)

That is, the context of n includes objects z; of triples with n as subject and
subjects z; of triples with n as object

location work C(Statue of liberty) =

e Statue of - {(location, Liberty Island, w1),
Island Liberty Barthol (is work of, Bartholdi, w2)}
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Contextual Similarity

The contextual similarity of nodes n and m is:

context_sim(n,m) =

. E max = w; X sim(p;,p;).if |C(n)l<lC(m)]

(Pi i Wi )EC(n)(p/ Zj.w ;i )EC(m)

* E ax w,* X . ) Sim(pi,p -),else
(p; .z .w; )=C(n) J Likj J
(pj.z;w;)EC(m)

where
X, 18 1,if n, m are identified as matches, and 0, else
sim(p;, p;) is the string similarity of the predicates of n, m

Intuitively, the contextual similarity finds matching neighbors and sums up their

similarity values
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Contextual Similarity

Overall similarity: combine sim and context_sim

The similarity score for descriptions n and m is:
sim(n, m) + B - context_sim(C(n), C(m)) — 6

S controls the contextual influence

0 is used for re-normalization to values around 0
* positive scores reflect likely mappings

* negative scores imply dissimilarities

Experiments have shown [ = 1 to perform well
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Linda [Béhm et al. 2012]

Scalability: Entity graph partitions are processed in parallel
 Each MapReduce node holds:

— A partition of the graph along with the similarities of the entity
description pairs in this partition

» Entity pairs are stored in a priority queue in descending order
wrt. their similarity

Effectiveness: Messages from mappers to reducers, only for the entity pairs
that need similarity re-computation

76



LINDA Algorithm

Two square matrices (|E|x|E|) are used:
* X captures the identified matches (binary values)

* Y captures the pair-wise similarities (real values)

— Initialization: common neighbors and string similarity of literals
— Updates: Use the new identified matches of X

Until the priority queue (extracted fromY) becomes empty:
* Get the pair (e, ) with the highest similarity
— (e;, &) match by default!
 Update X: matches of e, are also matches of e,

* Update the queue wrt. the new matches
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LINDA - Distributed Entity Resolution Using MapReduce

Distribute across a cluster the input entity graph

* Anodeiholds a portion Q. of the priority queue and the respective part
G, of the graph

Map phase

 Mapper ireads Q, and forwards messages to reducers for similarities re-
computations

— Matrix X of identified matches is updated

Reduce phase

* Similarities re-computations (MatrixY)
 Updates on priority queues
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dbprop: .
location dbprop: dbpedia:
sculptor Bartholdi
dbpedia:Liber
ty_Island
dbpedia:Statue
_of_Liberty
yago:
Upper_NY_Bay

fb:architect

fb:m.072p8

yago:is . yago:is yago.:Statue_
Locatedin | Yago: Locatedin~Of_Liberty
Liberty_Islan

d

Priority Queue:

(dbpedia:Statue_of_Liberty, yago:Statue_of Liberty)
(dbpedia:Statue_of Liberty, yago:Liberty Island)
(dbpedia:Liberty Island,yago:Upper_NY_Bay)
(dbpedia:Liberty_Island, yago:Liberty Island)
(dbpedia:Liberty Island, yago:Statue of Liberty)
(dbpedia:Bartholdi, fb:m.0jph6)

(dbpedia:Bartholdi, yago:Statue_of Liberty)
(dbpedia:Bartholdi, fb:m.072p8)



Priority Queue 1 (machine 1):

(dbpedia:Statue_of Liberty, yago:Statue_of_Liberty)
(dbpedia:Statue_of Liberty, yago:Liberty_Island)
(dbpedia:Liberty_Island,yago:Upper_NY_Bay)
(dbpedia:Liberty Island, yago:Liberty Island)

(dbpedia:Liberty Island, yago:Statue_of_Liberty)

(dbpedia:Bartholdi, fb:m.0jph6)
(dbpedia:Bartholdi, yago:Statue_of Liberty)
(dbpedia:Bartholdi, fb:m.072p8)

The priority queue is partitioned and partitions
are sent to the MapReduce nodes



cdbprop:

location dbprop:

sculptor

dbpedia:Liber
ty_Island

dbpedia:Statue
_of_Liberty

Entity Graph 1

/va;o:\>

Upper_NY_Bay

yago:is

LocatedIn ) yago:
Liberty Islan

d

dbpedia:
Bartholdi

yago:is yago:Statue_
Locatedin~Of_Liberty

fb:architect

fb:m.072p8

Priority Queue 1 (machine 1):

(dbpedia:Statue_of Liberty, yago:Statue_of Liberty)
(dbpedia:Statue_of Liberty, yago:Liberty_Island)
(dbpedia:Liberty_Island,yago:Upper_NY_Bay)
(dbpedia:Liberty Island, yago:Liberty Island)

(dbpedia:Liberty Island, yago:Statue_of_Liberty)

(dbpedia:Bartholdi, fb:m.0jph6)
(dbpedia:Bartholdi, yago:Statue_of Liberty)
(dbpedia:Bartholdi, fb:m.072p8)

The priority queue is partitioned and partitions
are sent to the MapReduce nodes



dbprop:
location

dbpedia:Liber
ty_Island
yago:
Upper_NY_Bay

dbprop: match

sculptor

dbpedia:Statue
_of_Liberty

dbpedia:
Bartholdi

fb:architect

match @

yago:is . yago:is yagq:Statue_
Locatedin | Yago: Locatedin~Of_Liberty
Liberty_Islan
d
Priority Queue 1: Priority Queue 2:

(dbpedia:Statue_of_Liberty, yago:Statue_of Liberty) (dbpedia:Bartholdi, fb:m.0jph6)
(dbpedia:Statue_of Liberty, yago:Liberty_Island) (dbpedia:Bartholdi, yago:Statue_of Liberty)
(dbpedia:Liberty_Island,yago:Upper_NY_Bay) (dbpedia:Bartholdi, fb:m.072p8)
(dbpedia:Liberty Island, yago:Liberty Island)

. ) The head of each queue is a match by default
(dbpedia:Liberty Island, yago:Statue_of_Liberty)

This triggers update messages



dbprop:
location

dbpedia:Liber
ty_Island

match

dbprop:

sculptor
dbpedia:Statue fbearchitect
_of_Liberty
match fb:m.072p8
yago:
Upper_NY_Bay
yago:is yago:is yagq:Statue_
yago: Locatedinnof_Liberty
Liberty Islan
d

LocatedIn
Priority Queue 1: Priority Queue 2:

dbpedia:
Bartholdi

(dbpedia:Statue_of Liberty, yago:Statue_of Liberty) (dbpedia:Bartholdi, fb:m.0jph6)

{dbpedia:Statue—of Liberty,yago:Libertylsland) (dbpedia:Bartholdi, yago:Statue_of Liberty)
(dbpedia:Liberty_Island,yago:Upper_NY_Bay) {dbpediaBartholdifbh:m-072p8)

(dbpedia:Liberty Island, yago:Liberty Island)
Dequeue these pairs, as each entity can be

mapped to at most one entity per data source



dbprop:
location

dbpedia:Liber
ty_Island
yago:
Upper_NY_Bay

dbprop: match

sculptor

dbpedia:Statue
_of_Liberty

dbpedia:
Bartholdi

fb:architect

match @

yago:is . yago:is yagq:Statue_
Locatedin | Yago: Locatedin~Of_Liberty
Liberty_Islan
d
Priority Queue 1: Priority Queue 2:

(dbpedia:Statue_of Liberty, yago:Statue_of Liberty) (dbpedia:Bartholdi, fb:m.0jph6)
(dbpedia:Liberty_Island,yago:Upper_NY_Bay) {dbpediaBartholdifbh:m-072p8)
(dbpedia:Liberty Island, yago:Liberty Island)

Send messages to the other nodes and check

this constraint again



dbprop:
location

dbpedia:
Bartholdi

dbprop:
sculptor

V4
> re-compute .
.. ey V4
\ similarities,
\ 7

yago:is
Locatedl

yago:is
LocatedIn

yago:
Liberty Islan
d

Priority Queue 1: Priority Queue 2:

(dbpedia:Liberty Island,yago:Upper_NY_Bay)
(dbpedia:Liberty_lIsland, yago:Liberty_Island)

—_—

re-compute

_ similarity

"=~ fb:m.072p8

string_sim(“sculptor

fb:architect

", “architect”) = 0, so

’

(dbpedia:Statue_of Liberty, fb:m.072p8) is
still not added to PQ1

Contextual similarity re-computations

Property names are also taken into account



dbprop: _
location dbprop: dbpedia:
sculptor Bartholdi
dbpedia:Liber
ty_Island
dbpedia:Statue
_of_Liberty
yago:
Upper_NY_Bay

fb:architect

fb:m.072p8

yago:is . yago:is yago.:Statue_
Locatedin | Yago: Locatedin~Of_Liberty
Liberty_Islan
d
Priority Queue 1: Priority Queue 2:

(dbpedia:Liberty_lIsland, yago:Liberty_Island)
(dbpedia:Liberty Island,yago:Upper_NY_Bay)

Priority queues are updated based on the new
similarities



dbprop: .
location dbprop: dbpedia:
sculptor Bartholdi

dbpedia:Liber
ty_Island
dbpedia:Statue
_of_Liberty
Upper_NY_Bay

fb:architect

yago:is . yago:is yagq:Statue_
Locatedin | Yago: Locatedin~Of_Liberty
Liberty_lIslan
d
Priority Queue 1: Priority Queue 2:

(dbpedia:Liberty_lIsland, yago:Liberty_Island)
(dbpedia:Liberty Island,yago:Upper_NY_Bay)

The head of each queue is a match by default

This triggers update messages



dbprop: .
location dbprop: dbpedia:
sculptor Bartholdi

dbpedia:Liber
ty_Island
dbpedia:Statue
_of_Liberty
Upper_NY_Bay

fb:architect

yago:is . yago:is yagq:Statue_
Locatedin | Yago: Locatedin~Of_Liberty
Liberty_lIslan
d
Priority Queue 1: Priority Queue 2:

(dbpedia:Liberty_lIsland, yago:Liberty_Island)

Dequeue this pair, as each entity can be
mapped to at most one entity per data source



dbprop:
location

dbpedia:Liber
ty_Island
yago:
Upper_NY_Bay

dbprop: match

sculptor

dbpedia:Statue
_of_Liberty

dbpedia:
Bartholdi

fb:architect

match @

yago:is . yago:is yago-:Statue_
Locatedin | Yago: Locatedin~Of_Liberty
Liberty Islan
d
Priority Queue 1: Priority Queue 2:

Output mappings



Using Neighbors for Computing Similarities

Matching pairs Without nfelghbgrs With. nei'gh'bor's
of entity (a loose similarity (a strict similarity
descriptions function is used) function is used)

®

Set of all pairs
of entity
descriptions

With neighbors
(pros) Lead to more
identified matches
(cons) Lead to more
comparisons




Entity Resolution in the Web of Data

So far...
Rely on the values and relations of the descriptions
A good way to handle data heterogeneity and low structuredness

=> Deal with loosely structured entities

=> Deal with various vocabularies
(side effect)

=> Deal with large volumes of data

Still, many redundant comparisons are performed!
 Can we also use the structural type of the descriptions?
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Tutorial Overview

What follows in Part II:

e Objectives of methods

— Effectiveness
— Efficiency
— Scalability

* Learning for Entity Resolution

* Conclusions (~20 mins)

[just the general picture]
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Objectives of Entity Resolution Methods

Effectiveness

— Maximize the number of true matches
— Minimize the number of false matches and false non-matches
Efficiency

— Minimize the number of performed comparisons
Scalability (for handling large volumes of data)

— Distribute the task of entity resolution to multiple computational
resources, e.g. MapReduce

The difference between efficiency and scalability

An efficient method could be limited to a specific data size

A scalable method could work in a distributed approach, without skipping
any redundant comparisons
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Effectiveness

Effectiveness, typically, by iterating over the data until no new matches are found

To measure effectiveness

A ground truth is required, i.e. a correct result of entity resolution for a
given set of descriptions

Effectiveness is measured by:
* Precision

* Recall

 F-score
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Measures for Effectiveness

Precision: number of correctly identified matches, compared to the
number of all suggested matches (correctly or incorrectly)

#identified true matches

#suggested matches

Precision =

Recall: number of correctly identified matches, compared to the actual
number of matches

#identified true matches

#true matches

Recall =

F-score (or F-measure): the harmonic mean of precision and recall

Precision-Recall

F —score =2
Precision + Recall
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Measures for Effectiveness

Generalized merge distance (GMD) [Menestrina et al. 2010]

inspired by edit distance

* GMD(X,Y): The minimum cost of transforming the result X of an entity
resolution method to the ground truth’Y

— For transformation use two set operations, split and merge

— The cost for transforming X to Y is the sum of the costs of the splits
and merges needed

96



GMD Example — 1

Let the cost of splitting be 2 and the cost of merging be 1:
Ground truthY: {(e,, e,), (e;, ,)}

Entity Resolution Output X: {(e,), (e,), (€3,€,)}

Transformation (merge): (el), (e2) = (el, e2) Cost:1

GMD(X,Y) = 1
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GMD Example — 2

Let the cost of splitting be 2 and the cost of merging be 1:
Ground truthY: {(e,, e,), (e;, ,)}

Entity Resolution Output X’: {(e;, e,, €3), (€,)}

Transformation (split): {(el, e2, e3), (e4)} =2 {(el, e2), (e3), (e4)} Cost:2

Transformation (merge): {(el, e2), (€3), (e4)} = {(el, e2), (e3,e4)} Cost: 1

GMD(X’,Y) = 3
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Measures for Effectiveness

Evaluate also the intermediate results of blocking, i.e. a blocking collection
— Pairs of descriptions in the same block denote candidate matches
— Pairs quality corresponds to precision

— Pairs completeness corresponds to recall
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Measures for Effectiveness

Evaluate also the intermediate results of blocking, i.e. a blocking collection
— Pairs of descriptions in the same block denote candidate matches
— Pairs quality corresponds to precision
— Pairs completeness corresponds to recall

Blocking cardinality (BC) approximates pairs completeness

— BC defines the average num of blocks an entity description is placed in

[Papadakis et al. 2012] b%l b, | _ b.: a block in a blocking collection B
BC =-

E| E: a given set of descriptions

BC reflects the degree of overlap of a blocking collection
— In partitioning blocks, BC =1
— In overlapping blocks, BC > 1
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Objectives of Entity Resolution Methods

e Effectiveness

 Efficiency

— Minimize the number of performed comparisons

* Scalability
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Efficiency

Comparisons between entity descriptions are computationally expensive
operations in the process of entity resolution

The goal is to:

Minimize the number of comparisons

How?
— Use blocking
— Use other block post-processing methods

* i.e.methods for processing the generated blocks to reduce further
the number of comparisons
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Measures for Efficiency

Reduction ratio (RR): A metric for efficiency in the context of blocking

Assume a blocking collection B:

RR measures the ratio of comparisons that will not be performed when using B over
the number of comparisons required by a different collection B’ that either includes
blocking, or not

1IC, |
RR=1—|CB

Bl

. . o _~ b (5 -1
| Cg| is the total number of comparisons contained inB: |C; |= ; 5
X=l

/

assuming symmetry holds
match(e,, e,) => match (e,,e,)
E.g.if B={(e,, e,), (e, €3, €,)}, then

Cp ={(e1,€2), (€1,€3), (€1, €4), (€3, €4)},and |Cy| =4
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Measures for Efficiency

Comparison cardinality (CC) approximates the reduction ratio

 CC s the average number of block assignments per comparison

| b. |

[Papadakis et al. 2012] bgB ;
CC =+

1IC, |

In general, CC reflects the distribution of comparisons per block
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Measures for Efficiency

CCq

ideal point

T 771

Papadakis et al. 2013(a)

I

|

I

| |
’ partitioning blocking method
|

I

| 1 BC

BC and CC form two orthogonal
axes of a metric space, capturing

the tradeoff between
effectiveness and efficiency

@® overlapping blocking method
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Objectives of Entity Resolution Methods

e Effectiveness

« Efficiency

* Scalability (for handling large volumes of data)

— Distribute the task of entity resolution to multiple computational
resources, e.g. MapReduce
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Scalability

Scalable methods can handle entity resolution in large volumes of data, namely
in the scale of millions or billions of entity descriptions

Usually, such methods use a distributed approach

— Parallelize the process of entity resolution across multiple computational
resources

A common way of measuring scalability

Plot the ratio of runtime needed by an entity resolution method to the size of
the input data

data size
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Measures for Scalability

Speedup S: how much a parallel algorithm that uses p processors is faster
than a corresponding sequential algorithm

, [used in distributed computing]
_ T,(sequential)

" T (parallel)

T,: the execution time of the sequential algorithm and

T,: the execution time of the parallel algorithm, using p processors

The ideal speedup is linear, i.e. doubling the number of processors halves the
execution time

speedup

number of processors
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Tutorial Overview

What follows in Part II:

 Learning for Entity Resolution [just the general picture]

e (Conclusions
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Learning for Entity Resolution

Entity resolution in other words...

Given a vector of attribute-wise similarities for a pair of entity descriptions
(e, ;), compute the probability P(e; and e; match)

Take a decision on this problem!

[Elmagarmid et al. 2007, Getoor & Machanavajjhala 2012]

What is a vector of attribute-wise similarities, or comparison vector?

— Keep the result of comparing the values of a pair (e;, ;) of descriptions
E.g.x, ;= [0.3,0.7,0.2]

This problem definition implies entity descriptions with the same set of
attributes, 1.e. data with high structuredness
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Learning for Entity Resolution

Is it easy to compute P(e; and e; match)?

Learning helps towards automating this task

— Given a set of descriptions E, take a decision on matches/non-matches,
based on the following rule

r.FPrlgEM)
P(ylq€0)

d = (e;;€), v is the comparison vector of g;, e,

[Fellegi & Sunter 1969]

M, Q is the matching, non-matching pairs of descriptions in E
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Learning for Entity Resolution

The decision of a match/non-match is based on a threshold t

If R is greater than a threshold value t, g is a match R>t=qEM
Otherwise, it is a non-match R=st=q€Q
Extension [Fellegi & Sunter 1969]

Use a third set A for ambiguous pairs of descriptions, i.e. neither matches nor
non-matches (t’ <t) R>t=qgEM

'sR=st=qg€EA

R<t'=qg€Q

In brief, existing approaches use:

— Supervised learning techniques, active learning techniques, unsupervised
learning techniques
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Conclusions
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Solution Space

A
Type of method input
Graph + Entity resolution is the problem of
identifying descriptions of the same entity
within one or across multiple data sources
Tree +
Tabular +
Blocking lterative Learning
! | ! >
Type of method
Effectiveness
Efficiency
Scalability

Objective of method

114



Solution Space

A
Type of method input

L]

Graph -

Tree +

L]

Tabular -

Effectiveness #
Efficiency #

Scalability #

Objective of method

Tabular data

— Compare values of common attributes, to
compute similarities

Tree data, e.g. XML: Hierarchical structure

— Similarity of values is affected by the similarity
of their ancestors and descendants

Graph data, e.g. RDF: Cycles and non-unique root
elements

— Computing similarities becomes harder

Blocking Iterative Learning
Type of method

Different types of input data impose different
solutions for the problem of entity resolution
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Solution Space

Type of method input

Graph

Tree

Tabular 4

Effectiveness

Efficiency

Scalability

Objective of method

Effectiveness: Find as many (few) true (false) matches as
possible

Efficiency: Resolve the given descriptions as fast as
possible, e.g. by reducing redundant comparisons

* Pre-processing to place descriptions in blocks

Scalability: Methods that can cope with Big Data

» Distribute the task of entity resolution to multiple
computational resources, e.g. Map/Reduce

Blocking Iterative Learning

Type of method

Discern entity resolution methods wrt.
their main objective
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Solution Space

Type of method input

Graph

Tree

Tabular 4

Blocking: Group together descriptions close to each other

— Rely on blocking keys, i.e. criteria for placing
descriptions into blocks

Iterative: Identify matches that can lead to new matches
— E.g. use the already merged descriptions

Learning: Use training data, annotated as matches or not
— Classify descriptions, using statistical inference

| | |
Ll L] Ll )

Effectiveness #
Efficiency #

Scalability #

Objective of method

Blocking lterative Learning

Type of method

117



Solution Space — A Detailed Taxonomy

Approaches for entity resolution

Blocking approaches Iterative approaches Learning approaches
Partitioning Overlapping Matching-based  Merging-based Supervised  Active  Unsupervised

PN

Overlap-positive  Overlap-negative Overlap-neutral
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Partitioning vs. Overlapping Blocks

Blocking approaches are distinguished between:
» Partitioning: Each description is placed in exactly one block

— Fewer comparisons
* Overlapping: Each description can be placed in more than one block

— More identified matches

In overlapping approaches, the number of common blocks between two
descriptions can be an indication of their similarity

* Overlap-positive: many common blocks = very similar

* Orverlap-negative: few common blocks = very similar
 Qverlap-neutral: #common blocks is irrelevant
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Discussion on Blocking

Blocking increases the speed of entity resolution
 Cost: missed matches

Selecting a good blocking key is more important than the blocking technique
[Christen 2012]

Partitioning approaches save space and time

 Fewer, smaller blocks, resulting in less comparisons
Overlapping approaches return more matches

 Trade-off between the number and the size of the blocks:
— Few, large blocks vs. many, small blocks
* More comparisons vs. more missed matches
Overlap-positive: lower misclassification cost
* Seem more appropriate for the Web of data
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A Classification of Blocking Approaches

_positive | _negative | _neutral _

Fellegi & Sunter 1969

Hernandez & Stolfo 1995 O
Yan et al. 2007 J

Draisbach & Naumann 2009 J

McCallum et al. 2000 o
Christen 2012 o
Gravano et al. 2001 .

Aizawa & Oyama 2005 C
Jin et al. 2003 J
Kolb et al. 2011, 2012 .
Papadakis et al. 2011

Papadakis et al. 2013 (a)

Papadakis et al. 2013 (b)

Papadakis et al. 2012

+ + + +

e: tabular data
+: graph data

121



Iterative Approaches

Partial results of the entity resolution process can be propagated to generate
new results

Iterative approaches can be grouped into:
— Matching-based: Exploit relationships between entity descriptions

* Ifdescriptions related to e; are similar to descriptions related to e,
this is an evidence that e;and e, are also similar

— Merging-based: Exploit the partial results of merging descriptions
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Discussion on Iterative Approaches

Iterative approaches target high effectiveness
— Exhaustively consider candidate matches

Each iteration is based on new knowledge
— Identified matches
— Merged descriptions of identified matches

Hybrid methods, i.e. iterative blocking, benefit from:
— The efficiency of blocking approaches
— The effectiveness of iterative approaches

Iterative approaches seem to fit well to graph data

— Relationships between descriptions are an important part of the available
semantics
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A Classification of Iterative Approaches

Approach Matching-based Merging-based

Bhattacharya & Getoor 2004, 2007 y
Rastogi et al. 2011 .
Dong et al. 2005 *
Herschel et al. 2012 .
Weis & Naumann 2006 [
Weis & Naumann 2004 [
Leitdo et al. 2007, 2013 .
Puhlmann et al. 2006 O
Bohm et al. 2012 +
Benjelloun et al. 2009 *
Benjelloun et al. 2007 *
Whang et al. 2009 *
Kim & Lee 2010 .

e :tabular data
] : tree data
+ :graph data
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Discussion

Type of method input:

 Determines the complexity of the similarity measure

Objective of method:

* Effectiveness is achieved by increasing the number of comparisons in a
single or multiple iterations

— Iterative methods target high effectiveness

» Efficiency is achieved by reducing the number of comparisons
— Blocking methods target high efficiency

* Scalable methods are capable of exploiting multiple machines
— Similarity computation should be parallelizable
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A Classification of Entity Resolution Approaches

Next, a classification on entity resolution approaches wrt. the type of their input
data, the type of their method and their objectives

— [ indicates focus on efficiency
— e indicates focus on effectiveness
— + indicates focus on scalability
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input

Fellegi & Sunter 1969
Hernandez & Stolfo 1995
Yan et al. 2007

Draisbach & Naumann 2009

McCallum et al. 2000
Christen 2012
Gravano et al. 2001

Aizawa & Oyama 2005
Jin et al. 2003

Kolb et al. 2011, 2012
Benjelloun et al. 2009

Benjelloun et al. 2007

Whang et al. 2009 O
Kim & Lee 2010 0
Herschel et al. 2012 3

Dong et al. 2005
Bhattacharya & Getoor 2004, 2007

Rastogi et al. 2011
Cochinwala et al. 2001 e [

Bilenko & Mooney 2003 .
Christen 2008 ¢
Chen et al. 2009 - 0
Ravikumar & Cohen 2004 *
Bhattacharya & Getoor 2006 .
Sarawagi & Bhamidipaty 2002 e [ e O
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Open Issues

Similarity measures

« Measures need to consider structural, value and contextual similarities
between entities

— Take into account low structuredness, incompleteness, erroneous
values, various vocabularies, different formats of Web data

Inter-relationships between entity descriptions

e A traditional focus: Discover equality links between descriptions
— sameAs links

 To improve data interlinking, infer other relationships
— located in, related to, part of links

 From a different point of view: When such relationships are available, use
them for enhancing the matching process
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Open Issues

Large-scale entity resolution using MapReduce

« Few approaches/adaptations appeared only recently
— We can do more for effectiveness!

Temporal entity resolution

* Entity resolution should account for changes over time
— The Web evolves constantly with large volumes of new data and
updates

E.g. an update in the family status of a person, should not result in not matching an
updated description of this person with another description not updated

* Yago2 [Hoffart et al. 2012]: A temporal knowledge base, built with data from
Wikipedia, GeoNames and Wordnet
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Open Issues

Probabilistic entity resolution
» The results of entity resolution sometimes are not accurate
— Due to data heterogeneity, the evolving nature of data, ect.
* A possible solution: Associate the identified matches with a belief score

— Scores can be based on the quality of the source, e.g. wrt. outdated or
erroneous data

Querying for entities
» Entity resolution at query time: Ask for entities relevant to a specific query
— Two stages of processing:
» Extract the relevant entity descriptions
* Resolve the extracted entities

» Interestingly, query time entity resolution enables an exploratory search
among entities
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Thank You!

Other points for future work?

Questions?
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