

 Logic, Constraints, and Quantum Information

 Phokion G. Kolaitis

 UC Santa Cruz & IBM Research – Almaden

 Joint work with

 Albert Atserias, UPC and Simone Severini, UCL

1

Collaboration with Lauri Hella

• Hella, K …, Luosto: LICS 1994 & APAL 1997

 How to Define a Linear Order on Finite Models

• Dawar, Hella, K … : ICALP 1995

 Implicit Definability and Infinitary Logic in Finite Model

 Theory

• Hella, K …, Luosto: Bulletin of the ASL 1997

 Almost Everywhere Equivalence of Logics in Finite

 Model Theory

• Hella and K … : CSL 2016

 Dependence Logic vs. Constraint Satisfaction

2

Lauri Hella as I know him

• Brilliant researcher

• Principled scientist

• Wonderful human being

• True friend

3

 Logic, Constraints, and Quantum Information

 Phokion G. Kolaitis

 UC Santa Cruz & IBM Research – Almaden

 Joint work with

 Albert Atserias, UPC and Simone Severini, UCL

4

Three Milestones in the Development of Logic

• Aristotle, 384-322 BC

 Syllogistic Logic

• George Boole, 1815-1864

 Propositional Logic

 (x Ç : y) Æ (: x Ç z Ç : w)

• Gottlob Frege, 1848-1925

 First-Order Logic

 (8 x) (8 y)(E(x,y) ! 9 z (E(x,z) Æ E(y,z))

 5

Computability and Undecidability

 Kurt Gödel Alan Turing Alonzo Church

• Revolutionary research in mathematical logic and the

foundations of mathematics in the 1930s.

• Formalization of the notion of computable function.

• Discovery of undecidable problems (no algorithm exists):

 Given a first-order formula , is  true on (N, +, ¢) ?

6

7

Computer Science and Computational Complexity

• Computer Science is the study of

algorithms.

• Computational Complexity is the

quantitative study of decidable

problems.

• Decidable problems are organized in

complexity classes according to the

computational resources needed to

solve them.

Undecidable

Problems

No algorithm

exists

Decidable

Problems

An algorithm

exists

Complexity Classes

Definition:

• P = the class of all decision problems solvable by an

algorithm in polynomial time

• NP = the class of all decision problems for which an

alleged solution can be verified in polynomial time.

Main Open Question in Theoretical Computer Science:

 Is P = NP?

Cook’s Theorem (1971):

• NP contains complete problems (i.e., “hardest” in NP).

• 3SAT is NP-complete.
8

Boolean Satisfiability

• 3SAT: Given a 3CNF-formula , is it satisfiable?

– 3CNF-formula: c1 Æ … Æ cm, where each ci is one of

 (x Ç y Ç z), (: x Ç y Ç z), (: x Ç : y Ç z) , (: x Ç : y Ç : z)

• 3SAT is in NP: Given a 3CNF-formula  and an

 assignment s of values 0/1 to the variables of , we can

 verify in polynomial time whether or not s satisfies .

• Cook’s Theorem: 3SAT is NP-complete, i.e.,

 every problem in NP can be reduced to 3SAT in

 polynomial time. Hence,

 P = NP if and only if 3SAT is in P.
9

Constraint Satisfaction

Instance (V,D,C) of a Constraint Satisfaction Problem (CSP)

• Input:

– Set V of variables

– Set D for the values of the variables, called the domain

– Set C of constraints of the form (t,R), where

• t is a tuple (x1,…,xk) of variables

• R is a k-ary relation on D (i.e., R µ Dk)

• Question: Is there a solution?

– Is there an assignment h of values to variables so that all

constraints are satisfied?

 (i.e., (h(x1), …, h(xk)) 2 R, for each constraint (t,R) in C)

10

Logic and Constraint Satisfaction

• 3SAT: Given a 3CNF-formula , is it satisfiable?

– 3CNF-formula: c1 Æ … Æ cm, where each ci is one of

 (x Ç y Ç z), (: x Ç y Ç z), (: x Ç : y Ç z) , (: x Ç : y Ç : z)

• 3SAT as a Constraint Satisfaction Problem

– V = set of variables occurring in 

– D = { 0,1 }

– Constraints of the form (t,R0), (t,R1), (t,R2), (t,R3), where

 t = (x,y,z) is a triple of variables and

 R0 = { 0,1 }3 n { (0,0,0) }, R1 = { 0,1 }3 n { (1,0,0) },

 R2 = { 0,1 }3 n { (1,1,0) }, R3 = { 0,1 }3 n { (1,1,1) }

11

Logic and Constraint Satisfaction

• 2SAT: Given a 2CNF-formula , is it satisfiable?

– 2CNF-formula: c1 Æ … Æ cm, where each ci is one of

 (x Ç y), (: x Ç y), (: x Ç : y)

• 2SAT as a Constraint Satisfaction Problem

– V = set of variables occurring in 

– D = { 0,1 }

– Constraints of the form (t,P0), (t,P1), (t,P2), where

 t = (x,y) is a pair of variables and

 P0 = { 0,1 }2 n { (0,0) }, P1 = { 0,1 }2 n { (1,0) },

 P2 = { 0,1 }2 n { (1,1) }

12

Generalized Satisfiability Problems

• A Boolean constraint language is a set Γ of Boolean relations,
i.e., Γ = { R1, …, Ri , …, } with each Ri ½ { 0,1 }k for some k.

• CNF(Γ): Formulas of the form c1 Æ … Æ cm, where each cj is of

the form Ri(t) with t a tuple of k variables.

• SAT(Γ): Given a CNF(Γ)-formula , is it satisfiable?

• SAT(Γ) as a Constraint Satisfaction Problem

– V = set of variables occurring in 

– D = { 0,1 }

– Constraints of the form (t,Ri) with t a tuple of k variables.

13

Generalized Satisfiability Problems

• Example: 3SAT = SAT({ R0, R1, R2, R3 })

• Example: 2SAT = SAT({ P0, P1, P2 })

• Example: POSITIVE-1-in-3-SAT

 Input: 3CNF-formula c1 Æ … Æ cm, where each ci is of the

 form (x Ç y Ç z)

 Question: Is there an assignment that makes true exactly one

 variable in each constraint?

 Fact: POSITIVE-1-in-3-SAT = SAT({ R1/3 }), where

 R1/3 = { (1,0,0), (0,1,0), (0,0,1) }

14

Computational Complexity of SAT(Γ)

Theorem:

• 2SAT is in P (Krom - 1967)

• 3SAT is NP-complete (Cook - 1971)

• POSITIVE-1-in-3-SAT is NP-complete (Schaefer – 1978).

Question:

• Let Γ be a Boolean constraint language.

 What can we say about the complexity of SAT(Γ)?

• Is there a general result that explains the complexity of

 2SAT, 3SAT, and POSITIVE-1-in-3-SAT?

15

Computational Complexity of SAT(Γ)

Schaefer’s Dichotomy Theorem (1978)

If Γ is a Boolean constraint language, then

either SAT(Γ) is in P or SAT(Γ) is NP-complete.

16

N

NP-complete

P

not NP-complete

not in P

SAT(Γ) NP

Six Special Types of Boolean Relations

Definition: Let R µ { 0,1 }k be a Boolean relation.

1. R is 0-valid if (0,0,…,0) 2 R.

2. R is 1-valid if (1,1,…,1) 2 R.

3. R is bijunctive if R is the set of satisfying assignments of a 2CNF-

formula.

4. R is Horn if R is the set of satisfying assignments of a Horn

formula, i.e., a CNF-formula each clause of which has at most one

positive literal.

5. R is dual Horn if R is the set of satisfying assignments of a dual

Horn formula, i.e., a CNF-formula each clause of which has at most

one negative literal.

6. R is linear (affine) if R is the set of solutions of a system of linear

equations over the 2-element field.

 17

Computational Complexity of SAT(Γ)

Schaefer’s Dichotomy Theorem – Revisited

Let Γ be a Boolean constraint language.

• If Γ satisfies at least one of the following six conditions, then

 SAT(Γ) is in P

1. Γ is 0-valid (i.e., every relation in Γ is 0-valid);

2. Γ is 1-valid (i.e., every relation in Γ is 1-valid);

3. Γ is bijunctive (i.e., every relation in Γ is bijunctive);

4. Γ is Horn (i.e., every relation in Γ is Horn);

5. Γ is dual Horn (i.e., every relation in Γ is dual Horn);

6. Γ is linear (i.e., every relation in Γ is linear).

• Otherwise, SAT(Γ) is NP-complete.

18

Computational Complexity of SAT(Γ)

 Γ Complexity of SAT(Γ)

0-valid P

1-valid P

Bijunctive P

Horn P

Dual Horn P

Linear P

None of the above NP-complete

19

20

We always did feel the same

We just saw it from a different point

Of view

Tangled up in blue

Bob Dylan - 1975

A Change in Perspective

• Boolean Domain = { 0,1 }

• Boolean relation R µ { 0,1 }k

• Characteristic function ÂR : { 0,1 }k ! { 0,1 }

Consider the following translation:

 0 $ +1, 1 $ -1

• Boolean Domain = { +1,-1 }

• Boolean relation R µ { +1,-1 }k

• Characteristic function ÂR : { +1,-1 }k ! { +1,-1 }

21

A Change in Perspective

Fact: Let R µ { 0,1 }k be a Boolean relation. The characteristic

function ÂR : { +1,-1 }k ! { +1,-1 } of R can be uniquely

represented by a multilinear polynomial.

Proof: It is the Fourier Transform.

Example 1: Let R be the relation defined by (x Æ y)

• Then ÂR(x,y) = ½(x+y-xy+1)

Example 2: Let R be the relation defined by (x Ç y)

• Then ÂR(x,y) = ½(x+y+xy-1)

Example 3: Let R be the relation defined by x+y+z =1 mod(2).

• Then ÂR(x,y,z) = xyz

Example 4: Let R be the relation defined by x+y+z =0 mod(2).

• Then ÂR(x,y,z) = -xyz

• Characteristic function ÂR : { +1,-1 }k ! { +1,-1 }

22

Relaxations of Constraint Satisfaction

• Question: What is the benefit of the change in perspective?

• Answer:

– The change in perspective allows for an expansion of the

horizon.

– By representing Boolean relations as multilinear

polynomials, we can investigate relaxations of constraint

satisfaction in which generalized assignments are allowed,

i.e., the variables may take values in domain richer than

the Boolean domain.

23

Mermin’s Magic Square (1990)

• CSP instance given by the system of linear equations

 x1 + x2 + x3 = 0 mod(2) x1 + x4 + x7 = 0 mod(2)

 x4 + x5 + x6 = 0 mod(2) x2 + x5 + x8 = 0 mod(2)

 x7 + x8 + x9 = 0 mod(2) x3 + x6 + x9 = 1 mod(2)

• This system has no solutions in { 0,1 } because

 0 = x1 + x2 + … +x9 = 1

24

X1 X2 X3 0

X4 X5 X6 0

X7 X8 X9 0

0 0 1

Mermin’s Magic Square (1990)

• x1 x2 x3 = +1 x1 x4 x7 = +1

 x4 x5 x6 = +1 x2 x5 x8 = +1

 x7 x8 x9 = +1 x3 x6 x9 = -1

• This system has no solutions in { +1,-1 }

• This system has a solution in 4£4 complex matrices

 (I ⊗Z)(Z ⊗ I)(Z ⊗ Z) = +I (I ⊗ Z)(Z ⊗ I)(X ⊗ Z) = +I

 (X ⊗ I)(I ⊗ X)(X ⊗ X) = +I (Z ⊗ I)(I ⊗ X)(Z ⊗ X) = +I

 (X ⊗ Z)(Z ⊗ X)(Y ⊗ Y) = +I (Z ⊗ Z)(X ⊗ X)(Y ⊗ Y) = -I

 1 0 0 -i 1 0

 0 1 i 0 0 -1

25

Y = Z = X = Pauli matrices

Remarks on Mermin’s Magic Square

Note:

The lack of solutions in { +1, -1 } depends on the pairwise

commutativity of variables.

Fact: The solution in 4£4 complex matrices has the following

properties:

• The values of variables occurring in the same equation

 pairwise commute.

• Each value A is Hermitian (self-adjoint), i.e., A = A*.

• Each value A is such that A2 = +I (hence, A is unitary)

 (I⊗Z)2 = (X⊗X)2 = (Z⊗Z)2 = (X⊗Z) 2 = (Y⊗Y) 2 = … = +I

26

Satisfiability via Operator Assignments

Definition: Cleve and Mittal - 2015

Let Γ be a Boolean constraint language and let  ´ c1 Æ … Æ cm be a

CNF(Γ)-formula with variables x1,…,xn.

•  is satisfiable via operators if there are linear operators A1, …, An on

some Hilbert space H such that

– Ai is self-adjoint (i.e., Ai = A*i) and Ai
2 = +I for each i · n.

– AiAj = AjAi, for all i and j such that both xi and xj appear in some

constraint ck of .

– A1, …, An satisfy every constraint ck of , where ck is viewed as a

multilinear polynomial.

•  is satisfiable via finite-dimensional operators (fd-operators) if

  is satisfiable via operators in some Hilbert space of finite

 dimension (i.e., in C
d
, for some d ¸ 1).

 27

Non-Local Games

• Two players, Alice and Bob, play against a Verifier using a

system Ax = b of linear equations mod(2) as a board.

• Alice and Bob know the system and can communicate before

the game starts, but not during the game (non-local).

• In a play of the game, the Verifier

– sends Alice one of the equations ai1x1 + …+ ainxn = bi

– sends Bob one of the variables xj so that aij ≠ 0.

• Alice assigns values c1,…,cn 2 { 0,1 } to the variables

 x1, …, xn so that the equation ai1c1 + …+ aincn = bi is satisfied.

• Bob assigns a value dj 2 { 0,1 } to xj.

• Alice and Bob win if cj = dj.

28

Non-Local Games

29

A Alice Bob

Verifier

ai1x1+ …+ ainxn = bi

xj dj

c1,…,cn

 Winning Condition

 ai1c1+ …+ aincn = bi

 cj = dj

Entangled Non-Local Games

Fact: Alice and Bob have a winning strategy

 if and only if

 the system Ax = b is satisfiable in { 0,1 }.

Theorem (Cleve-Mittal 2015 and Cleve-Liu-Slofstra 2016)

• Alice and Bob have a winning strategy that uses an entangled

state in the tensor-product model

 if and only if

 the system Ax = b is satisfiable via fd-operators.

• Alice and Bob have a winning strategy that uses an entangled

 state in the commuting-operator model

 if and only if

 the system Ax = b is satisfiable via operators.

30

Three Variants of Satisfiability

Definition: Let Γ be a Boolean constraint language.

• SAT(Γ): (classical satisfiability)

 Given a CNF(Γ)-formula , is  satisfiable in { +1, -1 }?

• SAT*(Γ): (satisfiability via fd-operators)

 Given a CNF(Γ)-formula , is  satisfiable via fd-operators?

• SAT**(Γ): (satisfiability via operators)

 Given a CNF(Γ)-formula , is  satisfiable via operators?

Note: classical sat. ⇒ sat. via fd-operators ⇒ sat via operators

31

Gaps in Satisfiability

Definition: Let Γ be a Boolean constraint language.

- A CNF(Γ)-formula  has

• a gap of the first kind if

  is “yes” for SAT*(Γ) and “no” for SAT(Γ);

• a gap of the second kind if

  is “yes” for SAT**(Γ) and “no” for SAT(Γ);

• a gap of the third kind if

  is “yes” for SAT**(Γ) and “no” for SAT*(Γ).

- Γ has a gap of the i-th kind if there is a CNF(Γ)-formula that has

 a gap of the i-th kind, i = 1, 2, 3.

Mnemonic: Add the stars to determine the kind of the gap.

32

Gaps in Satisfiability

Theorem: Let LIN be the Boolean constraint language that

consists of all linear Boolean relations.

• (Mermin – 1990) LIN has a gap of the first kind.

• (Slofstra – 2016) LIN has a gap of the third kind

Hence, LIN has gaps of every kind.

Proof:

• Mermin’s Magic Square yields a gap of the first kind for LIN.

• Slofstra showed that there is a system of linear equations that

is satisfiable via operators in some infinite-dimensional Hilbert

space, but it is not satisfiable via fd-operators.

 The proof uses deep results about finitely-presentable groups.

33

No Gaps in Satisfiability

Theorem: (Ji 2014)

• 2SAT has no gaps of the first kind.

• Horn SAT has no gaps of the first kind.

Proof Idea:

The polynomial-time algorithms for 2SAT and for Horn SAT can

be used to show that if a 2CNF-formula or a Horn formula is not

satisfiable in the Boolean domain, then it is not satisfiable via fd-

operators.

34

Gaps in Satisfiability

Summary:

• LIN has gaps of every kind

• 2SAT has no gaps of the first kind.

• Horn SAT has no gaps of the first kind.

Question: Let Γ be an arbitrary Boolean constraint language.

• Does Γ have any kind of gaps?

• If so, what kinds of gaps does Γ have?

35

Classification of Gaps in Satisfiability

Theorem: (Atserias, K …, Severini – 2017)

If Γ is a Boolean constraint language, then

either Γ has gaps of every kind or Γ has gaps of no kind.

Moreover, Γ has gaps of no kind precisely when satisfies at least

one of the following five conditions:

1. Γ is 0-valid;

2. Γ is 1-valid;

3. Γ is bijunctive;

4. Γ is Horn;

5. Γ is dual Horn.

 36

Complexity of SAT(Γ) vs. Gaps for Γ

 Γ Complexity of SAT(Γ) Gaps for Γ

0-valid P No kind

1-valid P No kind

Bijunctive P No kind

Horn P No kind

Dual Horn P No kind

Linear P Every kind

None of the above NP-complete Every kind

37

Classification of Gaps in Satisfiability

Theorem: (Atserias, K …, Severini – 2017)

If Γ is a Boolean constraint language, then

either Γ has gaps of every kind or Γ has gaps of no kind.

Proof: Main ingredients:

• pp-definability and gap-preserving reductions;

• Post’s Lattice;

• Mermin’s Magic Square

• Slofstra’s Theorem about gaps for LIN.

38

Primitive Positive Definability

Definition: Let Γ be a Boolean constraint language.

A Boolean relation R is pp-definable from Γ if

R(x1,…,xk) ´ 9 z1 …9 zs (B1 Æ … Æ Bm), where each Bi is

a relation in Γ with variables from x1,…,xk, z1,…,zs.

Example: Not-All-Equal Relation NAE

Consider NAE = { 0,1 }3 \ { (0,0,0), (1,1,1) }

• NAE(x,y,z) ´ (x Ç y Ç z) Æ (: x Ç : y Ç : z)

• NAE(x,y,z) ´ R0 (x,y,z) Æ R3(x,y,z)

Thus, NAE is pp-definable from { R0, R3 }

39

Gap-Preserving Reductions

Note: Extensive study of pp-definability in logic, constraint

satisfaction, and database theory.

Lemma: Let Γ and Δ be two Boolean constraint languages.

If every relation in Δ is pp-definable from Γ, then gaps for Δ
imply gaps of the same kind for Γ.

Proof: Uses the Spectral Theorem.

Note: The preceding lemma provides a tool for establishing

gaps for a constraint language using pp-definability and

known gaps for some other constraint language.

40

Primitive Positive Definability

Definition: Let Γ be a Boolean constraint language.

We write [Γ] to denote the collection of all Boolean relations

that are pp-definable from Γ.

Theorem: (Post – 1941)

• There are countably many collections of the form [Γ],

 where Γ varies over all Boolean constraint languages

 (there are uncountably many constraint languages Γ).

• Explicit description of the lattice of all such collections [Γ]

 with respect to set-theoretic containment µ.

 41

42

Post’s Lattice

Classification of Gaps in Satisfiability

Theorem: (Atserias, K …, Severini – 2017)

If Γ is a Boolean constraint language, then

either Γ has gaps of every kind or Γ has gaps of no kind.

Moreover, the following statements are equivalent:

• Γ has gaps of every kind.

• LIN is pp-definable from Γ.

• Γ is not 0-valid, 1-valid, bijunctive, Horn, dual Horn.

43

Algorithmic Aspects

Fact: SAT(LIN) is solvable in polynomial time

(e.g., using Gaussian elimination).

Theorem: (Slofstra – 2016)

SAT**(LIN) is undecidable

Proof: Uses the undecidability of the word problem for groups.

Open Problem:

• Is SAT*(LIN) decidable?

• If so, what is the exact complexity of SAT*(LIN)?

44

 Φύσις κρύπτεσθαι φιλεῖ

 Nature likes to hide

 Heraclitus, Fragment B123 DK

45

