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Preliminaries

Boolean function: map f : {0, 1}n → {0, 1}, for n ≥ 1 called the arity of f

Examples: For a fixed arity n,

Projections: (a1, . . . , an) 7→ ai denoted by x1, . . . , xn.

Negated projections: ¬x1, . . . ,¬xn
Constants: 0-constant and 1-constant functions denoted by 0 and 1, resp.

Notation: Ω(n) = {0, 1}{0,1}n and Ω =
∪
n≥1

Ω(n).

Example: Ω(1) contains the unary proj.s, negated proj.s and constants

Convention: Ω(1) contains proj.s, negated proj.s and constants of any arity
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Clones

The composition of an n-ary f with m-ary g1, . . . , gn is given by

f (g1, . . . , gn)(a) = f (g1(a), . . . , gn(a)) for every a ∈ {0, 1}m.

For K , J ⊆ Ω, the class composition of K with J is defined by

K ◦ J = {f (g1, . . . , gn) : f n-ary in K , g1, . . . , gn m-ary in J}.

A clone is a class C ⊆ Ω that contains all projections and satisfies C ◦ C = C .

Known results about (Boolean) clones:

Clones constitute an algebraic lattice (E. Post, 1941).

Ω is the largest clone while Ic of all projections is the smallest

Each clone C is finitely generated: C = [K ], for some finite K ⊆ Ω

Each C has a dual Cd = {f d : f ∈ C},
f d (x1, . . . , xn) = ¬f (¬x1, . . . ,¬xn)
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Classification of clones: Post’s lattice
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Examples: essentially unary and minimal clones

Essentially unary clones: clones contained in Ω(1)

Ic = [ ], I0 = [0], I1 = [1] and I = [0, 1]

I ∗ = [¬x ] and Ω(1) = [0, 1,¬x ]

Minimal clones: clones that cover the clone Ic of projections

Λc = [∧] of conjunctions and Vc = [∨] of disjunctions

Lc = [⊕3] of constant-preserving linear functions

SM = [m] of self-dual (f = f d ) monotone functions



Composition of clones and normal forms

Known results about composition of clones:

The composition of clones is associative.

C1 ◦ C2 of clones is not always a clone: I ∗ ◦ Λ is not a clone

Composition of clones completely described by C., Foldes, Lehtonen (2006)

Ω can be factorized into a composition of minimal clones

Descending Irredundant Factorizations of Ω:

D: Ω = Vc ◦ Λc ◦ I ∗ and C: Ω = Λc ◦ Vc ◦ I ∗

P: Ω = Lc ◦ Λc ◦ I and Pd : Ω = Lc ◦ Vc ◦ I

M: Ω = SM ◦ Ω(1)

NB: Each corresponds to a normal form system (NFS), i.e., a set of terms
T (α1 · · · αn) over the connectives α1, . . . , αn taken in this order.

Example: D = T (∨ ∧ ¬) and C = T (∧ ∨ ¬)
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Complexity

Let A be an NFS and TA the set of terms of A. The A-complexity of f is

CA(f ) := min{|t| : t represents f and t ∈ TA}

NB: Members of Ω(1) are not counted in |t|

Example: A-terms and A-complexities of m = median

M : t = m(x1, x2, x3) and CM(m) = 1

D : t = (x1∧x2)∨(x1∧x3)∨(x2∧x3) and CD(m) = 5

C : t = (x1∨x2)∧(x1∨x3)∧(x2∨x3) and CC(m) = 5

P : t = ⊕3(x1∧x2, x1∧x3, x2∧x3) and CP(m) = 4

Pd : t = ⊕3(x1∨x2, x1∨x3, x2∨x3) and CPd (m) = 4
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Comparison of NFS’s

An NFS A is polynomially as efficient as B, denoted A ⪯ B, if there is a
polynomial p with integer coefficients such that

CA(f ) ≤ p(CB(f )) for all f ∈ Ω

NB: ⪯ is a quasi-ordering of NFSs’

If A ̸⪯ B and B ̸⪯ A holds, then A and B are incomparable

If A ⪯ B but B ̸⪯ A, then A is polynomially more efficient than B

If A ⪯ B and B ⪯ A, then A and B are equivalently efficient (A ∼ B)
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Motivation

Theorem (C., Foldes, Lehtonen)

1 D, C, P, and Pd are incomparable

2 M is polynomially more efficient than D, C, P, Pd

Problem 1. Other NFS’s? E.g.: based on other connectives (generators)

Problem 2. Classification of NFS’s in terms of efficiency

Problem 3. Does the choice of generators within NFSs impact efficiency?
E.g.: m3 vs m5?

Problem 4. How to obtain optimal (minimal) representations in efficient NFS?
E.g.: optimal median normal forms?
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Single vs several connectives
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Locating efficient NFSs...
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Efficient representations

Non-efficient representations

Result: NFS based on a single nontrivial connective are more efficient

Examples: NFS based on Ω = [x ↑ y ] and McU∞ = [x ∧ (y ∨ z)]
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Towards a finer classification of NFSs

Ω
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Efficient representations

Non-efficient representations

Result I: Black ≺ Blue ⪯ Red

Result II: Efficient monotone NFSs are all equivalent to M

Result III: The choice of monotone connectives does not impact efficiency



Main tools: NFS reductions

Consider NFSs A = T (α¬) (or T (α)) and B = T (β¬) (or T (β)). We say that

A is linear reducible to B, denoted A ⊒ B, if:
∃t ∈ T (β) s.t. α(x1, . . . , xar(α)) ≡ t and ∀j ∈ {1, . . . , ar(α)}, |t|xj = 1

A is universally reducible to B, denoted A ⊒∀ B, if:
∀j ∈ {1, . . . , ar(α)}, ∃tj ∈ T (β) s.t. α(x1, . . . , xar(α)) ≡ tj and |tj |xj = 1;

A is existentially reducible to B, denoted A ⊒∃ B, if:
∃t ∈ T (β) s.t. α(x1, . . . , xar(α)) ≡ t and ∃j ∈ {1, . . . , ar(α)}, |t|xj = 1.

Result I: ⊒ ⊂ ⊒∀ ⊂ ⊒∃. Moreover ⊒ ⊂⊒∀ ⊆ ⪰

Result II: Suppose A = T (α¬) ⊒∃ B. If [α] is symmetric, then A ⪰ B.
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Examples I

Recall: If A = T (α¬) ⊒∃ B and [α] is symmetric, then A ⪰ B.

Let U = T (u¬) be the NFS based on the generator u = x ∧ (y ∨ z) of McU∞

NB: u(x , y , z) ≡ m(m(x , 1, y), 0, z) and m(x , y , z) ≡ u(u(x , 0, y), u(x , y , z), 1)

Hence: U ⊒ M and M ⊒∃ U (with m sym.) and thus M ∼ U

Let S = T (x ↑ y ) be the NFS based on the Sheffer function x ↑ y = ¬(x ∧ y)

NB: x ↑ y ≡ m(¬x , 1,¬y) and m(x , y , z) ≡ (y ↑ z) ↑ (x ↑ ((y ↑ 1) ↑ (z ↑ 1)))

Hence: S ⊒ M and M ⊒∃ S (with m sym.) and thus M ∼ S
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Example II

Median decomposition scheme (MD): f : {0, 1}n → {0, 1} is monotone iff

(∗) f (x) = m( f (x0i ) , xi , f (x
1
i ) ), for every i ∈ {1, . . . , n}

Result: If A = T (α¬) with α monotone, then A ⪰ M. In fact, M ∼ A

Example: Let M2n+1 = T (m2n+1 ¬), n ≥ 1. Then M2n+1 ∼ M.

Indeed: m(x , y , z) = m2n+1(x , y
n, zn)
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Part II. Complexity issues: Median normal forms



Median NFS

How to obtain median representations?

Naive approach: Based on median decomposition scheme

(∗) f (x) = m( f (x0i ) , xi , f (x
1
i ) ), for every i ∈ {1, . . . , n}

NB: In the case of monotone functions...

Problem 1: The expressions thus obtained are not be optimal!

Example: m5 would need 1+2+4+8+16= 31 ms but 4 suffice:

m5 ≡ m(x1, m(x2, x3, x4), m(x2, x5, m(x3, x4, x5)))

Problem 2: There are equivalent median terms with = “size” but ̸= depth

Depth of t, denoted d(t), is defined recursively by

if t = x or c, then d(t) = 0

if t = m(t1, t2, t3), then d(t) = d(t1) + d(t2) + d(t3) + 1
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Structural representation of median forms

Structural representation of a median term t of depth d is St = (nd , . . . , n0)
where ni is the number of medians at depth ≤ i

NB: St is a decreasing sequence and nd = |t|
Ex: t = m(x1, m(x2, x3, x4), m(x2, x5, m(x3, x4, x5)))?
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Define: t1 ≤Str t2 if St1 ≤lex St2

NB: ≤Str prioritizes the size over depth, and “shallowness” over “deepness”
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Complexity issues

MNF: t is a median normal form (MNF) if it is minimal w.r.t. ≤Str

Problem: How difficult is it to find MNF’s?

Still eludes us but probably intractable...

SMALLMED:

Input: a median representation t and a decreasing sequence S

Output: SUCCESS if there is an equiv. t ′ s.t. St ′ < S , FAIL if not

Result: SMALLMED is in the class ΣP
2

Recall: ΣP
2 class of decision prob.s whose accepting instances are of the form

{x : ∃c1∀c2F (x , c1, c2)} where c1 and c2 are certificates whose lengths are
polynomial in |x | and F is computable in polynomial time

Few words: Complexity of variant problems and restrictions...
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Open problems and ongoing work

Part II:

1 Better upper bound? Completeness?

2 Variant decision problems and resp. complexity classes

Part I:

1 Refinement of NFS classification

2 Analogous results stratified circuits (variable sharing)
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Kiitos mielenkiinnostanne!

Obrigado pela vossa atenção!

Thank you for your attention!

...and...



Happy Birthday!

...and thank you, Lauri, for all that remains unsaid!


