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Collaboration with Lauri Hella 

• Hella, K …, Luosto:   LICS 1994  &  APAL 1997 

    How to Define a Linear Order on Finite Models 

• Dawar, Hella, K … :   ICALP 1995 

     Implicit Definability and Infinitary Logic in Finite Model  

     Theory 

• Hella, K …, Luosto:   Bulletin of the ASL 1997 

     Almost Everywhere Equivalence of Logics in Finite 

     Model Theory 

• Hella and K … :         CSL 2016 

    Dependence Logic vs. Constraint Satisfaction 
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Lauri Hella as I know him 

• Brilliant researcher 

 

• Principled scientist 

 

• Wonderful human being 

 

• True friend 
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Three Milestones in the Development of Logic 
 

• Aristotle, 384-322 BC 

    Syllogistic Logic 

 

• George Boole, 1815-1864                

    Propositional Logic       

    (x Ç : y) Æ (: x Ç z Ç : w) 

 

• Gottlob Frege, 1848-1925 

    First-Order Logic 

    (8 x) (8 y)(E(x,y) !  9 z (E(x,z) Æ E(y,z)) 
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Computability and Undecidability 

   Kurt Gödel            Alan Turing            Alonzo Church  

 

 

 

 

 

• Revolutionary research in mathematical logic and the 

foundations of mathematics in the 1930s. 

• Formalization of the notion of computable function. 

• Discovery of undecidable problems (no algorithm exists): 

    Given a first-order formula , is  true on (N, +, ¢) ? 
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Computer Science and Computational Complexity 

 

• Computer Science is the study of 

algorithms. 

 

• Computational Complexity is the 

quantitative study of decidable 

problems. 

 

• Decidable problems are organized in 

complexity classes according to the 

computational resources needed to 

solve them. 

 

 

 

Undecidable 

Problems 

 

No algorithm 

exists 

Decidable 

Problems 

 

An algorithm 

exists 

 



Complexity Classes 

Definition: 

• P   =  the class of all decision problems solvable by an 

algorithm in polynomial time 

• NP =  the class of all decision problems for which an 

alleged solution can be verified in polynomial time. 

 

Main Open Question in Theoretical Computer Science: 

                                Is P = NP? 

 

Cook’s Theorem (1971): 

• NP contains complete problems (i.e., “hardest” in NP). 

• 3SAT is NP-complete. 
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Boolean Satisfiability 

• 3SAT: Given a 3CNF-formula , is it satisfiable? 

– 3CNF-formula:  c1 Æ … Æ cm, where each ci is one of 

     (x Ç y Ç z), (: x Ç y Ç z),  (: x Ç : y Ç z) , (: x Ç : y Ç : z) 

 

• 3SAT is in NP: Given a 3CNF-formula  and an  

    assignment s of values 0/1 to the variables of , we can 

    verify in polynomial time whether or not s satisfies . 

 

• Cook’s Theorem: 3SAT is NP-complete, i.e.,   

     every problem in NP can be reduced to 3SAT in  

     polynomial time. Hence, 

                  P = NP  if and only if  3SAT is in P. 
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Constraint Satisfaction 

Instance (V,D,C) of a Constraint Satisfaction Problem (CSP) 

• Input: 

–  Set  V of variables 

–  Set  D for the values of the variables, called the domain  

–  Set  C of constraints of the form (t,R), where 

• t is a tuple (x1,…,xk) of variables 

• R is a k-ary relation on D (i.e., R µ Dk ) 

• Question: Is there a solution? 

– Is there an assignment  h  of values to variables so that all 

constraints are satisfied? 

    (i.e., (h(x1), …, h(xk)) 2 R, for each constraint (t,R) in C) 
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Logic and Constraint Satisfaction 

• 3SAT: Given a 3CNF-formula , is it satisfiable? 

– 3CNF-formula:  c1 Æ … Æ cm, where each ci is one of 

     (x Ç y Ç z), (: x Ç y Ç z),  (: x Ç : y Ç z) , (: x Ç : y Ç : z) 

 

• 3SAT as a Constraint Satisfaction Problem 

– V = set of variables occurring in  

– D = { 0,1 } 

– Constraints of the form (t,R0), (t,R1), (t,R2), (t,R3), where 

    t = (x,y,z) is a triple of variables and   

    R0 = { 0,1 }3 n { (0,0,0) }, R1 = { 0,1 }3 n { (1,0,0) },  

    R2 = { 0,1 }3 n { (1,1,0) }, R3 = { 0,1 }3 n { (1,1,1) } 
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Logic and Constraint Satisfaction 

• 2SAT: Given a 2CNF-formula , is it satisfiable? 

– 2CNF-formula:  c1 Æ … Æ cm, where each ci is one of 

         (x Ç y), (: x Ç y),  (: x Ç : y)  

 

• 2SAT as a Constraint Satisfaction Problem 

– V = set of variables occurring in  

– D = { 0,1 } 

– Constraints of the form (t,P0), (t,P1), (t,P2), where 

    t = (x,y) is a pair of variables and  

    P0 = { 0,1 }2 n { (0,0) }, P1 = { 0,1 }2 n { (1,0) },  

    P2 = { 0,1 }2 n { (1,1) } 
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Generalized Satisfiability Problems 

• A Boolean constraint language is a set Γ of Boolean relations, 
i.e., Γ = { R1, …, Ri , …, } with each Ri ½ { 0,1 }k for some k. 

 

• CNF(Γ): Formulas of the form c1 Æ … Æ cm, where each cj is of 

the form Ri(t) with t a tuple of k variables. 

 

• SAT(Γ): Given a CNF(Γ)-formula , is it satisfiable? 

 

• SAT(Γ) as a Constraint Satisfaction Problem 

– V = set of variables occurring in  

– D = { 0,1 } 

– Constraints of the form (t,Ri) with t a tuple of k variables. 
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Generalized Satisfiability Problems 

• Example:  3SAT = SAT({ R0, R1, R2, R3 }) 

 

• Example:  2SAT = SAT({ P0, P1, P2 }) 

 

• Example:  POSITIVE-1-in-3-SAT 

     Input: 3CNF-formula c1 Æ … Æ cm, where each ci is of the  

                form  (x Ç y Ç z) 

     Question: Is there an assignment that makes true exactly one 

     variable in each constraint? 

     Fact:        POSITIVE-1-in-3-SAT = SAT({ R1/3 }), where  

                           R1/3  = { (1,0,0), (0,1,0), (0,0,1) } 
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Computational Complexity of SAT(Γ) 

Theorem: 

•  2SAT is in P    (Krom - 1967) 

•  3SAT is NP-complete  (Cook - 1971) 

•  POSITIVE-1-in-3-SAT is NP-complete  (Schaefer – 1978). 

 

Question:   

•  Let Γ be a Boolean constraint language. 

     What can we say about the complexity of SAT(Γ)? 

•  Is there a general result that explains the complexity of 

      2SAT, 3SAT, and POSITIVE-1-in-3-SAT? 
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Computational Complexity of SAT(Γ) 

Schaefer’s Dichotomy Theorem (1978) 

If Γ is a Boolean constraint language, then 

either SAT(Γ) is in P or SAT(Γ) is NP-complete.   
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N 

NP-complete 

P 

not  NP-complete 

not  in P 

SAT(Γ) NP 



Six Special Types of Boolean Relations 

Definition: Let R µ { 0,1 }k be a Boolean relation. 

1. R is 0-valid if (0,0,…,0) 2 R. 

2. R is 1-valid if (1,1,…,1) 2 R. 

3. R is bijunctive if R is the set of satisfying assignments of a 2CNF-

formula. 

4. R is Horn if R is the set of satisfying assignments of a Horn 

formula, i.e., a CNF-formula each clause of which has at most one 

positive literal. 

5. R is dual Horn if R is the set of satisfying assignments of a dual 

Horn formula, i.e., a CNF-formula each clause of which has at most 

one negative literal. 

6. R is linear (affine) if R is the set of solutions of a system of linear 

equations over the 2-element field. 
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Computational Complexity of SAT(Γ) 

Schaefer’s Dichotomy Theorem – Revisited 

Let Γ be a Boolean constraint language. 

• If Γ satisfies at least one of the following six conditions, then   

  SAT(Γ) is in P 

1. Γ is 0-valid (i.e., every relation in Γ is 0-valid); 

2. Γ is 1-valid (i.e., every relation in Γ is 1-valid); 

3. Γ is bijunctive (i.e., every relation in Γ is bijunctive); 

4. Γ is Horn (i.e., every relation in Γ is Horn); 

5. Γ is dual Horn (i.e., every relation in Γ is dual Horn); 

6. Γ is linear (i.e., every relation in Γ is linear). 

• Otherwise, SAT(Γ) is NP-complete. 
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Computational Complexity of SAT(Γ) 

                       Γ        Complexity of SAT(Γ) 

0-valid                        P 

1-valid                        P 

Bijunctive                        P 

Horn                        P 

Dual Horn                        P 

Linear                        P 

None of the above              NP-complete 
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We always did feel the same 

We just saw it from a different point 

Of view 

Tangled up in blue 

 

 

Bob Dylan - 1975 



A Change in Perspective 

• Boolean Domain =  { 0,1 } 

• Boolean relation R µ { 0,1 }k 

• Characteristic function ÂR : { 0,1 }k  !  { 0,1 } 

 

Consider the following translation:  

                           0 $ +1,  1 $ -1 

 

• Boolean Domain = { +1,-1 } 

• Boolean relation R µ { +1,-1 }k 

• Characteristic function ÂR  : { +1,-1 }k  !  { +1,-1 } 
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A Change in Perspective 

Fact: Let R µ { 0,1 }k be a Boolean relation. The characteristic 

function ÂR  : { +1,-1 }k  !  { +1,-1 } of R can be uniquely 

represented by a multilinear polynomial. 

Proof:  It is the Fourier Transform. 

 

Example 1:  Let R be the relation defined by (x Æ y) 

• Then  ÂR(x,y) =  ½(x+y-xy+1) 

Example 2:  Let R be the relation defined by (x Ç y) 

• Then  ÂR(x,y) =  ½(x+y+xy-1) 

Example 3:  Let R be the relation defined by x+y+z =1 mod(2).   

• Then  ÂR(x,y,z) =  xyz 

Example 4:  Let R be the relation defined by x+y+z =0 mod(2). 

• Then  ÂR(x,y,z) =  -xyz 

 

 
 

• Characteristic function ÂR  : { +1,-1 }k ! { +1,-1 } 
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Relaxations of Constraint Satisfaction 

 

• Question: What is the benefit of the change in perspective? 

 

• Answer:  

– The change in perspective allows for an expansion of the  

horizon.  

– By representing Boolean relations as multilinear 

polynomials, we can investigate relaxations of constraint 

satisfaction in which generalized assignments are allowed, 

i.e., the variables may take values in domain richer than 

the Boolean domain. 
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Mermin’s Magic Square (1990) 

• CSP instance given by the system of linear equations 

       x1 + x2 + x3 =  0 mod(2)        x1 + x4 + x7 =  0 mod(2)     

       x4 + x5 + x6  =  0 mod(2)       x2 + x5 + x8 =  0 mod(2)  

       x7 + x8 + x9  =  0 mod(2)       x3 + x6 + x9 = 1 mod(2)  

      

•  This system has no solutions in { 0,1 } because 

                           0  = x1 + x2 + … +x9 =  1 
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X1 X2 X3 0 

X4 X5 X6 0 

X7 X8 X9 0 

0 0 1 



Mermin’s Magic Square (1990) 

•   x1 x2 x3 =  +1          x1 x4 x7 =  +1 

      x4 x5 x6 =  +1          x2 x5 x8 =  +1  

      x7 x8 x9 =  +1          x3 x6 x9 =   -1  

•  This system has no solutions in { +1,-1 } 

•  This system has a solution in 4£4 complex matrices 

     (I ⊗Z)(Z ⊗ I)(Z ⊗ Z)   =  +I        (I ⊗ Z)(Z ⊗ I)(X ⊗ Z) = +I 

     (X ⊗ I)(I ⊗ X)(X ⊗ X)  =  +I        (Z ⊗ I)(I ⊗ X)(Z ⊗ X) = +I 

     (X ⊗ Z)(Z ⊗ X)(Y ⊗ Y) = +I       (Z ⊗ Z)(X ⊗ X)(Y ⊗ Y) = -I 

         

               1   0                 0   -i                  1   0 

               0   1                 i     0                 0  -1      

25 

Y = Z =  X =  Pauli matrices 



Remarks on Mermin’s Magic Square 

Note:  

The lack of solutions in { +1, -1 } depends on the pairwise 

commutativity of variables. 

 

Fact: The solution in 4£4 complex matrices has the following 

properties: 

•  The values of variables occurring in the same equation   

    pairwise commute. 

•  Each value A is Hermitian (self-adjoint), i.e., A = A*. 

•  Each value A is such that  A2 = +I  (hence, A is unitary) 

     (I⊗Z)2 = (X⊗X)2 = (Z⊗Z)2 = (X⊗Z) 2 = (Y⊗Y) 2  = … =  +I 
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Satisfiability via Operator Assignments 

Definition:  Cleve and Mittal - 2015  

Let Γ be a Boolean constraint language and let  ´ c1 Æ … Æ cm be a  

CNF(Γ)-formula with variables x1,…,xn. 

•  is  satisfiable via operators if there are linear operators A1, …, An on 

some Hilbert space H such that 

– Ai is self-adjoint (i.e., Ai = A*i) and Ai
2 = +I for each i · n. 

– AiAj = AjAi, for all i and j such that both xi and xj appear in some 

constraint ck of . 

– A1, …, An satisfy every constraint ck of , where ck is viewed as a 

multilinear polynomial. 

•   is satisfiable via finite-dimensional operators (fd-operators) if  

    is satisfiable via operators in some Hilbert space of finite  

   dimension (i.e., in C
d
, for some d ¸ 1). 
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Non-Local Games 

• Two players, Alice and Bob, play against a Verifier using a 

system Ax = b of linear equations mod(2) as a board. 

• Alice and Bob know the system and can communicate before 

the game starts, but not during the game (non-local). 

• In a play of the game, the Verifier  

– sends Alice one of the equations ai1x1 + …+ ainxn = bi  

– sends Bob one of the variables xj so that aij  ≠ 0. 

• Alice assigns values c1,…,cn 2 { 0,1 } to the variables  

     x1, …, xn so that the equation ai1c1 + …+ aincn = bi is satisfied. 

• Bob assigns a value dj 2 { 0,1 } to xj. 

• Alice and Bob win if cj = dj. 
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Non-Local Games 

29 

A Alice Bob 

Verifier 

ai1x1+ …+ ainxn = bi  

xj dj 

c1,…,cn 

   Winning Condition 

    ai1c1+ …+ aincn  =  bi 

 cj = dj  
 

 



Entangled Non-Local Games 

 
Fact:  Alice and Bob have a winning strategy  

                                 if and only if  

          the system  Ax = b is satisfiable in { 0,1 }. 

 

Theorem (Cleve-Mittal 2015 and Cleve-Liu-Slofstra  2016) 

• Alice and Bob have a winning strategy that uses an entangled 

state in the tensor-product model  

                                   if and only if   

     the system  Ax = b is satisfiable via fd-operators. 

• Alice and Bob have a winning strategy that uses an entangled  

    state in the commuting-operator model   

                                    if and only if  

    the system   Ax = b is satisfiable via operators. 
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Three Variants of Satisfiability 

Definition: Let Γ be a Boolean constraint language. 

• SAT(Γ):    (classical satisfiability) 

   Given a CNF(Γ)-formula , is  satisfiable in { +1, -1 }? 

 

• SAT*(Γ):   (satisfiability via fd-operators) 

   Given a CNF(Γ)-formula , is  satisfiable via fd-operators? 

 

• SAT**(Γ):  (satisfiability via operators) 

   Given a CNF(Γ)-formula , is  satisfiable via operators? 

 

Note: classical sat. ⇒ sat. via fd-operators ⇒ sat via operators 
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Gaps in Satisfiability 

Definition: Let Γ be a Boolean constraint language. 

- A CNF(Γ)-formula   has  

•   a gap of the first kind if  

      is “yes” for SAT*(Γ) and “no” for SAT(Γ);   

•   a gap of the second kind if  

      is “yes” for SAT**(Γ) and “no”  for SAT(Γ); 

•   a gap of the third kind if  

      is “yes” for SAT**(Γ) and “no”  for SAT*(Γ). 

 

- Γ has a gap of the i-th kind if there is a CNF(Γ)-formula that has 

  a gap of the i-th kind, i = 1, 2, 3. 

 

Mnemonic:  Add the stars to determine the kind of the gap. 
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Gaps in Satisfiability 

Theorem:  Let LIN be the Boolean constraint language that 

consists of all linear Boolean relations. 

• (Mermin – 1990) LIN has a gap of the first kind. 

• (Slofstra – 2016) LIN has a gap of the third kind 

Hence, LIN has gaps of every kind. 

Proof: 

• Mermin’s Magic Square yields a gap of the first kind for LIN.  

• Slofstra showed that there is a system of linear equations that 

is satisfiable via operators in some infinite-dimensional Hilbert 

space, but it is not satisfiable via fd-operators. 

    The proof uses deep results about finitely-presentable groups. 
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No Gaps in Satisfiability 

 

Theorem:  (Ji 2014) 

• 2SAT has no gaps of the first kind. 

• Horn SAT has no gaps of the first kind. 

Proof Idea: 

The polynomial-time algorithms for 2SAT and for Horn SAT can 

be used to show that if a 2CNF-formula or a Horn formula is not 

satisfiable in the Boolean domain, then it is not satisfiable via fd-

operators. 

 

 

 

 
 

34 



Gaps in Satisfiability 

 

Summary: 

•   LIN has gaps of every kind 

•   2SAT has no gaps of the first kind. 

•   Horn SAT has no gaps of the first kind. 

 

Question: Let Γ be an arbitrary Boolean constraint language. 

•   Does Γ  have any kind of gaps? 

•   If so, what kinds of gaps does Γ have? 
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Classification of Gaps in Satisfiability 

 

Theorem: (Atserias, K …, Severini – 2017) 

If Γ is a Boolean constraint language, then 

either Γ  has gaps of every kind or Γ has gaps of no kind.  

Moreover, Γ  has gaps of no kind precisely when satisfies at least 

one of the following five conditions: 

1.  Γ is 0-valid; 

2.  Γ is 1-valid; 

3.  Γ  is bijunctive; 

4.  Γ  is Horn; 

5.  Γ  is dual Horn. 
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Complexity of SAT(Γ) vs. Gaps for Γ 

             Γ  Complexity of SAT(Γ)      Gaps for Γ 

0-valid                 P       No kind 

1-valid                 P       No kind 

Bijunctive                 P       No kind 

Horn                 P       No kind 

Dual Horn                 P       No kind 

Linear                 P      Every kind 

None of the above       NP-complete      Every kind 
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Classification of Gaps in Satisfiability 

Theorem: (Atserias, K …, Severini – 2017) 

If Γ is a Boolean constraint language, then 

either Γ  has gaps of every kind or Γ has gaps of no kind.  

 

Proof: Main ingredients: 

•  pp-definability and gap-preserving reductions; 

•  Post’s Lattice; 

•  Mermin’s Magic Square 

•  Slofstra’s Theorem about gaps for LIN. 

 

38 



Primitive Positive Definability 

Definition: Let Γ be a Boolean constraint language. 

A Boolean relation R is pp-definable from Γ  if  

R(x1,…,xk) ´ 9 z1 …9 zs (B1 Æ … Æ Bm ),  where each Bi is 

a relation in Γ with variables from x1,…,xk, z1,…,zs. 

 

Example:  Not-All-Equal Relation NAE 

Consider NAE = { 0,1 }3 \ { (0,0,0), (1,1,1) } 

•  NAE(x,y,z)  ´ (x Ç y Ç z) Æ (: x Ç : y Ç : z) 

•  NAE(x,y,z)  ´  R0 (x,y,z) Æ R3(x,y,z)  

Thus, NAE is pp-definable from { R0, R3 } 
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Gap-Preserving Reductions 

Note: Extensive study of pp-definability in logic, constraint 

satisfaction, and database theory. 

 

Lemma: Let Γ and Δ be two Boolean constraint languages. 

If every relation in Δ  is pp-definable from Γ, then gaps for Δ 
imply gaps of the same kind for Γ. 

Proof: Uses the Spectral Theorem. 

 

Note: The preceding lemma provides a tool for establishing 

gaps for a constraint language using pp-definability and 

known gaps for some other constraint language. 
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Primitive Positive Definability 

Definition:  Let Γ be a Boolean constraint language. 

We write [Γ] to denote the collection of all Boolean relations 

that are pp-definable from Γ. 

 

Theorem: (Post – 1941) 

•  There are countably many collections of the form [Γ],  

    where Γ varies over all Boolean constraint languages  

    (there are uncountably many constraint languages Γ).  

•   Explicit description of the lattice of all such collections [Γ] 

    with respect to set-theoretic containment µ. 

 

  41 



42 

Post’s Lattice  



Classification of Gaps in Satisfiability 

Theorem: (Atserias, K …, Severini – 2017) 

If Γ is a Boolean constraint language, then 

either Γ  has gaps of every kind or Γ has gaps of no kind.  

Moreover, the following statements are equivalent: 

•  Γ  has gaps of every kind. 

•  LIN is pp-definable from Γ. 

•  Γ is not 0-valid, 1-valid, bijunctive, Horn, dual Horn. 
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Algorithmic Aspects 

Fact:  SAT(LIN) is solvable in polynomial time  

(e.g., using Gaussian elimination). 

 

Theorem: (Slofstra – 2016) 

SAT**(LIN) is undecidable 

Proof: Uses the undecidability of the word problem for groups. 

 

Open Problem:   

• Is SAT*(LIN) decidable? 

• If so, what is the exact complexity of SAT*(LIN)? 
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                           Φύσις κρύπτεσθαι φιλεῖ 

 

                               Nature likes to hide 

 

                       Heraclitus, Fragment B123 DK 

45 


