
On the efficiency of normal form systems
of Boolean functions

Horizons of Logic, Computation and Definability
Lauri Hella’s 60th birthday

Miguel Couceiro
Joint work with S. Foldes, E. Lehtonen, P. Mercuriali, R. Péchoux, A. Saffidine

LORIA

Outline

Part I. Clone theory and Normal form systems

Part II. Complexity issues: Median normal forms

Preliminaries

Boolean function: map f : {0, 1}n → {0, 1}, for n ≥ 1 called the arity of f

Examples: For a fixed arity n,

Projections: (a1, . . . , an) 7→ ai denoted by x1, . . . , xn.

Negated projections: ¬x1, . . . ,¬xn
Constants: 0-constant and 1-constant functions denoted by 0 and 1, resp.

Notation: Ω(n) = {0, 1}{0,1}n and Ω =
∪
n≥1

Ω(n).

Example: Ω(1) contains the unary proj.s, negated proj.s and constants

Convention: Ω(1) contains proj.s, negated proj.s and constants of any arity

Preliminaries

Boolean function: map f : {0, 1}n → {0, 1}, for n ≥ 1 called the arity of f

Examples: For a fixed arity n,

Projections: (a1, . . . , an) 7→ ai denoted by x1, . . . , xn.

Negated projections: ¬x1, . . . ,¬xn
Constants: 0-constant and 1-constant functions denoted by 0 and 1, resp.

Notation: Ω(n) = {0, 1}{0,1}n and Ω =
∪
n≥1

Ω(n).

Example: Ω(1) contains the unary proj.s, negated proj.s and constants

Convention: Ω(1) contains proj.s, negated proj.s and constants of any arity

Clones

The composition of an n-ary f with m-ary g1, . . . , gn is given by

f (g1, . . . , gn)(a) = f (g1(a), . . . , gn(a)) for every a ∈ {0, 1}m.

For K , J ⊆ Ω, the class composition of K with J is defined by

K ◦ J = {f (g1, . . . , gn) : f n-ary in K , g1, . . . , gn m-ary in J}.

A clone is a class C ⊆ Ω that contains all projections and satisfies C ◦ C = C .

Known results about (Boolean) clones:

Clones constitute an algebraic lattice (E. Post, 1941).

Ω is the largest clone while Ic of all projections is the smallest

Each clone C is finitely generated: C = [K], for some finite K ⊆ Ω

Each C has a dual Cd = {f d : f ∈ C},
f d (x1, . . . , xn) = ¬f (¬x1, . . . ,¬xn)

Clones

The composition of an n-ary f with m-ary g1, . . . , gn is given by

f (g1, . . . , gn)(a) = f (g1(a), . . . , gn(a)) for every a ∈ {0, 1}m.

For K , J ⊆ Ω, the class composition of K with J is defined by

K ◦ J = {f (g1, . . . , gn) : f n-ary in K , g1, . . . , gn m-ary in J}.

A clone is a class C ⊆ Ω that contains all projections and satisfies C ◦ C = C .

Known results about (Boolean) clones:

Clones constitute an algebraic lattice (E. Post, 1941).

Ω is the largest clone while Ic of all projections is the smallest

Each clone C is finitely generated: C = [K], for some finite K ⊆ Ω

Each C has a dual Cd = {f d : f ∈ C},
f d (x1, . . . , xn) = ¬f (¬x1, . . . ,¬xn)

Classification of clones: Post’s lattice

Ω

T0 T1M

L

Ω(1)

S

SM

U2

U3

U∞

McU∞

Λ

W2

W3

W∞

McW∞

V

Associative and nonassociative

Only associative functions

Examples: essentially unary and minimal clones

Essentially unary clones: clones contained in Ω(1)

Ic = [], I0 = [0], I1 = [1] and I = [0, 1]

I ∗ = [¬x] and Ω(1) = [0, 1,¬x]

Minimal clones: clones that cover the clone Ic of projections

Λc = [∧] of conjunctions and Vc = [∨] of disjunctions

Lc = [⊕3] of constant-preserving linear functions

SM = [m] of self-dual (f = f d) monotone functions

Composition of clones and normal forms

Known results about composition of clones:

The composition of clones is associative.

C1 ◦ C2 of clones is not always a clone: I ∗ ◦ Λ is not a clone

Composition of clones completely described by C., Foldes, Lehtonen (2006)

Ω can be factorized into a composition of minimal clones

Descending Irredundant Factorizations of Ω:

D: Ω = Vc ◦ Λc ◦ I ∗ and C: Ω = Λc ◦ Vc ◦ I ∗

P: Ω = Lc ◦ Λc ◦ I and Pd : Ω = Lc ◦ Vc ◦ I

M: Ω = SM ◦ Ω(1)

NB: Each corresponds to a normal form system (NFS), i.e., a set of terms
T (α1 · · · αn) over the connectives α1, . . . , αn taken in this order.

Example: D = T (∨ ∧ ¬) and C = T (∧ ∨ ¬)

Composition of clones and normal forms

Known results about composition of clones:

The composition of clones is associative.

C1 ◦ C2 of clones is not always a clone: I ∗ ◦ Λ is not a clone

Composition of clones completely described by C., Foldes, Lehtonen (2006)

Ω can be factorized into a composition of minimal clones

Descending Irredundant Factorizations of Ω:

D: Ω = Vc ◦ Λc ◦ I ∗ and C: Ω = Λc ◦ Vc ◦ I ∗

P: Ω = Lc ◦ Λc ◦ I and Pd : Ω = Lc ◦ Vc ◦ I

M: Ω = SM ◦ Ω(1)

NB: Each corresponds to a normal form system (NFS), i.e., a set of terms
T (α1 · · · αn) over the connectives α1, . . . , αn taken in this order.

Example: D = T (∨ ∧ ¬) and C = T (∧ ∨ ¬)

Complexity

Let A be an NFS and TA the set of terms of A. The A-complexity of f is

CA(f) := min{|t| : t represents f and t ∈ TA}

NB: Members of Ω(1) are not counted in |t|

Example: A-terms and A-complexities of m = median

M : t = m(x1, x2, x3) and CM(m) = 1

D : t = (x1∧x2)∨(x1∧x3)∨(x2∧x3) and CD(m) = 5

C : t = (x1∨x2)∧(x1∨x3)∧(x2∨x3) and CC(m) = 5

P : t = ⊕3(x1∧x2, x1∧x3, x2∧x3) and CP(m) = 4

Pd : t = ⊕3(x1∨x2, x1∨x3, x2∨x3) and CPd (m) = 4

Complexity

Let A be an NFS and TA the set of terms of A. The A-complexity of f is

CA(f) := min{|t| : t represents f and t ∈ TA}

NB: Members of Ω(1) are not counted in |t|

Example: A-terms and A-complexities of m = median

M : t = m(x1, x2, x3) and CM(m) = 1

D : t = (x1∧x2)∨(x1∧x3)∨(x2∧x3) and CD(m) = 5

C : t = (x1∨x2)∧(x1∨x3)∧(x2∨x3) and CC(m) = 5

P : t = ⊕3(x1∧x2, x1∧x3, x2∧x3) and CP(m) = 4

Pd : t = ⊕3(x1∨x2, x1∨x3, x2∨x3) and CPd (m) = 4

Comparison of NFS’s

An NFS A is polynomially as efficient as B, denoted A ⪯ B, if there is a
polynomial p with integer coefficients such that

CA(f) ≤ p(CB(f)) for all f ∈ Ω

NB: ⪯ is a quasi-ordering of NFSs’

If A ̸⪯ B and B ̸⪯ A holds, then A and B are incomparable

If A ⪯ B but B ̸⪯ A, then A is polynomially more efficient than B

If A ⪯ B and B ⪯ A, then A and B are equivalently efficient (A ∼ B)

Comparison of NFS’s

An NFS A is polynomially as efficient as B, denoted A ⪯ B, if there is a
polynomial p with integer coefficients such that

CA(f) ≤ p(CB(f)) for all f ∈ Ω

NB: ⪯ is a quasi-ordering of NFSs’

If A ̸⪯ B and B ̸⪯ A holds, then A and B are incomparable

If A ⪯ B but B ̸⪯ A, then A is polynomially more efficient than B

If A ⪯ B and B ⪯ A, then A and B are equivalently efficient (A ∼ B)

Motivation

Theorem (C., Foldes, Lehtonen)

1 D, C, P, and Pd are incomparable

2 M is polynomially more efficient than D, C, P, Pd

Problem 1. Other NFS’s? E.g.: based on other connectives (generators)

Problem 2. Classification of NFS’s in terms of efficiency

Problem 3. Does the choice of generators within NFSs impact efficiency?
E.g.: m3 vs m5?

Problem 4. How to obtain optimal (minimal) representations in efficient NFS?
E.g.: optimal median normal forms?

Motivation

Theorem (C., Foldes, Lehtonen)

1 D, C, P, and Pd are incomparable

2 M is polynomially more efficient than D, C, P, Pd

Problem 1. Other NFS’s? E.g.: based on other connectives (generators)

Problem 2. Classification of NFS’s in terms of efficiency

Problem 3. Does the choice of generators within NFSs impact efficiency?
E.g.: m3 vs m5?

Problem 4. How to obtain optimal (minimal) representations in efficient NFS?
E.g.: optimal median normal forms?

Motivation

Theorem (C., Foldes, Lehtonen)

1 D, C, P, and Pd are incomparable

2 M is polynomially more efficient than D, C, P, Pd

Problem 1. Other NFS’s? E.g.: based on other connectives (generators)

Problem 2. Classification of NFS’s in terms of efficiency

Problem 3. Does the choice of generators within NFSs impact efficiency?
E.g.: m3 vs m5?

Problem 4. How to obtain optimal (minimal) representations in efficient NFS?
E.g.: optimal median normal forms?

Single vs several connectives

Ω

T0 T1M

L

Ω(1)

S

SM

U2

U3

U∞

McU∞

Λ

W2

W3

W∞

McW∞

V

1 non-trivial connective

Several non-trivial connectives

Locating efficient NFSs...

Ω

T0 T1M

L

Ω(1)

S

SM

U2

U3

U∞

McU∞

Λ

W2

W3

W∞

McW∞

V

Efficient representations

Non-efficient representations

Result: NFS based on a single nontrivial connective are more efficient

Examples: NFS based on Ω = [x ↑ y] and McU∞ = [x ∧ (y ∨ z)]

Locating efficient NFSs...

Ω

T0 T1M

L

Ω(1)

S

SM

U2

U3

U∞

McU∞

Λ

W2

W3

W∞

McW∞

V

Efficient representations

Non-efficient representations

Result: NFS based on a single nontrivial connective are more efficient

Examples: NFS based on Ω = [x ↑ y] and McU∞ = [x ∧ (y ∨ z)]

Towards a finer classification of NFSs

Ω

T0 T1M

L

Ω(1)

S

SM

U2

U3

U∞

TcU∞

MU∞

McU∞

Λ

W2

W3

W∞

TcW∞

MW∞

McW∞

V

Efficient representations

Non-efficient representations

Result I: Black ≺ Blue ⪯ Red

Result II: Efficient monotone NFSs are all equivalent to M

Result III: The choice of monotone connectives does not impact efficiency

Main tools: NFS reductions

Consider NFSs A = T (α¬) (or T (α)) and B = T (β¬) (or T (β)). We say that

A is linear reducible to B, denoted A ⊒ B, if:
∃t ∈ T (β) s.t. α(x1, . . . , xar(α)) ≡ t and ∀j ∈ {1, . . . , ar(α)}, |t|xj = 1

A is universally reducible to B, denoted A ⊒∀ B, if:
∀j ∈ {1, . . . , ar(α)}, ∃tj ∈ T (β) s.t. α(x1, . . . , xar(α)) ≡ tj and |tj |xj = 1;

A is existentially reducible to B, denoted A ⊒∃ B, if:
∃t ∈ T (β) s.t. α(x1, . . . , xar(α)) ≡ t and ∃j ∈ {1, . . . , ar(α)}, |t|xj = 1.

Result I: ⊒ ⊂ ⊒∀ ⊂ ⊒∃. Moreover ⊒ ⊂⊒∀ ⊆ ⪰

Result II: Suppose A = T (α¬) ⊒∃ B. If [α] is symmetric, then A ⪰ B.

Main tools: NFS reductions

Consider NFSs A = T (α¬) (or T (α)) and B = T (β¬) (or T (β)). We say that

A is linear reducible to B, denoted A ⊒ B, if:
∃t ∈ T (β) s.t. α(x1, . . . , xar(α)) ≡ t and ∀j ∈ {1, . . . , ar(α)}, |t|xj = 1

A is universally reducible to B, denoted A ⊒∀ B, if:
∀j ∈ {1, . . . , ar(α)}, ∃tj ∈ T (β) s.t. α(x1, . . . , xar(α)) ≡ tj and |tj |xj = 1;

A is existentially reducible to B, denoted A ⊒∃ B, if:
∃t ∈ T (β) s.t. α(x1, . . . , xar(α)) ≡ t and ∃j ∈ {1, . . . , ar(α)}, |t|xj = 1.

Result I: ⊒ ⊂ ⊒∀ ⊂ ⊒∃. Moreover ⊒ ⊂⊒∀ ⊆ ⪰

Result II: Suppose A = T (α¬) ⊒∃ B. If [α] is symmetric, then A ⪰ B.

Examples I

Recall: If A = T (α¬) ⊒∃ B and [α] is symmetric, then A ⪰ B.

Let U = T (u¬) be the NFS based on the generator u = x ∧ (y ∨ z) of McU∞

NB: u(x , y , z) ≡ m(m(x , 1, y), 0, z) and m(x , y , z) ≡ u(u(x , 0, y), u(x , y , z), 1)

Hence: U ⊒ M and M ⊒∃ U (with m sym.) and thus M ∼ U

Let S = T (x ↑ y) be the NFS based on the Sheffer function x ↑ y = ¬(x ∧ y)

NB: x ↑ y ≡ m(¬x , 1,¬y) and m(x , y , z) ≡ (y ↑ z) ↑ (x ↑ ((y ↑ 1) ↑ (z ↑ 1)))

Hence: S ⊒ M and M ⊒∃ S (with m sym.) and thus M ∼ S

Examples I

Recall: If A = T (α¬) ⊒∃ B and [α] is symmetric, then A ⪰ B.

Let U = T (u¬) be the NFS based on the generator u = x ∧ (y ∨ z) of McU∞

NB: u(x , y , z) ≡ m(m(x , 1, y), 0, z) and m(x , y , z) ≡ u(u(x , 0, y), u(x , y , z), 1)

Hence: U ⊒ M and M ⊒∃ U (with m sym.) and thus M ∼ U

Let S = T (x ↑ y) be the NFS based on the Sheffer function x ↑ y = ¬(x ∧ y)

NB: x ↑ y ≡ m(¬x , 1,¬y) and m(x , y , z) ≡ (y ↑ z) ↑ (x ↑ ((y ↑ 1) ↑ (z ↑ 1)))

Hence: S ⊒ M and M ⊒∃ S (with m sym.) and thus M ∼ S

Example II

Median decomposition scheme (MD): f : {0, 1}n → {0, 1} is monotone iff

(∗) f (x) = m(f (x0i) , xi , f (x
1
i)), for every i ∈ {1, . . . , n}

Result: If A = T (α¬) with α monotone, then A ⪰ M. In fact, M ∼ A

Example: Let M2n+1 = T (m2n+1 ¬), n ≥ 1. Then M2n+1 ∼ M.

Indeed: m(x , y , z) = m2n+1(x , y
n, zn)

Example II

Median decomposition scheme (MD): f : {0, 1}n → {0, 1} is monotone iff

(∗) f (x) = m(f (x0i) , xi , f (x
1
i)), for every i ∈ {1, . . . , n}

Result: If A = T (α¬) with α monotone, then A ⪰ M. In fact, M ∼ A

Example: Let M2n+1 = T (m2n+1 ¬), n ≥ 1. Then M2n+1 ∼ M.

Indeed: m(x , y , z) = m2n+1(x , y
n, zn)

Example II

Median decomposition scheme (MD): f : {0, 1}n → {0, 1} is monotone iff

(∗) f (x) = m(f (x0i) , xi , f (x
1
i)), for every i ∈ {1, . . . , n}

Result: If A = T (α¬) with α monotone, then A ⪰ M. In fact, M ∼ A

Example: Let M2n+1 = T (m2n+1 ¬), n ≥ 1. Then M2n+1 ∼ M.

Indeed: m(x , y , z) = m2n+1(x , y
n, zn)

Part II. Complexity issues: Median normal forms

Median NFS

How to obtain median representations?

Naive approach: Based on median decomposition scheme

(∗) f (x) = m(f (x0i) , xi , f (x
1
i)), for every i ∈ {1, . . . , n}

NB: In the case of monotone functions...

Problem 1: The expressions thus obtained are not be optimal!

Example: m5 would need 1+2+4+8+16= 31 ms but 4 suffice:

m5 ≡ m(x1, m(x2, x3, x4), m(x2, x5, m(x3, x4, x5)))

Problem 2: There are equivalent median terms with = “size” but ̸= depth

Depth of t, denoted d(t), is defined recursively by

if t = x or c, then d(t) = 0

if t = m(t1, t2, t3), then d(t) = d(t1) + d(t2) + d(t3) + 1

Median NFS

How to obtain median representations?

Naive approach: Based on median decomposition scheme

(∗) f (x) = m(f (x0i) , xi , f (x
1
i)), for every i ∈ {1, . . . , n}

NB: In the case of monotone functions...

Problem 1: The expressions thus obtained are not be optimal!

Example: m5 would need 1+2+4+8+16= 31 ms but 4 suffice:

m5 ≡ m(x1, m(x2, x3, x4), m(x2, x5, m(x3, x4, x5)))

Problem 2: There are equivalent median terms with = “size” but ̸= depth

Depth of t, denoted d(t), is defined recursively by

if t = x or c, then d(t) = 0

if t = m(t1, t2, t3), then d(t) = d(t1) + d(t2) + d(t3) + 1

Median NFS

How to obtain median representations?

Naive approach: Based on median decomposition scheme

(∗) f (x) = m(f (x0i) , xi , f (x
1
i)), for every i ∈ {1, . . . , n}

NB: In the case of monotone functions...

Problem 1: The expressions thus obtained are not be optimal!

Example: m5 would need 1+2+4+8+16= 31 ms but 4 suffice:

m5 ≡ m(x1, m(x2, x3, x4), m(x2, x5, m(x3, x4, x5)))

Problem 2: There are equivalent median terms with = “size” but ̸= depth

Depth of t, denoted d(t), is defined recursively by

if t = x or c, then d(t) = 0

if t = m(t1, t2, t3), then d(t) = d(t1) + d(t2) + d(t3) + 1

Structural representation of median forms

Structural representation of a median term t of depth d is St = (nd , . . . , n0)
where ni is the number of medians at depth ≤ i

NB: St is a decreasing sequence and nd = |t|
Ex: t = m(x1, m(x2, x3, x4), m(x2, x5, m(x3, x4, x5)))?

.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

....m.....

..m.....

..m.....

..x5.

....

..x4.

..

..x3

.

....

..x5.

..

..x2.

....

..m.....

..x4.

....

..x3.

..

..x2

.

..

..x1

Define: t1 ≤Str t2 if St1 ≤lex St2

NB: ≤Str prioritizes the size over depth, and “shallowness” over “deepness”

Structural representation of median forms

Structural representation of a median term t of depth d is St = (nd , . . . , n0)
where ni is the number of medians at depth ≤ i

NB: St is a decreasing sequence and nd = |t|
Ex: t = m(x1, m(x2, x3, x4), m(x2, x5, m(x3, x4, x5)))?

.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

....m.....

..m.....

..m.....

..x5.

....

..x4.

..

..x3

.

....

..x5.

..

..x2.

....

..m.....

..x4.

....

..x3.

..

..x2

.

..

..x1

Define: t1 ≤Str t2 if St1 ≤lex St2

NB: ≤Str prioritizes the size over depth, and “shallowness” over “deepness”

Complexity issues

MNF: t is a median normal form (MNF) if it is minimal w.r.t. ≤Str

Problem: How difficult is it to find MNF’s?

Still eludes us but probably intractable...

SMALLMED:

Input: a median representation t and a decreasing sequence S

Output: SUCCESS if there is an equiv. t ′ s.t. St ′ < S , FAIL if not

Result: SMALLMED is in the class ΣP
2

Recall: ΣP
2 class of decision prob.s whose accepting instances are of the form

{x : ∃c1∀c2F (x , c1, c2)} where c1 and c2 are certificates whose lengths are
polynomial in |x | and F is computable in polynomial time

Few words: Complexity of variant problems and restrictions...

Complexity issues

MNF: t is a median normal form (MNF) if it is minimal w.r.t. ≤Str

Problem: How difficult is it to find MNF’s?

Still eludes us but probably intractable...

SMALLMED:

Input: a median representation t and a decreasing sequence S

Output: SUCCESS if there is an equiv. t ′ s.t. St ′ < S , FAIL if not

Result: SMALLMED is in the class ΣP
2

Recall: ΣP
2 class of decision prob.s whose accepting instances are of the form

{x : ∃c1∀c2F (x , c1, c2)} where c1 and c2 are certificates whose lengths are
polynomial in |x | and F is computable in polynomial time

Few words: Complexity of variant problems and restrictions...

Complexity issues

MNF: t is a median normal form (MNF) if it is minimal w.r.t. ≤Str

Problem: How difficult is it to find MNF’s?

Still eludes us but probably intractable...

SMALLMED:

Input: a median representation t and a decreasing sequence S

Output: SUCCESS if there is an equiv. t ′ s.t. St ′ < S , FAIL if not

Result: SMALLMED is in the class ΣP
2

Recall: ΣP
2 class of decision prob.s whose accepting instances are of the form

{x : ∃c1∀c2F (x , c1, c2)} where c1 and c2 are certificates whose lengths are
polynomial in |x | and F is computable in polynomial time

Few words: Complexity of variant problems and restrictions...

Complexity issues

MNF: t is a median normal form (MNF) if it is minimal w.r.t. ≤Str

Problem: How difficult is it to find MNF’s?

Still eludes us but probably intractable...

SMALLMED:

Input: a median representation t and a decreasing sequence S

Output: SUCCESS if there is an equiv. t ′ s.t. St ′ < S , FAIL if not

Result: SMALLMED is in the class ΣP
2

Recall: ΣP
2 class of decision prob.s whose accepting instances are of the form

{x : ∃c1∀c2F (x , c1, c2)} where c1 and c2 are certificates whose lengths are
polynomial in |x | and F is computable in polynomial time

Few words: Complexity of variant problems and restrictions...

Open problems and ongoing work

Part II:

1 Better upper bound? Completeness?

2 Variant decision problems and resp. complexity classes

Part I:

1 Refinement of NFS classification

2 Analogous results stratified circuits (variable sharing)

Open problems and ongoing work

Part II:

1 Better upper bound? Completeness?

2 Variant decision problems and resp. complexity classes

Part I:

1 Refinement of NFS classification

2 Analogous results stratified circuits (variable sharing)

Kiitos mielenkiinnostanne!

Obrigado pela vossa atenção!

Thank you for your attention!

...and...

Happy Birthday!

...and thank you, Lauri, for all that remains unsaid!

