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Abstract

Recommendations provided by group recommendation systems are often complex and difficult for average users to comprehend. To
address this issue, many existing approaches incorporate explanations alongside recommendations. However, as group recommendation
models become increasingly sophisticated, offering clear and understandable explanations becomes more challenging. In response,
we propose a system that delivers counterfactual, model-agnostic explanations. Counterfactual explanations focus exclusively on
items with which the group has interacted, enhancing their interpretability. Additionally, model-agnostic explanations mitigate the
intricacies of complex group recommendation models by treating them as black boxes, thereby simplifying the process and making the
recommendations more accessible to users. We propose two heuristic approaches to produce fair group counterfactual explanations, i.e.,
explanations that consider all group members’ input and are not focused on individual group members. We conduct an evaluation of our
methods utilizing the MovieLens dataset, highlighting our proposed methods’ effectiveness in generating counterfactual explanations

for groups within a practical and efficient timeframe.
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1. Introduction

Recommendation systems are widely used across various
applications, helping users navigate vast amounts of infor-
mation by providing personalized suggestions. One com-
mon example is movie recommendations, where the system
suggests films based on individual preferences. However,
for many users, the underlying processes—whether for in-
dividual or group recommendations—remain opaque and
difficult to understand. This is particularly true for group
recommender systems, which aggregate the preferences of
multiple users to suggest relevant items. As the complex-
ity of these systems increases, the challenge of explaining
how recommendations are generated becomes more diffi-
cult, leading to potential mistrust or frustration, especially
when the system fails to meet user expectations [1].

To generate explanations for recommendations, systems
typically rely on information from all users within the sys-
tem. This requires access to system data to clarify why a
particular item is recommended. However, service providers
are often concerned with maintaining client privacy and
security, meaning that third parties cannot access or be
informed about this sensitive data. One solution to this
challenge is the use of counterfactual explanations, which
only leverage the interactions of the specific user requesting
the explanation, addressing privacy concerns.

Counterfactual explanations have been previously ex-
plored [2]. Such explanations are still influenced by the
underlying recommendation system and thus cannot be
universally applied across all recommendation models. A
model-agnostic approach to counterfactual explanations,
presented in [3], works by altering the user’s interactions
with the system and repeatedly querying the recommenda-
tion engine. In this method, some items are systematically
removed from the user’s history, and the recommendation
system is called again to check if the item in question is still
suggested. If the item is removed, the set of items respon-
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sible for that change is provided as the explanation. This
results in an explanation such as: “If you had not liked item
A, item B would not have been recommended”, where A is a
set of removed items, and B is the item being explained.

Building on this approach, we focus on model-agnostic
counterfactual explanations, which are becoming increas-
ingly important. Many systems either do not provide access
to their underlying recommendation models or involve mod-
els too complex for the average user to interpret. In this
paper, we explore how counterfactual explanations can be
generated for groups of users, rather than just for individual
users. Group recommendations are a popular research field
since it is now easier than ever to organize and participate in
group activities (e.g., [4, 5]). However, group recommenda-
tions are inherently more complex since we must consider
multiple and diverse interests. This naturally suggests that
providing explanations for these recommendations is also
more complex. An additional layer of complexity in group
recommendations arises when we need to ensure that all
group members are treated equally. This means that the
explanation should not highlight individual members but
should instead include items that have been interacted with
by the majority of the group.

An additional problem for counterfactual explanations
for group recommender systems is the large search space.
Typically, users have multiple interactions with the system,
and each such interaction is a probable part of a counter-
factual explanation. Examining all possible combinations
of items is not computationally feasible. Assuming that the
user has given n ratings to the system, then possible coun-
terfactual explanations are 2". For group recommenders, we
multiply this by the number of group members.

Since exhaustively searching through all combinations of
items is prohibited, we propose two heuristic approaches.
We leverage utility scores (Section 2.2) to quickly parse
through a large number of items. The first approach, Sliding
Window (Section 3.1), aggregates all utility scores for the
items and orders them in a list. We apply a sliding window
on this list, aiming to quickly find a large subset of items that,
if they were removed from the group members’ interactions,
then the item in need of explanation is no longer suggested
to the group, i.e., a counterfactual explanation.

The second approach, Four Quadrant (Section 3.2), al-
locates the items based on their utility scores in a four-
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quadrant graph, where the axis of the graph represents the
four utility metrics: Item Intensity, Item Rating, Item Popu-
larity, and Item Relevance (for more details please refer to
Section 2.2). We only examine items that are present within
a circular region. If no explanation is found, then we will
increase the radius of the circle.

Overall, the main contributions of our work are the fol-
lowing:

« We introduce the notion of counterfactual expla-
nations for group recommendation, which, to our
knowledge, represents the first work in this field.

« We present group counterfactual utility metrics that
measure the likelihood of an item being part of a
counterfactual explanation.

+ We propose two heuristic algorithms to find fair
counterfactual explanations for groups, Sliding Win-
dow and Four Quadrant Algorithms.

» We evaluate our proposed methods using the real-
world recommendation dataset, MovieLens, focus-
ing on two different group types: those with high
engagement levels with the system and those with
moderate engagement.

The rest of the paper is structured as follows. Section
2 describes the group counterfactual explanation problem,
and Section 3 details our two proposed heuristic methods
for producing such explanations. Section 4 presents the
experimental evaluation and analyzes the results. Section 5
presents the related work. Finally, Section 6 concludes this

paper.

2. Group Counterfactual
Explanations Problem

2.1. Preliminaries

Interacted Items. Let U be all the users involved in the
system. Let I, be the set of items that the user u € U has
interacted with, and I = | V,ecl, be all the items that the
group members G C U have interacted with. Furthermore,
p(u,i) € R* denote the rating assigned to item i by the user
u. Note that, in our work the presence of ratings is not
mandatory.

Recommendations. Additionally, GRS(I;) denote the
group recommendation system which, given the set I;, re-
turns the recommended items list L', ie., GRS(Ig) = L,
For this work, we consider the group recommender sys-
tem a black box. This allows us to freely use any group
recommender system without considering their limitations.
Group Counterfactual Explanation. In a recommenda-
tion system for individual users, a counterfactual explana-
tion about a recommended item i is defined as a set of items
that if the user had not interacted with (e.g., rated, clicked,
liked), then item i would not have been recommended. A
similar concept can be defined in group recommendation
systems.

Given a group G C U, and an item t € L1, which will
be referred to as the item of interest, an explanation E for
the appearance of the item ¢ in the group recommendation
list Lo, is a set of items, that if the group members had not
interacted with, then the item of interest t would not have
appeared in the group recommendation list L,

Formally, let L% be a recommendation list, with ¢t € L;
an item set E C I; is an explanation, if t ¢ L'0\E,

Counterfactual Cost. Producing the recommendations
list LIG, is associated with a recommender cost ¢, e.g., the
response time and/or service cost. As a result, a counterfac-
tual E is also associated with a cost, denoted as E,g, which
corresponds to the overall recommender cost required to
find E. Hence, given that we need to invoke the recom-
mender n times in order to find E, the counterfactual cost of
Eis:

n
Eost = Z 4 (1)
1

where ¢ represents the cost of a single recommender system
call. For simplicity, in our evaluation we define ¢ = 1 to
encapsulate how many times we called on the recommender
system.

2.2. Group Counterfactual Utility

In order to access the ”quality” of the counterfactual, we
exploit several metrics related to: clarity, engagement, pref-
erences, popularity, and relevance.

Counterfactual Minimality. We use the notion of min-
imality (ak.a. sparsity) to access the clarity of a coun-
terfactual, i.e., the shorter the explanations, the easier it
is to understand [6, 7]. In our problem, the minimality
mini(E) € [0, 1] of a counterfactual E is quantified by the
number of items included in E normalized by the overall
number of interacted items |I5|:
mini(E) = ﬂ (2)
e
Note that, in our problem the adopted minimality metric
also captures the actionability (a.k.a. feasibility) of a coun-
terfactual [8]. Intuitively, a counterfactual is more feasible
if fewer number of changes occur.

Item Intensity. Item Intensity describes how many of the
group members had interacted with an item. The intensity
of an item reflects the degree to which it has been interacted
with by individual members of the group. This characteristic
provides insights into the extent of engagement that group
members have had with a particular item, which in turn
sheds light on the potential significance of that item within
the context of the group. Higher intensity values suggest
that the item has garnered substantial attention from group
members. Hence, we want the explanation items to have high
intensity.

Formally, given a group G C Uand an item i € I;, the
intensity of an item int(G, i) € (0,1] is defined as:

INPELCD)

int(G,i) = G

®)

where r(u,i) returns 1 if user u has interacted with item i
(i.e., i € I,), and 0 otherwise.

Item Rating. This metric builds upon Item Intensity metric
by incorporating the collective evaluation of an item by all
group members. Specifically, the Item Rating for a group G
and an item i, denoted as rate(G, i), is computed as the mean
of the ratings assigned to an item i by members of the group
G.

ZVuEG p (u: i)

rate(G, i) = Gl

4)



This metric offers a clear representation of the group’s
overall sentiment toward the item, providing an aggregated
view of the group’s preferences. Note that, in case that items
ratings are not available the metric is omitted.

Item Popularity. Item Popularity refers to an item’s over-
all appeal or recognition within all systems users U. Item
Popularity for an item i, denoted as pop(U, i) is quantified by
aggregating the ratings the item has received across all users.

pop(U, 1) = Y plu,i) (5)
VuelU

Popularity serves as a proxy for how widely appreciated
or commonly engaged with an item is, regardless of individ-
ual user preferences. It is a model-agnostic metric, allowing
its straightforward adoption across different recommenda-
tion systems and environments. Note that, in case that items

ratings are not available the metric is omitted.

Item Relevance. Item Relevance measures how pertinent
an item in I; is. This is based on the predicted score for
the item of interest t assigned to group members from the
recommender system. Intuitively, the interacted items of a
user u with a high predicted score for t are more influential
in shaping the group recommendation list. Consequently,
these items are more likely to be included in the counterfac-
tual explanation. To compute item relevance rel(G,i,t) in a
model-agnostic manner, we treat each individual user as a
group and query the group recommender for suggestions
based on their preferences and interactions.

rel(G,i.t) = Y. h(ui,t) (6)

vueG
where

predScore(L%, 1) ifi € I,

h(u,i,t) =
( ) 0 otherwise

(7)

The function predScore(L, t) returns the predicted score of
the item of interest ¢ for user u, where L’ is the recommen-
dation list resulted when the group recommender is invoked
using as input only «’s interacted items, i.e., I,

Counterfactual Utility. Given a counterfactual E the util-
ity U(E) is defined as a combination of counterfactual mini-
mality, and items intensity, rating, popularity, and relevance
metrics:

U(E) = f(mini( ), Byep(int(), rate(), pop( ), rel()))  (8)

where function f aggregates counterfactual minimality with
item-based scores, and function 6 aggregates the items scores
for all items in E.

2.3. Problem Definition

Next, we formally define the the Group Counterfactual Ex-
planation problem (GCF).

Group Counterfactual Explanation Problem (GCF).
Given a group G; a group interacted items Ig; a group recom-
mended items list L'G; a item of interest i; a recommender cost
¢; and a budget B in terms of recommender cost; our goal is
to find a group counterfactual explanation E*, such that the
explanation utility U(E) is maximized and the counterfac-
tual cost Eg,g is lower than the budget B.

E* =argmaxU(E) st Eyy<B

Computational Complexity. In order to solve the GCF
problem we have to examine the power set of the group
interacted items I, i.e., all the possible group interacted
items subsets. That is, we have to examine 216171 sets (empty
set is omitted). Considering that the recommender cost for
each set is ¢, the computational complexity is O(¢ - 21/cl).

2.4. Group Counterfactual Fairness

In this work, in addition to counterfactual utility, we also
examine the notion of fairness in group counterfactual ex-
planations. Specifically, we define fairness in terms of how
equally group members have interacted with the items pre-
sented in the explanation. The goal is for each member of
the group to have engaged with the same set of items, en-
suring that no individual is singled out, and the explanation
reflects the experiences of the entire group.

Group Counterfactual Fairness. Given a group G C
U and an explanation E, the fairness of the explanation E,
fair(G, E) € (0, 1] is defined as follows. The higher the value,
the fairer the explanation.

Lvuec 2. E)

fair(G, E) = Gl

©)

1 ifdieEandi€l,

z(u,E) = )
0 otherwise

(10)

Equation 9 calculates the extent of group members that
have interacted with at least one item in the explanation.
Ideally, we want all group members to have interacted with
at least one item, i.e., fair(G, E) = 1. On the other hand, if
fair = 1/|G|, it suggests that the explanation is focused on
one member of the group, leaving the others unaccounted
for.

3. Algorithms

Due to the large search space (i.e., Z‘IGl), finding an optimal
solution is computationally prohibitive even for a small
number of users. To cope with the complexity of the GCF
problem, we design two efficient heuristic for finding group
counterfactual explanations.

3.1. Sliding Window Algorithm (SW)

The first approach we introduce employs a sliding window
technique applied to an ordered list of items. The Sliding
Window (SW) algorithm operates as follows: for each item
that has been interacted with by at least one group member,
we compute the item-based metrics included in the utility
formula (Eq. 8). These scores are aggregated into a final
score for each item, enabling the ordering of items from
highest to lowest score.

Once the items have been ordered, we apply a sliding
window of fixed size to the items list. For instance, with
a window size of 5, the window initially covers items 1
through 5, then shifts one position forward to cover items 2
through 6, and so on, until the entire list has been processed.
At each step, the items within the current window are tem-
porarily excluded from the group interacted items, and the
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Figure 1: Sliding Window Algorithm Example, with the size of the window set to 2. On the left, we have a group of three users, A, B, and
C, along with their corresponding lists of items they have interacted with: I, I, and I.. Initially, a group recommender system receives
these lists and produces the group recommendation list L, where I; = I, u I u I, with the first item relegated to be the target item. The
Sliding Window Algorithm starts by calculating and aggregating the four Item Utilities: Item Intensity, Item Rating, [tem Popularity and
Item Relevance (step 1). Since the size of the window is set to 2 we select the top 2 items in the produced ordered list (step 2) and remove
them from the group members’ interactions (step 3). Lastly we call on the group recommender system again with the altered interaction
lists (step 4) and check if the target item has been removed from the group recommendation list (step 5).

group recommender system is invoked to compute the new
recommendations. If the item of interest is not included in
the recommendation list, the items included in the window
correspond to a valid counterfactual explanation.

When the window items correspond to a counterfactual
and in order to improve minimality, we search for a poten-
tially smaller set of items that also qualifies as a counterfac-
tual. To this end, we conduct an exhaustive search across all
possible combinations of items within the window, evaluat-
ing which subset of items best generates the counterfactual
explanation. This search is performed in an ascending order
based on the number of items being considered, starting
with individual items and progressively expanding to larger
combinations. In this manner, the first valid counterfactual
explanation that is discovered will be the smallest possible
subset of items, thus ensuring that the explanation is both
compact and precise. We have selected to keep the win-
dow size small in order to minimize the number of possible
combinations that we have to examine.

Sliding Window Algorithm Example. Figure 1 demon-
strates the sliding window process. Assume a group of three
members, A, B, and C, each has their own interacted items
sets: I4, Ig, and I, respectively. These interacted items list
are given to a group recommender system which outputs a
group recommendation list LG, Let’s assume that the item
of interest (i.e., the item in need of explanation) is i;y. €
We consider all the interacted items of the group members
and calculate the item-based scores for each item. @ Then,
we aggregate these scores into a final score and order the
list in descending order based on that score. € Next, apply
a sliding window of size 2, which will initially remove from
group members interacted items lists the items included in
the window, i.e., the first two items, iy and iy. In our example,
initially we have I = iy, iy, i3 and the updated interacted
items list I} is I}, = iy, i3. @ Finally, we invoke the recom-
mender given as input the updated interacted items lists I,
Iz and I/. @ The resulted group recommendation list LG
do not include the item of interest i, so the items with the
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Figure 2: Four Quadrants Algorithm Example. The algorithm
first calculates the four Item metrics: Item Intensity, Item Rating,
Item Popularity, and Item Relevance, and allocates the items in
a four-quadrant graph based on these values as coordinates. A
circle with the axis origin as its center and a radius of r determines
which items will be examined.

window {iy, is} corresponds to a group counterfactual.

3.2. Four Quadrants Algorithm (Quad)

In Four Quadrants Algorithm (Quad) we conceptualize the
item-based metrics used in the utility score (Eq. 8), as the
axes of a quadrant graph, where each axis corresponds to
one of the metric, as illustrated in Figure 2. This representa-
tion enables the pairing of the metrics into four pairs:

Popularity - Intensity
Popularity - Relevance
Relevance - Rating

Ll

Rating - Intensity

To position the items on the graph, we use their respec-
tive scores for each metric. Each item is thus represented



four times, corresponding to its metrics scores along the
respective axis of the graph. Given that the metrics have
significantly different numerical ranges, such as popularity
being represented by a large number and Item Intensity be-
ing a score constrained within the range (0,1], it is essential
to normalize all the values to a common scale. Consequently,
we apply a normalization process to ensure that each score
is transformed into the range [0, 1].

We examine items located within a circular region cen-
tered at the origin of the quadrant graph (i.e., the point
representing the normalized value 0 for each characteristic).
The radius of this circle, denoted as r, determines the area
of interest. Items that are considered most relevant, such as
those with higher popularity, should ideally be positioned
closer to the center of the graph. To achieve this, we adjust
the item scores by subtracting each score from 1, thereby
making higher scores closer to the center. This transforma-
tion ensures that more significant values, such as higher
popularity scores, will correspond to positions closer to the
origin of the quadrant graph.

In a manner similar to the previous approach, we remove
from consideration those items that fall within the circular
region defined by the radius r. After adjusting the dataset
accordingly, we call the group recommender with the modi-
fied information to determine if the item of interest remains
in the group recommendation list. If the item of interest is
still included, we incrementally increase the radius r and re-
peat the process. This procedure continues until the item of
interest is no longer recommended, at which point we have
identified a subset of items that provide a counterfactual
explanation.

When a counterfactual explanation is identified, we fol-
low an approach akin to the previous one, wherein we sys-
tematically explore all possible combinations of items within
the subset. This search is conducted in ascending order of
the combination size to find the smallest possible subset
that serves as the counterfactual explanation.

However, as previously noted, performing an exhaustive
search becomes computationally prohibitive when the num-
ber of items is large. To mitigate this, we leverage the fact
that items can appear multiple times within the circular
region. Specifically, instead of evaluating all items, with-
out the loose of generality, we restrict our search to those
items that appear at least twice within the circle. This re-
striction significantly reduces the search space, enabling
us to perform the exhaustive search in a feasible manner.
For example, in Figure 2, we have a circle with r = 0.2, for
which only two items, i, and iy are present twice. So, we
will only examine all possible combinations of those two
items, namely: [{io}, {is}, {i2, is}]-

4. Experimental Analysis

In this section, we present the experimental results, evaluat-
ing the proposed algorithms: Sliding Window (SW) and Four
Quadrants (Quad), varying several parameters and compar-
ing them against a baseline method. In the first experiment
(Sect. 4.2) we examine the counterfactual cost produced by
the algorithms. In the next experiment (Sect. 4.3) we evalu-
ate the group counterfactual fairness, and finally examine
the sizes of the explanations (Sect. 4.4).
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Figure 3: Counterfactual cost [High-engagement groups]. The
average times each algorithm needed to call the group recom-
mender system until it produced a group counterfactual explana-
tion.
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Figure 4: Counterfactual cost [Moderate-engagement groups].
The average times each algorithm needed to call the group rec-
ommender system until it produced a group counterfactual ex-
planation.

4.1. Experimental Setup

Methods Parameters. For SW algorithm, we examine two
window sizes (i.e., percentages based on the size of the list of
items with which at least one group member has interacted).
Particularly, we consider two percentages: 10% (SW01) and
5% (SW005). Furthermore, in SW evaluation, we examine
two fixed window sizes: ten (SW10) and twenty (SW20). Re-
garding Quad algorithm, we conduct experiments varying
the number of times items appear inside the circle, setting
this parameter to 1, 2, 3, and 4, denoted as Quad1, Quad2,
Quad3, and Quad4, respectively. The starting value of circle
radius ris 0.1. For comparison, we also consider the Base-
line approach, where we exhaustively examine all possible
combinations of items that at least one group member has
interacted with.

Dataset. We utilized the MovieLens 100K dataset [9], which
contains 100K ratings from 600 users on 9K movies. We com-
pose groups based on two types of users: (1) user with a high
number of ratings (more than 400), and (2) users with a mod-
erate number of ratings (between 100 and 300). We refer to
these groups as high-engagement and moderate-engagement,
respectively. For each type of group, we analyze 20 different
groups.

Group Recommendation System. The experiments were
conducted in Python, using the Surprise library to create
collaborative filtering models and the SciPy library for opti-
mization and batch searches. We employed the k-nearest
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Figure 5: Fairness [High-engagement groups]. The average
number of group members who interacted with at least one item
in the group counterfactual explanation.

neighbors (KNN) technique with user-based collaborative
filtering to generate recommendations for individual users.
To create group recommendations, we utilized one of the
most popular group recommendation models, aggregating
the single recommender system’s predicted scores of each
item for all group members. The aggregation function we
utilized was the Average. The group recommendation list
Lo consists of the ten items with the highest aggregated
scores. For simplicity, the item of interest, i.e., the item we
want to explain, is always the first one in L.

The group recommendation model was retrained several
times as new batches of movies were removed. This it-
erative process of batch elimination and model retraining
was essential in simulating realistic scenarios where rec-
ommendations adapt based on user feedback or potential
counterfactual situations.

4.2. Cost Evaluation

We first analyzed the computational cost required to find a
counterfactual explanations. This evaluation was conducted
across 40 groups, evenly split between moderate- and high-
engagement groups (20 each). The cost was quantified as the
average number of calls to the group recommender system
required to find a counterfactual explanation. Figures 3 and
4 illustrate these costs for high- and moderate-engagement
groups, respectively.

For high-engagement groups, the Baseline approach was
excluded due to its prohibitively high cost. This high cost
arises from the fact that the Baseline approach will first
examine individual items and then item combinations, mak-
ing the approach impractical since the list for all possible
items we want to examine, I;, is quite large. The size of I is
approximately 2.000 since we have five members, and each
one has given more than 400 ratings.

Sliding Window Algorithm (SW). The Sliding Window al-
gorithm emerged as the most efficient in minimizing the cost
of counterfactual explanation generation. Its performance
varied between moderate- and high-engagement groups.
For moderate-engagement groups (Fig. 4), the best config-
uration was SW10, which uses a fixed window size of 10.
This configuration is effective because the smaller size of the
item list in these groups ensures that ten items are sufficient
to identify the counterfactual explanation efficiently.

In contrast, for high-engagement groups (Fig. 3), the best
approach was SW005, where the window size is dynamically
set to 5% of the total number of items in I;. This dynamic

adjustment accommodates the significantly larger sized I
lists in high-engagement groups, often more than three
times the size of those in moderate groups. In such cases,
a fixed window size of 10 proved insufficient, requiring
additional calls to the recommender system to locate the
counterfactual explanation.

It is worth noting that larger window sizes, such as those
used in SW01 and SW20, reduced the time to locate a coun-
terfactual window, i.e., a subset of items that can produce a
counterfactual explanation, but resulted in higher overall
costs. This was due to the inclusion of numerous items in the
window, necessitating additional calls to the recommender
system to find the minimal counterfactual explanation.

Four Quadrants Algorithm (Quad). The Four Quad-
rants algorithm exhibited a different cost profile. Among its
configurations, Quad 1 incurred the highest cost for both
moderate- and high-engagement groups. This can be at-
tributed to the algorithm’s consideration of all items within
the circular region without any filtering, resulting in an
extensive initial set of items to examine.

Costs decreased as stricter criteria were applied, such as
requiring items to appear multiple times within the circular
region before being considered. This observation supports
our hypothesis that filtering items based on repeated in-
clusion is essential for cost reduction. Both Quad 3 and
Quad 4 demonstrated comparable performance, effectively
filtering out outlier items, such as those with low popularity
or those rated by a single group member, thereby reducing
computational overhead.

Discussion. The Sliding Window algorithm demonstrated
superior efficiency in identifying counterfactual explana-
tions with lower number of calls to the group recommender
system. To optimize performance, the window size must
balance being large enough to locate the counterfactual win-
dow quickly while avoiding excessive inclusion of items,
which would increase costs. The dynamic configuration of
SWO005 proved particularly effective, adapting to varying
group engagement levels.

The Four Quadrants Algorithm, while less adaptable, ex-
hibited consistent performance across group types: high
and moderate engagement. Quad 3 and Quad 4 were es-
pecially effective in filtering out irrelevant items, ensuring
steady computational costs across different engagement
levels. These results highlight the trade-offs between adapt-
ability and reliability, underscoring the need for tailored
algorithmic designs to accommodate varying group dynam-
ics in counterfactual explanation generation.

4.3. Fairness Evaluation

In this experiment, we examine the impact of metrics and
methods on achieving counterfactual fairness. Figures 5 and
6 present the fairness metric defined in Equation 9, which
measures the proportion of group members who have in-
teracted with at least one item in the counterfactual ex-
planation. Higher fairness metric values indicate better
performance in ensuring inclusivity across group members.
Ideally, all group members would have interacted with ev-
ery item in the explanation. However, achieving that is
challenging due to the diversity of interactions within the
group.

The Sliding Window algorithm demonstrated superior
performance compared to the other approaches, primarily
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Figure 6: Fairness [Moderate-engagement groups]. The average
number of group members who interacted with at least one item
in the group counterfactual explanation.
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Figure 7: Explanation size [High-engagement groups]. The aver-
age number of items included in the counterfactual explanations
generated by each algorithm.

due to its direct consideration of the number of group mem-
bers interacting with an item. This is captured through the
item intensity metric (Equation 3), where the score for an
item increases with the number of group members who
have interacted with it. By ranking items based on their
combined scores, the Sliding Window algorithm prioritizes
items with high intensity—those that multiple group mem-
bers have interacted with—early in the counterfactual ex-
planation generation process. This prioritization inherently
improves fairness, as it ensures greater representation across
the group.

In contrast, the Four Quadrants algorithm struggles to
achieve comparable fairness levels. This arises from the way
item scores are scaled. High-intensity items, such as those
interacted with by four out of five group members, receive
an item intensity score of 0.8. To align with the algorithm’s
scoring framework, this value is reversed by subtracting
it from 1, resulting in a score of 0.2. Consequently, these
items are not considered, as their scores fall above the initial
radius threshold r value, which is set to 0.1.

Moreover, for an item to be included in the counterfac-
tual explanation, it must meet additional criteria, such as
achieving sufficient counterfactual utility scores. For ex-
ample, the item must exhibit both high popularity within
the system and relevance within the group. These stringent
requirements further limit the Four Quadrants algorithm’s
ability to prioritize high-intensity items, ultimately leading
to lower fairness scores compared to the Sliding Window
algorithm.
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Figure 8: Explanation size [Moderate-engagement groups]. The
average number of items included in the counterfactual explana-
tions generated by each algorithm.

4.4. Explanation Size Evaluation

Figures 7 and 8 showcase the size (number of items) of the
explanations generated by the algorithms. Under our de-
fined group counterfactual utility, we want the explanations
provided to be minimal, i.e., to consist of as few items as
possible. The Four Quadrant algorithm manages to find
explanations with the least amount of items. This demon-
strates the algorithm’s ability to identify the most “effective”
explanations. We quantify these explanations as effective
since they manage to alter the initial group recommenda-
tion list by removing the least amount of interactions from
the group members.

We can observe that the explanation size does not increase
with the number of interactions among the group. The
sizes remain in the same order for both high and moderate-
engagement groups as presented in Figures 7 and 8. How-
ever, the cost of finding these items is higher the more inter-
actions the group has. As shown in Figures 3 and 4, to find
counterfactual explanations for high-engagement groups,
the algorithms require more calls to the group recommender
system, indicating the difference in search space size.

5. Related Work

5.1. Group Recommendations

Group recommendations have a significant research back-
ground [5]. The most popular approach for producing group
recommendations is to employ a standard single-user rec-
ommendation system and apply it to each individual group
member (e.g., [10, 11, 4, 12]). Then, we aggregate the group
members lists into one single group recommendation list.

In the aggregation stage, a group recommendation system
can take into account different criteria. For example, [13]
suggests a group recommendation model which considers
each individual group member’s influence during the aggre-
gation phase. Differently, [14] exploits ideas from attention
network and neural collaborative filtering to deduce the
aggregation strategy from the available data. Similarly, [15]
in addition to an attention mechanism, it also employs a
bipartite graph embedding model to infer each member’s
influence to the group’s final choice, while [16] uses a social
network enhanced with user preferences and the social in-
teractions among the group members, to locate the group’s
choices.

[17] considers the interactions between group members
to determine the best aggregation strategy. These interac-



tions were modeled as multiple voting processes in order to
simulate how a consensus is reached, and a stacked social
self-attention network was proposed to learn the voting
scheme of the group members. In dividing a large group
of people into subgroups based on their own interests, [18]
offers a novel method of producing recommendations for a
large group. Specifically, it identifies a set of potential candi-
date media-user pairs for each subgroup and aggregate the
CF recommendations lists for each such pair. [19] proposes
a two-phase group recommender that targets to satisfy all
the group members. In the first phase, it tries to satisfy the
whole group, and in the second phase, it tries to satisfy the
members individually by filtering out irrelevant items to
each member.

In [20], each group member is assigned a utility score
based on how relevant the recommended items are to them.
Then it balances the utility of the group members and gen-
erates a group recommendation list. In [21], the utility of
a user is defined by the similarity between the individual
and group recommendations of the user. Their approach
involves considering sets of N-level Pareto optimal items
when creating the group recommendation list. As part of the
aggregation phase, [22] proposes a notion of rank-sensitive
balance. As far as possible, the first recommendation should
balance the interests of all group members. Similarly, the
first two items together must also do the same, and so on.

5.2. Counterfactual Explanations

Counterfactual explanations have been a potent tool to im-
prove recommendation systems’ transparency and reliabil-
ity in recent years. These explanations clarify why certain
recommendations were made by showing how little adjust-
ments to the input data could have a significant impact on
the results. This method is especially relevant to group
recommender systems, in which a recommendation is gen-
erated by combining the preferences of several individuals.
For the group’s recommendations to be understood by all
members and how their preferences influenced their final
decision, transparency is extremely crucial.

By altering image embeddings to ascertain whether visual
aspects impact recommendations, CAVIAR [23] proposes
counterfactual explanations for visual recommender sys-
tems. Similarly, Wang et al. [24] addressed the biases in
recommendation systems related to demographic factors
like age and gender by introducing CFairER, a model for
fairness-aware counterfactual explanations. This approach
may be crucial when recommendations are made, and fair-
ness among members of different backgrounds is an issue.
Graph-based methods have also been explored in search of
counterfactual explanations. GNNUERS, a counterfactual
reasoning approach to explain fairness problems in GNN-
based recommendation systems, is presented in [25].

Additionally, Stratigi et al. [26] covered "why-not” ques-
tions in collaborative filtering, offering explanations for
items that were not recommended. In recommender sys-
tems, when some group members could wonder why their
preferred items weren’t included in the recommendation,
this kind of explanation could be crucial. This idea was ex-
panded to graph-based recommender systems by Attolou et
al. [27], who offered “why-not” explanations for items that
were left out of recommendations. CETD technique [28]
generates counterfactual explanations for sequential recom-
mender systems by taking into account temporal relation-
ships in user behavior. This method can be used in settings

where members’ preferences may vary over time and require
explanations that take those changes into account.

A recent study [29] presents a framework for producing
explainable counterfactual recommendations, which explain
why a certain item was recommended as well as how small
adjustments could have produced alternative results. Similar
to this, Yao et al. [30] suggested a learning approach that
focuses on user interaction data to customize explanations
for counterfactual explanations in recommendations.

MACER [31] is a reinforcement learning-based, model-
agnostic counterfactual explanation paradigm. It is espe-
cially well suited for group recommendation systems, where
several models may be used to aggregate user preferences,
as it produces item-based explanations that are relevant to
any recommendation system. LXR [32] proposes a post-hoc,
model-agnostic approach to counterfactual explanations
that utilizes self-supervised learning to identify the most crit-
ical user interactions with respect to a recommended item.
[33] explore attribute-level counterfactual explanations for
Heterogeneous Information Networks (HINs)-enhanced rec-
ommendations. The focus is on providing clear explanations
regarding the disparities in item exposure. Their approach
aims to foster fair allocation of items that are preferred by
users but currently receive less visibility.

These investigations laid the groundwork for expanding
counterfactual explanations into the field of group recom-
mender systems. However, the majority of research to date
has been conducted on individual recommendations. In
contrast, we examine how to produce counterfactual expla-
nations through the lens of group recommendations, some-
thing that, to our knowledge, has not been researched up
to now. Group recommendations introduce a new layer of
complexity to the problem, and it is essential to reconcile
the varying preferences of group members with transparent,
implementable counterfactual explanations that guarantee
equity and satisfaction for each individual concerned.

6. Conclusion

This paper proposes two heuristic approaches to finding
counterfactual explanations for group recommendations.
Since many probable combinations of items can constitute
a group counterfactual explanation, we define group coun-
terfactual utilities to help us locate an explanation in a rea-
sonable time. Our two proposed algorithms utilize these
utility scores in a different manner. The Sliding Window
algorithm aggregates the scores and orders the items in a
descending order. Then, it applies a sliding window on the
list and checks if the items in the window are a counter-
factual explanation. If they are, the algorithm exhaustively
searches all combinations of items in the window to find
the most concise explanations, i.e., the explanation con-
sisting of the least number of items. The Four Quadrant
algorithm arranges the items based on their utility scores
in a four-quadrant graph. Then, check the items that are
located inside a circular area. Similarly to Sliding Window,
when it finds a subset of items that produce a counterfactual
explanation, it exhaustively searches for the minimal expla-
nation. We evaluate our proposed methods utilizing a real
work dataset, MovieLens, for various methods’ parameters.
Our results show that the Sliding Window can produce the
explanations faster. However, the Four Quadrant algorithm
is not overly affected by the increase in the size of the items
it needs to search.
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