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10 sec trailer

Two main story lines:

1. Playing with Time: game-theoretic semantics for branching time logic

2. Playing in Time: semantics with uniform time bounds on eventualities

These meet naturally in the finitely bounded semantics
for the computation tree logic CTL.
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Outline of the talk

I Preliminaries: the computation tree logic CTL

I Game theoretic semantics for CTL

I CTL with finitely bounded semantics: CTLFB
– Semantics
– Axiomatization

I Two versions of tableaux for CTLFB: infinitary and finitary

I Decidability

I Concluding remarks
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Preliminaries: the computation tree logic CTL
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Preliminaries: the computation tree logic CTL
Formulae:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | E(ϕUϕ) | A(ϕUϕ)

Abbreviations: AXϕ := ¬EX¬ϕ,
EFϕ := E(>Uϕ), AFϕ := A(>Uϕ)
EGϕ := ¬AF¬ϕ, AGϕ := ¬EF¬ϕ

Intuitive semantics of U :

EXϕ, E(ϕUψ)ϕ
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Preliminaries: interpreted transition systems

An interpreted transition system (ITS):

M = (S,R,Φ, L),

where

I S is a state space,

I R ⊆ S×S is a transition relation,

I Φ a set of proposition symbols,

I L : S→ P(Φ) is a state labelling function.
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Preliminaries: formal compositional semantics of CTL
Truth of a CTL-formula ϕ at a state s in an ITSM:

I M, s |= p iff p ∈ L(s)
I M, s |= ¬ϕ iffM, s 6|= ϕ

I M, s |= ϕ ∨ ψ iffM, s |= ϕ orM, s |= ψ

I M, s |= EXϕ iffM, s ′ |= ϕ for some s ′ ∈ S such that (s, s ′) ∈ R
I M, s |= E(ϕUψ) iff there is a path λ starting from s and i ≥ 0

such thatM, λ(i) |= ψ andM, λ(j) |= ϕ for every j < i
I M, s |= A(ϕUψ) iff for every path λ starting from s, there is i ≥ 0

such thatM, λ(i) |= ψ andM, λ(j) |= ϕ for every j < i

Derived clauses:
I M, s |= EGψ iff there is a path λ starting from s such that
M, λ(i) |= ψ for every i ≥ 0

I M, s |= AGψ iff for every path λ starting from s,
M, λ(i) |= ψ for every i ≥ 0.
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Fixpoint definitions of the CTL operators
in the standard semantics
Operators on formulae, where Q ∈ {E,A}:

UQ;ψ,θ(ϕ) := θ ∨ (ψ ∧ QXϕ); GQ;θ(ϕ) := θ ∧ QXϕ.

Fixpoint characterisations in the standard semantics:
I Q(ψU θ) is the least fixpoint of the operator UQ;ψ,θ

i.e., E(ψU θ) ≡ µZ .UE;ψ,θ(Z ), A(ψU θ) ≡ µZ .UA;ψ,θ(Z ).

I QG θ is the greatest fixpoint of the operator GQ;θ

i.e., EG θ ≡ νZ .GE;θ(Z ), AG θ ≡ νZ .GA;θ(Z )

We define inductively on n ∈ N the iterations of these operators:

I U0
Q(ψ, θ) := θ; Un+1

Q (ψ, θ) := UQ;ψ,θ(Un
Q(ψ, θ)).

I G0
Q(θ) := θ; Gn+1

Q (θ) := GQ;θ(Gn
Q(θ))
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Complete axiomatic system for CTL
The first complete axiomatic system for CTL was proposed by Emerson
and Halpern in 1982. Here is a streamlined version:
Axiom schemata:

Enough classical tautologies.

(KX ) AX (ϕ→ ψ)→ (AXϕ→ AXψ)

(DX ) EX>

(FPEU ) E(ϕUψ)↔ (ψ ∨ (ϕ ∧ EXE(ϕUψ)))
(E(ψU θ) is a fixpoint of the operator UE;ψ,θ)

(FPAU ) A(ϕUψ)↔ (ψ ∨ (ϕ ∧ AXA(ϕUψ)))
(A(ψU θ) is a fixpoint of the operator UA;ψ,θ)

(LFPEU ) AG ((ψ ∨ (ϕ ∧ EXχ))→ χ)→ (E(ϕUψ)→ χ)
(E(ψU θ) is a least pre-fixpoint of the operator UE;ψ,θ)

(LFPAU ) AG ((ψ ∨ (ϕ ∧ AXχ))→ χ)→ (A(ϕUψ)→ χ)
(A(ψU θ) is a least pre-fixpoint of the operator UA;ψ,θ)

Rules: Modus ponens and Necessitation NECAG : ` ϕ implies ` AGϕ. 9 of 38
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Game-theoretic semantics for CTL

10 of 38



V Goranko

Game-theoretic semantics for CTL

In game-theoretic semantics (GTS), truth of a formula ϕ is determined
in a formal dispute, called evaluation game, between two players:

Eloise, who is trying to verify ϕ, and Abelard, who is trying to falsify it.

GTS defines truth of ϕ as
existence of a winning strategy for Eloise in the evaluation game for ϕ.
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The (unbounded) evaluation game for CTL

LetM = (S,R,Φ, L) be an ITS, sin∈S and ϕ a CTL-formula.

Brief description of the (unbounded) evaluation game G(M, sin, ϕ)

A position of the game is a tuple (P, s, ψ),
where P ∈ {Abelard,Eloise}, s ∈ S and ψ is a subformula of ϕ.

The game G begins from the initial position (Eloise, sin, ϕ) and proceeds
according to specific rules for each logical connective.

For the temporal connectives EU and AU the game G invokes
embedded subgames that consist in an unbounded number of steps.
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Rules for the evaluation game

1. A position (P, s, p), where p ∈ Φ is an ending position.
If p ∈ L(s), then P wins the evaluation game.
Else the opposing player P wins.

2. In (P, s,¬ψ) the game moves to the next position (P, s, ψ).

3. In (P, s, ψ ∨ θ) the player P chooses the next position:
(P, s, ψ) or (P, s, θ).

4. In (P, s,EXψ) the player P may choose any state s ′ such that
(s, s ′) ∈ R and the next position is (P, s ′, ψ).

The rules for the formulae E(ψU θ) and A(ψU θ), send the players to
play an embedded subgame.

It ends with an exit position, from which the evaluation game resumes.
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The embedded subgame G
G = g(V,L, s0, ψV, ψV), where
V,L ∈ {Abelard ,Eloise}, s0 is a state, and ψV and ψV are formulae.
V is the verifier in G, and L the leader. These may be the same.
V and L denote the opponents of V and L, respectively.
G starts from the initial state s0 and proceeds from any state s according
to the following rules until an exit position is reached.

i) V may end the game at the exit position (V, s, ψV).
ii) V may end the game at the exit position (V, s, ψV).
iii) L may select any state s ′ such that (s, s ′) ∈ R. Then G continues from s ′.

If the embedded game G continues an infinite number of rounds,
then the verifier V loses the entire evaluation game.
The rest of the rules for the evaluation game are as follows:
5. In (P, s,E(ψU θ)) the game is continued from the exit position of

g(P,P, s, θ, ψ).
6. In (P, s,A(ψU θ)) the game is continued from the exit position of

g(P,P, s, θ, ψ).
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The (unbounded) game-theoretic semantics for CTL

Unbounded game-theoretic semantics for CTL :

M, s |=GTS ϕ iff Eloise has a winning strategy in G(M, s, ϕ).

Theorem
The unbounded GTS for CTL is equivalent to the standard,
compositional semantics of CTL.

The unbounded evaluation games are determined, but possibly infinite.

Can we make them finite?

Yes, by imposing time bounds.
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The (ordinal) bounded game-theoretic semantics for CTL

Evaluation games can be modified by assigning ordinal time limits to the
embedded subgames. That leads to ordinal bounded evaluation games.

The time limit is an ordinal announced by Verifier at the beginning of the
embedded subgame and Verifier has to decrease it after every transition.

Since ordinals are well-founded, the evaluation game is guaranteed to
end in a finite number of moves—even in infinite models.
Thus, the (ordinal) bounded GTS is obtained.

Theorem
The ordinal bounded GTS for CTL is equivalent to the unbounded GTS.

I will now focus on evaluation games with finite time limits.
These define the finitely bounded GTS for CTL.
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CTL with finitely bounded semantics
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Finitely bounded compositional semantics for CTL
The finitely bounded GTS (GTSfb) modifies the truth conditions of AU
and EU by imposing a uniform bound on the number of transition steps
needed to fulfil a given eventuality:

(AU fb) M, s |=fb A(ϕUψ) iff there is n ∈ N such that for every
history λ starting from s, there is i ≤ n such that
M, λ(i) |=fb ψ andM, λ(j) |=fb ϕ for every j < i .

(EU fb) M, s |=fb E(ϕUψ) iff there is n ∈ N, a history λ starting
from s and i ≤ n such thatM, λ(i) |=fb ψ and
M, λ(j) |=fb ϕ for every j < i .

(EU fb) is in fact equivalent to the standard truth definition of EU .
The derived clause for AG is equivalent to the standard one. For EG :

(EG fb) M, s |=fb EGϕ iff for every n ∈ N, there is a history λn
starting from s such thatM, λn(i) |=fb ϕ for every i ≤ n.
(Note that the history λn depends on n.)

By replacing the truth condition for AU and EG with the ones above,
we obtain CTL with finitely bounded semantics, denoted by CTLFB. 18 of 38
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Example
M:

p

s0

p

p

p

p

q

p

p

p

q

p

p

q

p q

M, s0 |= A(p U q) butM, s0 6|=fb A(p U q)

In terms of the GTS: Eloise can win G(M, s0, p U q)
in the unbounded evaluation game, or in the ordinal-bounded one,
but not in the bounded version with finite time limits.

Respectively,M, s0 6|= EG p butM, s0 |=fb EG p.
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Some properties of CTLFB

1. CTLFB = CTL on all image finite models i.e., truth of
CTL-formulae on these is independent of which semantics is used.

2. CTL 6= CTLFB on models that have infinite branchings.
In particular, the fixed point properties of the operators F and G
fail since the implications EG p → (p ∧ EXEG p) and (dually)
(p ∨ AXAF p)→ AF p are valid in CTL but not in CTLFB.

3. Consequently, CTLFB does not have the finite model property,
as these implications cannot fail in (image-)finite models.

4. Therefore, the validities of CTLFB are properly included in the
validities of CTL.

Indeed, every non-validity of CTL is falsified in a finite model and
thus, by fact 1, it is a non-validity of CTLFB, too.

The questions of axiomatisation and decidability of CTLFB arise.
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Axiomatic system for CTLFB
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Recalling the fixpoint definitions of CTL operators

Operators on formulae, where Q ∈ {E,A}:

GQ;θ(ϕ) := θ ∧ QXϕ; UQ;ψ,θ(ϕ) := θ ∨ (ψ ∧ QXϕ).

The iterations of these operators defined recursively on n ∈ N:

I G0
Q(θ) := θ; Gn+1

Q (θ) := GQ;θ(Gn
Q(θ))

I U0
Q(ψ, θ) := θ; Un+1

Q (ψ, θ) := UQ;ψ,θ(Un
Q(ψ, θ)).
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Axiomatic system for CTLFB: axioms from CTL
Axiom schemata:

Enough classical tautologies.

(KX ) AX (ϕ→ ψ)→ (AXϕ→ AXψ)

(DX ) EX>

(FPAG ) (ϕ ∧ AXAGϕ)↔ AGϕ
(AGϕ is a fixed point of the operator GA;ϕ)

(G-PostFPAG ) AG (ψ → (ϕ ∧ AXψ))→ (ψ → AGϕ)
(AGϕ is the greatest post-fixed point of GA;ϕ)

(FPEU ) E(ϕUψ)↔ (ψ ∨ (ϕ ∧ EXE(ϕUψ)))
(E(ϕUψ) is a fixed point of the operator UE;ϕ,ψ)

(L-PreFPEU ) AG ((ψ ∨ (ϕ ∧ EXχ))→ χ)→ (E(ϕUψ)→ χ)
(E(ϕUψ) is the least pre-fixed point of UE;ϕ,ψ)
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Axiomatic system for CTLFB: new axioms

(PreFPEG ) (ϕ ∧ EXEGϕ)→ EGϕ
(EGϕ is a pre-fixed point of the operator GE;ϕ)

(UB-PostFPEG ) AG (ψ → (ϕ ∧ EXψ))→ (ψ → EGϕ)
(EGϕ is an upper bound for all post-fixed points of GE;ϕ)

(PostFPAU ) A(ϕUψ)→ (ψ ∨ (ϕ ∧ AXA(ϕUψ)))
(A(ϕUψ) is a post-fixed point of UA;ϕ,ψ)

(LB-PreFPAU ) AG ((ψ ∨ (ϕ ∧ AXχ))→ χ)→ (A(ϕUψ)→ χ)
(A(ϕUψ) is a lower bound for all pre-fixed points of UA;ϕ,ψ)

Additional infinite schemes of axioms (replacing in CTLFB the missing
directions of the standard CTL fixed-point equivalences), for Q ∈ {E,A}:

(EG∞) EGϕ→ Gn
E(ϕ), for every n ∈ N.

(AU∞) Un
A(ϕ,ψ)→ A(ϕUψ), for every n ∈ N.
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Axiomatic system for CTLFB: rules

Standard rules:

Modus ponens and Necessitation NECAG : ` ϕ implies ` AGϕ

Infinitary rules:

EG -Accumulation:

` θ → Gn
E(ϕ), for every n ∈ N
` θ → EGϕ

AU -Accumulation:

` Un
A(ϕ,ψ)→ θ, for every n ∈ N
` A(ϕUψ)→ θ
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Axiomatic system for CTLFB: results

Theorem: AxCTLFB is sound and complete.

Proposition: CTLFB is not finitely axiomatizable.

Open question: Are the infinitary rules redundant?
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Tableaux for CTLFB
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Types and components of formulae in CTLFB

successor formula successor component
EXϕ (existential) ϕ
AXϕ (universal) ϕ
¬AXϕ (existential) ¬ϕ
¬EXϕ (universal) ¬ϕ

conjunctive conjunctive disjunctive disjunctive
formula components formula components
¬¬ϕ ϕ
ϕ ∧ ψ ϕ, ψ ¬(ϕ ∧ ψ) ¬ϕ, ¬ψ
AGϕ {ϕ,AXAGϕ} ¬AGϕ {¬Gn

A(ϕ)}n∈N
EGϕ {Gn

E(ϕ)}n∈N ¬EGϕ {¬Gn
E(ϕ)}n∈N

¬E(ϕUψ) {¬ψ,¬ϕ ∨ ¬EXE(ϕUψ)} E(ϕUψ) {Un
E(ϕ,ψ)}n∈N

¬A(ϕUψ) {¬Un
A(ϕ,ψ)}n∈N A(ϕUψ) {Un

A(ϕ,ψ)}n∈N

Closure set ecl(η) of a formula η:
the least set containing η and closed under taking components.
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Infinitary tableaux for CTLFB in a nutshell
I Built incrementally from an initial formula η,

by alternating construction of pre-states and states.
I Every state labelled with a ‘fully expanded’ subset of ecl(η).
I Three phases: construction phase, pre-state elimination,

and state elimination phase.
I New ‘successor states’ created in the construction phase, to ‘satisfy’

existential successor formulae in the label of the current state.
I No states with repeating labels created, but looping back to existing

states with the needed labels.
I States that do not have the necessary successors are eliminated.
I The constructed tableau may be infinite, and the elimination phase

may go on in a transfinite number of steps, until stabilisation.

The final tableau is obtained when the elimination phase is completed.
It is open if at least one state has η in its label, otherwise closed.
An open tableau produces a satisfying Hintikka structure,
from which a satisfying model can be constructed.
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Infinitary tableaux for CTLFB: soundness and completeness

Theorem
The infinitary tableau for η ∈ CTLFB is sound and complete: for any
formula η ∈ CTLFB, the final tableau T η is open iff η is satisfiable.
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Infinitary tableaux for CTLFB: example
Infinitary tableau for η = EG p ∧ ¬(p ∧ EXEG p):

{η,EG p,¬(p ∧ EX EG p)} ∪ {Gn
E(p)}n∈N ∪ {¬EX EG p} ∪ {EXGn

E(p)}n∈NS0

· · · · · ·{Gk
E(p),¬EG p, p, EXGk−1

E (p),¬Gm
E (p),¬EXGm−1

E (p)}S0km

m>k>0

{p,¬Gm−k
E (p),¬EXGm−k−1

E (p)}S0km0k−1

...

{¬p}S0km0k1 {¬EXGm−k−2
E (p)} S0km0k2

{¬p}S0km0k21
...

{¬p} S0km0k2m−k
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A model satisfying η = EG p ∧ ¬(p ∧ EXEG p)

pS0

¬pS0001 pS012 pS023 pS034

· · ·

¬pS01201 pS0230 pS0340

¬pS023001 pS03400

¬pS0340001 . . .

Recall: M, s |=fb EGϕ iff
for every n ∈ N, there is a history λn starting from s
such thatM, λn(i) |=fb ϕ for every i ≤ n.
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Towards finitary tableaux: the extended language CTLpar
FB

We add a set of new symbols {ni | i ∈ N+}, called iteration parameters,
replacing natural numbers ni in formulae of type Gni

Q(ϕ) and Uni
Q(ϕ,ψ).

The resulting extended language: CTLpar
FB

NB: Gni
Q (ϕ),Uni

Q (ϕ,ψ) ∈ CTLpar
FB are not abbreviations.

They are treated as actual formulae, only for the tableaux construction.

The iteration parameter ni is just a symbol. It has no concrete value.

Intuitively, ni takes an “arbitrarily large” but finite and fixed value which
represents the number of iterations.

The index i ∈ N+ indicates when the “value” of ni has been fixed
(with respect to the other iteration parameters).
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Finitary tableaux for CTLFB
Components of some formulae in CTLFB are now re-defined as follows:

formulae conjunctive components
AGϕ {ϕ,AXAGϕ}

EGϕ, Gni
E (ϕ) {ϕ,EXGni

E (ϕ)}
¬E(ϕUψ) {¬ψ,¬ϕ ∨ ¬EXUni

E (ϕ,ψ)}
¬A(ϕUψ),¬Uni

A (ϕ,ψ) {¬ψ,¬ϕ ∨ ¬AXUni
A (ϕ,ψ)}

formulae disjunctive component
¬AGϕ, ¬Gni

A (ϕ) {¬ϕ,¬AXGni
A (ϕ)}

¬EGϕ, ¬Gni
E (ϕ) {¬ϕ,¬EXGni

E (ϕ)}
E(ϕUψ), Uni

E (ϕ,ψ) {ψ,ϕ ∧ EXUni
E (ϕ,ψ)}

A(ϕUψ), Uni
A (ϕ,ψ) {ψ,ϕ ∧ AXUni

A (ϕ,ψ)}

Closure sets of formulae and full expansions are defined as before.
New parameters can be introduced in the full expansions.
The tableaux building and state elimination phases are suitably modified.
The tableaux are now always finite.
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Finitary tableaux for η = EG p ∧ ¬(p ∧ EXEG p)
{η}P0

{η,EG p,¬(p ∧ EX EG p), p, EXGn1
E (p),¬EX EG p}S0

{Gn1
E (p),¬EG p}P00

{Gn1
E (p),¬EG p, p ,EXGn1

E (p),¬EXGn2
E (p)}S00

{Gn1
E (p),¬Gn2

E (p)}P000

{p, EXGn1
E (p),¬EXGn2

E (p)}S000

{p,¬Gn2
E (p)}P0000

{p,¬EXGn2
E (p)}S0000

{¬Gn2
E (p)}P00000

{¬p}S00001 {¬EXGn2
E (p)} S00002

{¬p} P000020
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Results

Theorem
The infinitary tableau for any formula η ∈ CTLFB is open
if and only if the finitary tableau for η is open.

Corollary
The finitary tableau for CTLFB is sound and complete.

Theorem
The complexity of running the finitary tableau for CTLFB
is EXPTIME-complete.

Corollary
The satisfiability problem of CTLFB is decidable and
EXPTIME-complete.
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Summary and concluding remarks

The motivation for the logic CTLFB was two-fold:
– natural game-theoretic semantics,
– uniform boundedness of the time limit for satisfaction of eventualities
across all branches.

Both apply beyond CTL and also produce respective finitely bounded
versions of other logics, e.g. CTL∗, the modal mu-calculus, and ATL.

CTLFB has some special features, incl. the lack of finite model property.
That, in particular, requires an infinitary Hilbert-style axiomatization.

Likewise, the natural tableau for CTLFB is infinitary, but can be made
finitary by symbolic treatment of infinite bundles of similar branches,
thus providing a decision method for the satisfiability in CTLFB.

The end (almost)
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