
Symposium in Honour of
Lauri Hella’s 60th birthday

Tampere, Finland, 4-6 July 2018

On Fragments of Higher
Order Logics that on Finite

Structures Collapse to a
Lower Order

José Maŕıa Turull-Torres

Universidad Nacional de La
Matanza, Argentina

In-progress joint work with Flavio
Ferrarotti and Senén González.

1

Contents:

• Two Motivating Examples in Third
Order Logic: 3.

Hypercube graphs (two definitions)
and Formula-Value query

• 0: Higher Order Logics: 17.

• 1: A General Schema of TO For-
mulas: 38.

• 2: Downward polynomially bounded
Relations; HOi,P: 60.

• 3: Valuating Relations of Poly-
logarithmic Cardinality: 71.

• 4: Beyond Second Order; SATQBF:
96.

• 5: Beyond Third Order; SATQBF(Σ2
j):

118.

2

Two Motivating

Examples in

Third Order Logic

3

Example 1 in HO3:
Hypercube graphs

An n-hypercube graph Qn, is an
undirected graph whose vertices are
binary n-tuples. Two vertices of
Qn are adjacent iff they differ in
exactly one bit.

Note that we can build an (n+1)-
cube Qn+1 starting with two iso-
morphic copies of an n-cube Qn

and adding edges between correspond-
ing vertices.

That is, multiplying an n-cube
graph by K2.

4

Using this fact, we can define in
TO (HO3) the class of hypercube
graphs, by saying that:

• there is a sequence of graphs (i.e.,
a third order linear digraph, where
every TO node is an undirected
(SO) graph)

• which starts with the graph K2,
ends with a graph which is equal
to the input graph, and such that

• every graph G2 in the sequence
results from finding two total, in-
jective functions f1, f2 from the
previous graph G1, so that

5

– f1 and f2 induce in G2 two
isomorphic copies of G1,

– the images of those functions
define a partition in the ver-
tex set of G2, and

– there is an edge inG2 between
the images f1(x) and f2(x) of
every node x in G1.

6

Actually, the expressive power of
HO3 is not required to character-
ize hypercube graphs, since they can
be recognized in NP, and hence in
ESO.

7

Nevertheless, to define the class
of hypercube graphs inESO seems
to be more challenging than to de-
fine it in HO3.

(see the SO formula for the first
strategy considered for hypercube
graphs in [Ferrarotti, Ren, Turull-
Torres, 2014], and Remark 4.1 there,
indicating the way to translate it to
an ESO formula).

8

A Second Definition of
Hypercube graphs

Another definition of hypercube
graphs that yields a simple (TO)
formula is the following.

9

We say that there is a proper non
empty subset V ′ of the vertex set
V of the input graphG, and a (TO)
bijective function F : V → P(V ′)
(i.e., the power set of V ′), s. t.

for every pair of nodes x and y in
G, there is an edge between them

iff

F(x) can be obtained from F(y)
by adding or removing a single el-
ement (note that V ′ is necessarily
of size log2 |V |).

Note that the corresponding SO
formula is not so intuitive (see [Fer-
rarotti, Ren, Turull-Torres, 2014]).

10

The SO formula that expresses
the second strategy is in the class∑1

2.

The existence of a formula in
∑1

1
that expresses this strategy is un-
likely, since we must express that
every subset S of V is identified
with some node in the graph.

11

Example 2 in HO3:
Formula-Value Query

Given a propositional formula ϕ
in the constants {F, T}, represented
as a word model, decide whether it
is true.

• There is a sequence S of propo-
sitional formulas represented as
word models.

• S starts with ϕ and ends with
the formula “T”.

12

• Every formula ϕi in S (except
the first) results from the previ-
ous formula ϕi−1 by either:

– Application to ϕi−1 of one of
∨, ∧ and ¬ which is ready to
be evaluated.

∗ Like in “(T ∧ F)”.

– Or elimination of one pair of
redundant parenthesis in ϕi−1.

∗ Like in “((T))”.

13

• Formula-Value query is in

DLOGSPACE [Beaudry, Pierre
McKenzie, 1992].

•DLOGSPACE⊆ P⊆NP = ∃SO.

•Nevertheless, to define these queries
in ∃SO seems to be more chal-
lenging than in TO (see [Ferrarotti,
Ren, Turull-Torres, 2014]).

14

Note that in the two examples in
HO3 the size of the valuating re-
lations for the TO variables that
make the formulas true, is polyno-
mial (actually logarithmic and lin-
ear, respectively) in the size of the
input structure.

15

On the other hand, if we consider
the query SATQBF (see below), we
can express it in EHO3, since the
problem is PSPACE complete, and
it is known that EHO3 is power-
ful enough as to characterize every
problem in PSPACE.

Note that the existence of an SO
formula that expresses SATQBF is
very unlikely, since SO = PH, and
it is strongly conjectured that PH
⊂ PSPACE.

16

0: Higher Order Logics

(HOi)

17

Higher Order Variables
Types

•A first order variable type is τ1 =
0,

• a second order variable type is
τ2 ≥ 1, i.e., its arity,

• for i ≥ 3, an i-th order vari-
able type is a sequence of types
of orders 1 ≤ j1, . . . , js ≤ i− 1,

τ i = (τ
j1
1 , . . . , τ

js
s), with s ≥ 1.

W.l.o.g., we assume that at least

one of the types τ
j1
1 , . . . , τ

js
s is of

order i− 1.

18

In the alphabet of a Higher Or-
der Logic of order i, HOi, for ev-
ery order 2 ≤ j ≤ i, and for ev-
ery variable type τ , we add to FO
a countably infinite set of relation

variables X j,τ1 ,X j,τ2 , . . .

We use calligraphic letters like X i
and Yi for variables of order i ≥ 3,
upper case letters like X and Y for
second order variables, and lower
case letters like x and y for first
order variables.

19

Besides the atomic formulas in FO
and SO, inHOi we can use atomic
formulas like the following:

If X is a relation variable of or-
der j, for some 3 ≤ j ≤ i, and
of relation type τ , for some τ =
(ρ1, . . . , ρs), with ρ1, . . . , ρs being
types of orders≤ j−1, andY1, . . . ,Ys
are relation variables of orders and
types according ρ1, . . . , ρs, respec-
tively, thenX (Y1, . . . ,Ys) is an atomic
formula.

20

Higher Order Relations

Let s ≥ 1. An SO relation of
arity s is a relation in the classi-
cal sense, i.e., a set of s-tuples of
elements of the domain of a given
structure.

For an arbitrary i ≥ 3, a rela-
tion of order j of relation type τ =
(ρ1, . . . , ρs), is a set of s-tuples of
relations of orders and types ac-
cording ρ1, . . . , ρs, respectively.

21

W.l.o.g., and for the sake of sim-
plicity, we assume that the width
of a higher order relation is prop-
agated downwards, i.e., the rela-
tions of order i− 1 which form the
s-tuples for a relation of order i,
are themselves of width s, and so
on, all the way down to the SO re-
lations, which are also of arity s.

22

We define exp(0) = O(nO(1))),
and for i ≥ 1

exp(i) = 2exp(i−1)

That is, exp(i) is a hyper expo-
nential function, which we define
as a stack of i exponents 2, and
then O(nO(1))) as the topmost ex-
ponent.

(*) actually the i exponents should
be O(1), but we write 2 for simplic-
ity.

23

Maximum Cardinalities of
HO Relations

• SO relations: ≤ nO(1);

• TO relations: ≤ 2O(nO(1));

•HO4 relations: ≤ 2(2O(nO(1))) =
exp(2);

•HO5 relations: ≤ 2(2(2O(nO(1)))) =
exp(3);

• . . .

•HOi relations: ≤ exp(i− 2).

24

Σij

Let i, j ≥ 1, as it is usual in clas-
sical Logic we denote by Σij the

class of formulas ϕ ∈ HOi+1 of
the form

∃X11 . . . ∃X1s1
∀X21 . . . ∀X2s2

∃X31

. . . ∃X3s3
. . . QXj1 . . . QXjsj(ψ)

where ψ ∈ HOi, Q is either ∃ or
∀, depending on whether j is odd
or even, respectively.

25

That is, Σij is the class of HOi+1

formulas with j − 1 alternations of
quantifiers blocks of variables of or-
der i+ 1, starting with an existen-
tial quantifier.

Analogously, we define the classes
of formulas Πij.

26

Expressibility of Higher
Order Logics

[Hella, Turull-Torres, 2006]

1. For every i ≥ 0, let

NEXPH0
i =

NTIME(exp(i))

2. For every j ≥ 1, let

NEXPH
j
i = NEXPH0

i
Σ
p
j−1

Recall that Σ
p
1 = Σ1

1 = NP and

Σ
p
0 = P.

27

[Hella, Turull-Torres, 2006]

• for i, j ≥ 1: Σij = NEXPH
j−1
i−1 .

That is, a stack of i−1 exponents
2, and then O(nO(1)) as the top-
most exponent, plus an oracle in
Σ
p
j−1.

• for i, j ≥ 1: Πij = co−NEXPH
j−1
i−1 .

28

Fragments of HOi

with Small Valuating
Relations

We have seen above sketches of
HO3 formulas for the queries Hy-
percube graphs and Formula-Value.

As we pointed out then, the ex-
pressive power of HO3 is not ac-
tually required for any of them.

29

Could we...?

Could we take advantage of the
much higher expressibility and sim-
plicity of HO3,

•and, still

be able to express a query in a
more simple and intuitive way,
though still formal (*),

• but

without having to pay the price
of a higher complexity to evaluate
the corresponding formulas?

(*) so we can still make use of
semi-automatic theorem proving (see
below).

30

Note that by the results given above

ESO =
NTIME(nO(1)) ⊆ DTIME(2n

O(1)
),

while

ETO =

NTIME(2n
O(1)

) ⊆ DTIME(22n
O(1)

).

31

What is good about HOi?

For all i ≥ 2, HOi+1 provides
two important features:

• exponentially bigger auxiliary re-
lations than HOi;

• nesting of relations, like in (i +
1)-th order graphs, where each
node is actually an i-th order graph,

or

(i+1)-th order PERT networks,
for large and complex projects,
where a node may represent a
PERT network itself, and the op-
eration of zooming in or out al-
lows navigation in depth.

32

But...

The complexity of the evaluation
of anHOi+1 query is exponentially
higher than that of an HOi query
(see above).

For instance, for Existential Fourth
Order Logic queries (Σ3

1) the com-
plexity is

=
⋃
c∈N

NTIME(22(nc)
)

While for Existential Third Or-
der Logic queries (Σ2

1) is

=
⋃
c∈N

NTIME(2(nc))

33

What if...?

What happens if we bound the
size of the i-th order relations to be
polynomial in the size of the input
dbi?

We could still have nesting...

34

Besides being a requirement in
some applications (like deep struc-
tures where zoom operations are
necessary),

in many cases

• nesting provides a more pow-
erful language which allows sim-
pler and more intuitive expressions
for a query.

This also happens when using pro-
gramming languages with rich data
structures (like OOPL):

• it makes programs much sim-
pler and less error-prone than us-
ing the old Assembler languages of
the sixties and seventies.

35

• This is convenient not only for
applications to Databases in the In-
dustry, but also for Theoretical re-
search.

• To prove that a query is in the
polynomial hierarchy (PH), in many
cases using higher order construc-
tions in HOi,P can be much simpler
than using SO (see below).

• To prove that a query is in the
poly-logarithmic hierarchy (PLH),
in many cases using higher order
constructions in
HOi,plog(HO<i,plog) can be much
simpler than using SOplog (see be-
low).

36

• Is nesting still relevant as to ex-
pressive power?

37

1: A General Schema of

TO Formulas

38

Let σ be a relational vocabulary,
which may include constant sym-
bols. We define T[σ] as the class of
TO formulas of the form:

∃C s̄Os̄s̄
(

TotalOrder(C,O) ∧

∀G
[(

First(G)→ αFirst(G)
)

∧
(
Last(G)→ αLast(G)

)]
∧

∀GpredGsucc

[
Pred(Gpred , Gsucc)

→ ϕ(Gpred , Gsucc)
])

where

39

• C ranges over TO relations of type
s̄ = (i1, . . . , is).

• TotalOrder(C,O), First(G), Last(G)
and Pred(Gpred , Gsucc) denote fixed
SO formulas.

• αFirst(G) and αLast(G) denote
arbitrary SO formulas.

• ϕ(Gpred , Gsucc) denotes an ar-
bitrary SO formula.

40

This is a very usual, intuitive, and
convenient schema in the expres-
sion of natural properties of finite
models.

For a start, it can clearly be used
to express the hypercube and for-
mula-value queries as described above.

41

Additional examples are provided
by the different relationships be-
tween pairs of undirected graphs
(G,H) that can be defined as or-
derings of special sorts (see [Downey,
Fellows, 1999]).

Using the schema these relation-
ships can be expressed by defining
a set of possible operations that
can be applied repeatedly toH , un-
til a graph which is isomorphic to
G is obtained.

42

In particular, the following rela-
tionships fall into this category:

a) G ≤immersion H : G is an im-
mersion in H ;

b) G ≤top H : G is topologically
embedded or topologically contained
in H ;

c) G ≤minor H : G is a minor of
H ;

d) G ≤induced−minor H : G is an
induced minor of H ;

Interestingly, in all these cases the
length of the sequence is at most
linear.

43

The operations on graphs needed
to define those orderings are:

(E) delete an edge,

(V) delete a vertex,

(C) contract an edge,

(T) degree 2 contraction, or sub-
division removal,

(L) lift an edge.

44

In particular the set of allowable
operations for each of those order-
ings are:

{E, V, L} for ≤immersion ,

{E, V, C} for ≤minor ,

{E, V, T} for ≤top,

{V,C} for ≤induced−minor .

45

[Ferrarotti, González,
Turull-Torres, 2017]

We have the following:

Theorem:
Every TO formula Ψ of the above

schema T can be translated into
an equivalent SO formula Ψ′ when-
ever the following conditions hold.

1. The sub formulas αFirst, αLast
and ϕ of Ψ are SO formulas.

2. There is a d ≥ 0 such that for ev-
ery valuation v with v(C) = R,
if A, v |= ∃Os̄s̄ψ(C,O), then
|R| ≤ |dom(A)|d.

46

Planarity in Graphs

The classical Kuratowski defini-
tion of planarity, provides yet an-
other example of a property that
can be defined using our schema
and also results in a linearly bounded
sequence of structures.

By Wagner’s characterization (see
[Bollobás, 2002]) a graph is planar
if and only if it contains neither K5
nor K3,3 as a minor.

47

Note that the more intuitive con-
struction for planarity would be to
say that there is no transformation
process of linear size that arrives
to a K5 or K3,3, starting from the
input graph and applying in each
transition exactly one of the oper-
ations in {E, V, C} above.

48

If we have the negation of a for-
mula in the schema T, we can use
the same translation to SO, and
then add a negation in front of the
SO formula.

Then we have the following:

Corollary:
The negation ¬Ψ of a formula Ψ

of the above schema T can also be
translated into an equivalent SO
formula ¬Ψ′ whenever the two con-
ditions of the previous theorem hold.

49

[Ferrarotti, González, Schewe,
Turull-Torres, 2018]

By using the normal form for (SO+
TC2) ([Imm,1999]) the following re-
sult is straightforward:

Theorem:
The class of TO formulas of the

above schema T is equivalent to
the logic (SO + TC2).

And, hence, equal to PSPACE.

Corollary:
The class of TO formulas of the

schema T is closed under negation.

50

Translation to Non Det
Parallel ASM

[Ferrarotti, González, Schewe,
Turull-Torres, 2018]

By using the non deterministic,
parallel Abstract State Machine model
([Boerger, 2003]), it is not difficult
to prove the following:

Theorem:
Every formula Ψ of the above schema
T can be systematically translated
to an equivalent non determinis-
tic, parallel ASM which doesn’t use
higher order formulas.

51

Note that for the sake of easily
comprehensible high-level specifi-
cations it is advisable to extend
rigorous methods to support also
higher-order logic and to investi-
gate strategies for refinement to
first-order.

52

Theorem provers and Non
det Parallel ASM

It is well known that for many
cases of ASM’s, there are theorem
provers which allow semi-automatic
theorem proving support for many
cases of ASM rules.

In particular, for non determin-
istic parallel ASM’s there are very
interesting results.

53

[Schellhorn,Ernst,Pfhler,Bodenmller,
Reif , 2018]

• It is possible to compute an FO
formula for each rule that im-
plies clash-freedom (*) when prov-
able (it is provable for many ASMs
that are used in practice).

(*) for each state S a rule r yields
an update set ∆(S), i.e. a (fi-
nite) set of (finite) sets of up-
dates. There is a clash if there
are two updates (l, v1), (l, v2) in
∆(S) with v1 6= v2.

(i.e., pairs location (i.e., n-ary function symbol and an
n-tuple of values), and value)

54

• They give axioms that describe
the transition relation for clash-
free ASM rules as SO formu-
las that can be used to verify
pre/post-condition assertions, and
to derive properties of ASM’s,
using automated theorem provers.

• They provide a Calculus for clash-
free ASM rules based on sym-
bolic execution for deduction, which
can be used for interactive theo-
rem provers, like their tool KIV.

55

[Ferrarotti, González, Schewe,
Turull-Torres, 2018]

By using higher order logics HOi,P

(see below) the following result is
straightforward:

Theorem:
For every ASM extended with HOi,P

formulas in its rules, we have an
automatic refinement of the HOi,P

extended ASM to an SO extended
ASM.

56

Once we got the SO extended ASM,
we can apply to it the näıve refine-
ment strategy consisting on non-
deterministically guessing the quan-
tified relation variables.

As näıve refinements in a stan-
dard way are always possible, we
believe that semi-automatic proofs
could be conducted on such, though
not optimal refinements.

57

QBF Solvers

Alternatively, the use of QBF solvers
is worth exploring.

from “QBF Gallery 2014 (Com-
petition)”, in the “QBF Solver Eval-
uation Portal”,

www.qbflib.org/index eval.php

58

“Many problems from application
domains such as model checking,
formal verification or synthesis are
PSPACE-complete, and hence could
be encoded in QBF”.

“Considerable progress has been
made in QBF solving throughout
the past years. However, in con-
trast to SAT, QBF is not yet widely
applied to practical problems in
industrial settings”.

59

Once we got an SO formula φ
(see below):

• for every model A, there is a
translation fφ(A) to a QBF for-
mula (see [Hella, Turull-Torres,

2006a] for a translation),

• we can then use a QBF solver.

60

2: Downward polynomially

bounded Relations

HOi,P

61

An i-th order relation R of type
τ in a structure A is downward
polynomially bounded (dpb) by d
if |R| ≤ |dom(A)|d,

and

for all 2 ≤ j ≤ i− 1, all the j-th
order relations that form the tuples
of (j + 1)-th order relations, are in
turn dpb by d.

62

For i ≥ 3 we define HOi,P as the
extension of HOi−1,P , where the i-
th order quantifiers restrict the car-
dinality to be bounded by a poly-
nomial that depends on the quan-
tifier.

In the alphabet of HOi,P , for ev-
ery pair of positive integers d, and
j, with i ≥ j ≥ 3, we have:

a j-th order quantifier ∃j,P,d

and

for every j-th order type τ , we
have countably many j-th order vari-
able symbols X j,d,τ .

63

A valuation in a structure A as-
signs to each i-th order relation vari-
able X j,d,τ a dpb i-th order rela-
tion R of type τ in A, such that
|R| ≤ |dom(A)|d.

For any 2 < j ≤ i, the HOi,P

quantifier ∃j,P,d has the following
semantics:

A |= ∃j,P,dX j,d,τϕ(X)

iff

there is a j-th order relation R of
type τ , such that A |= ϕ(X)[R]
and R is dpb by d in A.

64

[Ferrarotti, González,
Turull-Torres, 2017]

We have the following:

Theorem:
For all i ≥ 3, HOi,P collapses to
SO. Moreover, every formula in
HOi,P can be algorithmically trans-
lated to an equivalent SO formula.

65

Strategy:

Basically, the strategy of the trans-
lation is to use a relational database
with referential integrity to encode
each relation variable of order ≥
2.

Let i ≥ k ≥ j ≥ 2. For each
variable of order k, the db that rep-
resents it consists of 2(k − 1) rela-
tions.

For each j-th order variable we
have one relation with id’s for tu-
ples of relations of order (j − 1),
and one relation for id’s of rela-
tions of order (j − 1).

66

Empty Relations

We must also have in mind that
the tuples of relations of any order,
can have empty relations in some
of its components.

Then, the (SO) “relation” that
we use to store the set of tuple iden-
tifiers for a relation of type width
s, is actually a set of 2s (SO) rela-
tions, one for each possible combi-
nation of empty relations in such
a tuple.

67

Then, for a given query, we can
proceed as follows:

1. • Use an HOi,P formula, with
an arbitrary order i, to express
the query,

2. • translate algorithmically the

HOi,P formula into an SO for-
mula,

3. • evaluate the SO formula.

Note that we have still (determin-
istic) single exponential time com-
plexity, (NP complete queries are
still there!) in the third step.

But we don’t have to deal with
hyper exponential complexity.

68

A Note on the Different
Translations

The first translation (schema T of
TO) yields a more clear and in-
tuitive SO formula, and the max-
imum arity of the quantified SO
relation variables in general seems
to be much smaller.

For the case of hypercube graphs
the maximum arity obtained by
the schema translation is 4, while
for the SO formulas obtained by
the HOi,P translation is 8.

69

And for the case of the Formula-
Value query the maximum arity
obtained by the schema translation
is also 4, while for the SO formulas
obtained by the HOi,P translation
is 22.

Note that the arity of a relation
symbol in an SO formula is rele-
vant for the complexity of its eval-
uation (see among others [Hella,
Turull-Torres,2006]).

70

Hence, and not surprisingly it makes
sense to study specific schemas
of TO formulas that have equiva-
lent SO formulae, aiming to find
more efficient translations than
the general strategy used forHOi,P

formulas (which had the purpose
of proving equivalence, rather than
looking for efficiency in the trans-
lation).

71

3: Valuating Relations of

Poly-logarithmic

Cardinality

72

A Query in TOplog

Graph Factoring
[Ferrarotti, González, Schewe,

Turull-Torres, 2018]

Roughly, let TOplog denote the
fragment of TO where only valu-
ations which assign TO relations
of poly-logarithmic cardinality, to
TO variables are considered.

The SO sub-formulas in TOplog

are standard SO formulas.

For that matter we use typed TO

variables of the formX τ,logk, mean-
ing that valuations can only assign
to them relations of type τ and car-
dinality ≤ (dlog ne)k.

73

The input structure is A of sig-
nature σF = 〈VI , EI ,FI〉, where
(V A
I , EA

I) is a connected and loop-
less undirected graph (cu-graph),
and FA

I is a TO relation which in
turn consists of a set of pairs of
graphs (V A

FI , E
A
FI), and (V A

K , EA
K).

The first graph of each pair is a cu-
graph, and the second graph is a
clique.

74

We define graph factoring as a
decision problem. A σF -structure
A is in the class GraphFactoring
iff the third-order relation FA

I is a

factoring of the graph (V A
I , EA

I),
where the first graph of each pair in
FA
I is a cu-graph that is a factor of

the graph (V A
I , EA

I), and the size
of the corresponding clique is the
exponent.

75

A straightforward consequence of
the definition of graph product is
that the size of any factoring cir-
cuit C for a structure A is at most
2 · dlog(|V A

I |)e, and the size of the

TO relationFIA on any given A ∈
GraphFactoring is at most dlog(|V A

I |)e.

76

ϕGF ≡ ∃VCEC
(

“FactoringCircuitForGI(VC, EC)

∧NodesCUgraphs(VC, EC)

∧RootsPrimeGraphsC∧RootsInFIC

∧SingleOutputGIC”
)

where (VC, EC), is a TO graph of
size at most 2 · dlog(|V A

I |)e, whose
nodes are cu-graphs, and whose edges
are pairs of cu-graphs.

77

FactoringCircuitForGI(VC, EC) ≡(
“Digraph(VC, EC) ∧

Acyclic(VC, EC) ∧

Connected(VC, EC) ∧

InDegree2C ∧

ProductOfParentsC ∧

LinearNonRootsC

∧NonIsomorphicRootsC”
)

78

“InDegree2C” says that every node
in the circuit has either 1 or 2 input
nodes.

“ProductOfParentsC” says that ev-
ery node in VC is a cu-graph that
is either the product of its two par-
ents, or the square of its single par-
ent.

79

Product(V1, E1, V2, E2, V3, E3) ≡

∃V×E×

([
∀v1w1v2w2(

(V×(v1, w1)↔ (V1(v1)∧ V2(w1)))∧

[
E×(v1, w1, v2, w2)↔(
(v1 = v2 ∧ E2(w1, w2)) ∨

(w1 = w2 ∧ E1(v1, v2))
)])]

∧

“Isomorphic(V×, E×, V3, E3)”

)

80

LinearNonRootsC ≡ ∃VClECl
(

“EqualTO
(
VCl, {int. nodes in C}

)
∧

EqualTO
(
ECl, EC � {int. nodes in C}

)
∧LinearDigraph(VCl, ECl)′′

)
where EC � {int. nodes in C} is the
restriction of the TO binary rela-
tion EC to the subset
of internal nodes of the set VC.

81

NumbOfProductsC(V0, E0, VK0) ≡

∃H
(
“H : VK0 7→ ChildrenC(V0, E0)

quasi injective”
)

The quasi injectivity of the func-
tion in the formula above is due
to the fact that we avoid allowing
multiple edges between two given
nodes in the circuit C, to make the
formula simpler.

82

Note that the only possible case
where one single edge means that
a (factor) graph is actually being
used twice in the same product is
at the (unique) node at depth one
in the circuit.

An example for this situation is
the factoring circuit for an hyper-
cube of order n, where the same
factor graph (K2) is used n times.

83

Note:
As the sizes of the valuating TO

relations that make the formula ϕGF
true are poly-logarithmic, then it
seems straightforward to apply the
same encoding strategy as in HOi,P

and translate it to an SO formula.

Hence, we have the following:

Corollary:
TOplog = SO.

84

Though the query graph factoring
can certainly be expressed in SO
(for instance with a signature

σF = 〈V 1
I , E

2
I , V

2
F , E

3
F , V

2
K, E

3
K〉),

it doesn’t seem to be easy.

85

Roughly, let SOplog denote the frag-
ment of SO where only valuations
which assign SO relations of poly-
logarithmic cardinality, to SO vari-
ables are considered.

For that matter we use typed SO

variables of the formXr,logk, mean-
ing that valuations can only assign
to them relations of arity r and car-
dinality ≤ (dlog ne)k.

And let TOplog(SOplog) denote the
fragment of TOplog where only val-
uations which assign SO relations
of poly-logarithmic cardinality, to
SO variables are considered.

86

Expected result:

With the same strategy, we be-
lieve that we can also prove:

• TOplog(SOplog) = SOplog.

87

[Ferrarotti, González,
Schewe, Turull-Torres,

2018a]

On the other hand, we proved the
following result:

•
∑1,plog

1 (b∀) = NPolyLogTime.

• SOplog = PLH. (*)

[(*) Barrington gave a characteri-
zation of the class of DCL-uniform
families of Boolean circuits of un-
bounded fan-in, and quasi polyno-

mial size (i.e., 2(log n)O(1)
) and con-

stant depth with an equivalent logic
([Barrington, 1992]). From that re-
sult the second result above follows.]

88

Where
∑1,plog

1 (b∀) is the existen-

tial fragment of SOplog where the
FO ∀ is bounded to poly-logarithmic
sub-domains. And PLH denotes
the non deterministic Polylog-Time
Hierarchy.

89

Expected result:

Then, we would have also that:

• TOplog(SOplog) = PLH.

This would mean that we can use
a higher level language like TOplog

(SOplog) to prove that a given query
is in PLH.

That would make easier both the
construction of the formulas and
the corresponding proofs.

90

Examples in TOplog(SOplog):

• There is an induced subgraph (V ′,
E′) of size between dlog ne and
(dlog ne)c, and there is a setF of

size at least (dlog ne)1/2, of dis-
joint induced subgraphs (V ′i , E

′
i),

s. t. the subgraphs in F are a
set of prime factors of the sub-
graph (V ′, E′).

• There are between dlog ne and
(dlog ne)c disjoint induced sub-
graphs that are cliques of sizes
between dlog ne and (dlog ne)d.

Note that the first query, doesn’t
seem to have an easy SOplog for-
mula.

91

To express it in TOplog(SOplog)
we can follow a similar strategy as
for Graph-Factoring above.

92

We believe that the following queries
can be also expressed in TOplog(SOplog):

•All the induced subgraphs of size
between dlog ne and (dlog ne)c
are prime.

• There are polylog disjoint induced
subgraphs of polylog size s.t. for
each of them, all its prime fac-
tors are disjoint induced sub-
graphs of size polylog.

• For every polylog size set of dis-
joint induced subgraphs of poly-
log size in G1 there is a set of
the same size of disjoint induced
subgraphs of polylog size in G2,
s.t. there is a bijectionF : V1→
V2 so that the two graphs in ev-

93

ery pair in F are isomorphic.

94

So, proving that result, we would
be able to use TOplog(SOplog) logic
to write probably many queries in
a much simpler way than using
SOplog.

And still, in that way proving that
the queries are in PLH.

But we believe that we can do bet-
ter...

95

Expected result:

Finally, we also believe that with
the same strategy, we can prove:

•HOi,plog(HO<i,plog)

= SOplog = PLH.

96

4: Beyond Second Order

SATQBF

97

SATQBFk and SATQBF

QBFk denotes the set of quanti-
fied propositional formulas of the
form

φ ≡ ∃x̄1∀x̄2 . . . Qx̄k(ϕ),

where ϕ is a propositional formula
over X = {xij}1≤i≤k,1≤j≤li, n ≥
0, and where for 1 ≤ i ≤ k, x̄i =
(xi1, . . . , xili) is a tuple of li differ-
ent variables from X .

98

Note that Q is “∃” if k is odd
and “∀” if k is even, and the sets
X1, . . . , Xk of variables in x̄1, . . . , x̄k,
respectively, form a partition of X .

Let QBF =
⋃
k>0 QBFk.

The semantics of the quantifiers
is as follows: ∃x(α(x)) ≡ α(0/x)∨
α(1/x), and ∀x(α(x)) ≡ α(0/x)∧
α(1/x).

99

Note that, in view of the seman-
tics of the quantifiers, every quanti-
fied propositional formula is equiv-
alent to a propositional formula,
which is longer (roughly, exponen-
tially longer in the number of quan-
tifiers).

φ is satisfiable if there is a par-
tial valuation v1 : X1 → {T, F},
s. t. for every partial valuation
v2 : X2 → {T, F}, there is a par-
tial valuation v3 : X3 → {T, F},
s. t. . . . s. t. the valuation v =
v1∪v2∪v3∪ . . .∪vk makes ϕ true.

100

We now define Boolean queries :

• For k > 0, SATQBFk is the set
of quantified propositional formu-
las in QBFk, represented as word
models in the signature

〈 ≤2, I1
x, I

1
∃, I

1
∀, I

1
∨, I

1
∧, I

1
¬,

I1
(
, I1

)
, I1
| 〉

that are true.

• SATQBF is the set of quantified
propositional formulas in QBF that
are true.

Note that as formulas in QBF have
no free variables, such a formula is
satisfiable iff it is true.

101

SATQBFk

• In Σ1
k.

• It doesn’t look like there is a sim-
ple SO formula to express SATQBFk
on word models (see formula in
[Ferrarotti, Ren, Turull-Torres, 2014]).

• [Pap,94] Complete for ΣP
k under

PTIME reductions.

102

SATQBF

• In Σ2
1.

• It doesn’t look like there is a sim-
ple TO formula to express SATQ

BF on word models (see formula
in [Ferrarotti, Ren, Turull-Torres,
2014]).

• [Imm,99,P.10.2]

PSPACE complete via (FO+ ≤
+BIT) reductions.

103

SATQBF in HO3

(known to be in HO3)

At the first level of abstraction:

“There is a third order alternating

valuation Tv applicable to ϕ,

which satisfies ϕ”.

104

At the second level of abstraction
we express the following:

“∃ av ∆3 = (V3
∆, E

3
∆,B

3
∆) ”;

“∃ linear digraph Gq = (Vq, Eq)”;([
“B3

∆ : V3
∆→ {0, 1}”

]
∧[

“Gq = (Vq, Eq) represents the

sequence of quantified variables

in ϕ”
]
∧[

“(V3
∆, E

3
∆,B

3
∆) is an av applica-

ble to ϕ, i.e.”:

105

• “(V3
∆, E

3
∆) is a TO binary tree

with all its leaves at the same
depth, which is in turn equal to
the length of (Vq, Eq)”;

• “all the nodes in (V3
∆, E

3
∆) whose

depth correspond to a univer-
sally quantified variable in the
prefix of quantifiers of ϕ, have
exactly one sibling, and its value
under B3

∆ is different than that
of the given node”;

• “all the nodes whose depth cor-
respond to an existentially quan-
tified variable in the prefix of quan-
tifiers of ϕ, are either the root or

have no siblings”
]

∧
106

[
“(V3

∆, E
3
∆,B

3
∆) |=av ϕ”

])
with |=av we denote that every

leaf valuation of the av satisfies
the quantifier-free sub formula of ϕ.

107

What about using HO4?

Next we use an HO4 formula in-
stead.

We don’t need to say that the av
is applicable to ϕ; we just describe
how to build it, which we believe
is more intuitive and simpler.

Note that for the valuation of the
fourth order variables it is enough
if we consider only relations with
cardinality exp(1).

108

SATQBF as a Sequence of
av’s

in HO4,exp(1) = HO3

(known to be in HO3)

At the second level of abstraction
we express the following:

“∃ sequence (of linear size) (T 4, E4)

of av’s ∆3 = (V3
∆, E

3
∆,B

3
∆) (each

av of size exp(1))”;

“ ∃ bijection (of linear size) F4
T ,ϕ :

T 4→ {x : (I∀(x) ∨ I∃(x))} that

preserves E4 and ≤ϕ”;

109

[
“∀ av’s V3

∆, E
3
∆,B

3
∆, V

3
∆′, E

3
∆′,B

3
∆′ ”([

“B3
∆ : V3

∆→ {0, 1}”
]

∧[
“FirstE(V3

∆, E
3
∆,B

3
∆)”→

“(V3
∆, E

3
∆,B

3
∆) is an av with just

one node”
]

∧[
“LastE(V3

∆, E
3
∆,B

3
∆)”→

“(V3
∆, E

3
∆,B

3
∆) |=av ϕ”

]
∧

110

[
“SuccE(V3

∆′, E
3
∆′,B

3
∆′,V

3
∆, E

3
∆,B

3
∆)”→

“av ∆ is an extension of av ∆′

by one level in depth, so that”:

111

[
“I∃
(
F4
T ,ϕ(V3

∆, E
3
∆,B

3
∆)
)
” →

“each leaf of av (V3
∆′, E

3
∆′,B

3
∆′)

has

exactly 1 child in its image in

(V3
∆, E

3
∆,B

3
∆), with an arbitrary

value in B3
∆”
]

∧[
“I∀
(
F4
T ,ϕ(V3

∆, E
3
∆,B

3
∆)
)
” →

“each leaf of av (V3
∆′, E

3
∆′,B

3
∆′)

has exactly 2 children in its image

in (V3
∆, E

3
∆,B

3
∆), with different

values in B3
∆”
]])]

112

where

“av ∆ = (V3
∆, E

3
∆,B

3
∆) is an

extension of

av ∆′ = (V3
∆′, E

3
∆′,B

3
∆′)”

is roughly expressed as follows:

“∃ a total injection (of size exp(1))

H3 : V3
∆′ → V

3
∆”(

“H3 preserves E3
∆,B

3
∆, E

3
∆′,B

3
∆′”

)

113

Note that in the formula above
for the valuation of the 4-th order
variables it is enough if we con-
sider only relations of cardinality
exp(1).

We could then encode the HO4

relations in TO relations, using tu-
ples of (SO) sets as identifiers for
tuples of TO relations in the 4-th
order relations.

114

Expected result:

For every i ≥ k ≥ j ≥ 4 let
HOi,exp(j−2) denote the fragments
of HOi where the cardinality of the
valuating k-th order relations for
the k-th order variables are restricted
to be O(exp(j − 2)) w.r.t. the size
of the model.

Then, we believe that, by using
basically the same encoding strat-
egy as for HOi,P , we can prove the
following:

• For every i ≥ k ≥ j ≥ 4:

HOi,exp(j−2) collapses to HOj.

115

In the encoding of relations of or-
der k as above, the difference w.r.t.
HOi,P is that we need more differ-
ent identifiers to encode tuples of
HOk−1 relations.

Note that, as the cardinality of an
HOk relation is at most exp(k −
2), the number of different HOk

relations is at most exp(k − 1).

116

Then, to encode HO relations, of
whichever order k, whose maximum
cardinality is O(exp(j − 2)),

we need O(exp(j − 2)) different
identifiers, and hence a tuple of re-
lations of order (j − 1) is enough.

117

So that in the db that encodes a
relation of order k:

• all the relations will use tuples
of relations of order (j − 1) as
identifiers for tuples of relations
of order k − 1,

• and hence, relations of order j
suffice to represent the db.

118

5: Beyond Third Order

SATQBF(Σik)

119

We will next see an example of
a query known to be expressible in
HO4.

It doesn’t seem easy to express
it in HO4.

We will use HO6 and HO7 to ex-
press it instead.

And then we will see that we (be-
lieve that) we can translate both
formulas to HO5.

120

A more complex
problem:

High Order SATQBFk
[Hella, Turull-Torres, 2006]

We want to build a variant of the
problem SATQBFk of a higher com-
plexity, that is, a higher order vari-
ant, considering the logics Σij for all
i, k ≥ 1.

But we must remain as close as
possible to propositional logic.

121

With that in mind, we consider
one single structure, that we call
the Boolean model,

B = 〈{a, b}, 0B, 1B〉

a two-element model where both
elements are interpretations of the
constant symbols 0 and 1.

122

Then, deciding whether a given
Σij sentence is “satisfiable” (in the

propositional logical sense), turns
into deciding whether a Σij sentence
in the vocabulary of the Boolean
model, is true in the Boolean model.

That is, it means deciding the Σij
theory of the Boolean model:

Σij-Th(B).

123

The problem SATQBF(Σik)

For i, k ≥ 1 let SATQBF(Σik) de-
note the Boolean query:

“given a Σik sentence φ in the vo-
cabulary of the Boolean model, is
φ ∈ Σik-Th(B)?”.

124

Descriptive Complexity of
SATQBF(Σik)

[Hella, Turull-Torres, 2006]

Then we have the following:

• For i, k ≥ 1, SATQBF(Σik) on

word models is complete for Σi+1
k

under P reductions.

Note that each Σik sentence is rep-
resented as a string in the alphabet
of predicate logic of order i.

125

Note that the notion of complete-
ness of the result above is w.r.t.
a logic, not to a (computational)
complexity class, i.e., it is a notion
in the setting of descriptive com-
plexity.

This means that for every Σi+1
k

sentence ψ of an arbitrary vocab-
ulary τ , and every τ -structure A,
we build (in polynomial time) a Σik
sentence fψ(A) on the Boolean mod-
el, s. t.

B |= fψ(A) iff A |= ψ.

126

Computational Complexity
of

SATQBF(Σik)
[Hella, Turull-Torres, 2006]

Considering the expressibility of
Σi+1
k given above, we also get:

• For i ≥ 1 and k ≥ 1, SATQBF(Σik)
on word models is complete for
NEXPHk−1

i under P reductions.

127

Note that these problems being
complete for NEXPHk−1

i , implies
that they are provably intractable,
that is, we know that for each i ≥
1 and k ≥ 1, there is no algorithm
in P that can decide SATQBF(Σik).

This is because there are provably
intractable problems in NTIME(2n

c
),

and hence all the classes that in-
clude it contain intractable prob-
lems too [Garey,Johnson,1979].

The problems SATQBF(Σik) are
the first known family of complete
problems for all the levels of the
Non deterministic Hyper-exponential
Time Hierarchy NEXPHk−1

i .

128

SATQBF(Σ2
j)

In the word model for the input
formula ϕ ∈ Σ2

j, the variables and
their types are encoded as follows
(where Q ∈ {∃,∀}, and i, ri, ti ≥
1):

• 1st order variable xi:

Qx|i

• 2nd order variable Ri of arity ri:

QR|i ∗ |ri

• 3nd order variableRi of type τi =
(r1, . . . , rti):

QR|i ∗ (|r1, . . . , |rti)

129

The signature of the word model
is the following:

〈 ≤2, I1
R, I

1
R, I

1
x, I

1
∃, I

1
∀, I

1
∨, I

1
∧, I

1
¬,

I1
(
, I1

)
, I1
, , I

1
| , I

1
∗ 〉

We assume that the quantifier
blocks are arranged in the order
〈3rd, 2nd, 1st〉 order quantifiers, and
are then followed by a quantifier
free formula.

The first quantifier is always a
3rd order existential quantifier.

130

Representation of HO
Relations

SO variables

An r-ary SO variable S2,r:

as a TO relation S3,τ2
, with τ2 =

(1, 2, 2), i.e., a set of linear digraphs
of size r with a Boolean assignment.

So that each such digraph repre-
sents an r-tuple in the SO relation
that valuates S2,r.

131

Representation of HO
Relations

TO variables

A TO variable R3,τ3
of type τ3 =

(r1, . . . , rs):

as an HO5 relation R5,τ5
.

132

In the TO relation that valuates
R3,τ3

:

• each tuple of SO relations has s
components which are SO rela-
tions of arities r1, . . . , rs, respec-
tively;

• hence, each such tuple is rep-

resented in R5,τ5
as a sequence

of linear digraphs with Boolean
assignments,

133

• that is, it is an HO4 linear di-
graph of size s where each node
is a TO set of linear (SO) di-
graphs of sizes r1, . . . , rs, respec-
tively;

then, a TO relation, i.e., a set of
tuples of SO relations, is repre-

sented in R5,τ5
as a set of HO4

linear digraphs of size s, hence as
an HO5 relation.

τ5 =((
(1, 2, 2)

)
,
(
(1, 2, 2), (1, 2, 2)

))

134

SATQBF(Σ2
j)

in HO6,exp(3) = HO5

(known to be in HO4)

“∃ av ∆6 = (V6
∆, E

6
∆) (of size exp(3))”;

“∃ linear digraph Gq = (Vq, Eq)”

that represents de sequence of

quantified variables in ϕ, ordered

as 〈3rd, 2nd, 1st〉 order variables;

“∃ Fq,ϕ :

Vq → {z : (Ix(z)∨IR(z)∨IR(z))}
total bijection (of linear size) that

preserves Eq and ≤ϕ”;

135

“∃ F6
∆,q : V6

∆→ Vq total surjective

function (of size exp(3)) that maps

every node in av ∆6 to its corre-

sponding quantified variable in ϕ”;

136

(
1

[
“(V6

∆, E
6
∆) is an out-tree with

all leaves at depth |Vq|”
]
∧[

“V6
∆ is a set of tuples (I5, x1,S3,R5)”

]
∧ ∀z

[
2

Vq(z)→

(
3

[
4(

5

“IR
(
Fq,ϕ(z)

)
∧

I∃
(
Pred≤ϕ(Fq,ϕ(z))

)
”

)
5

→

137

(
5

[
6

“FirstEq(z) ∧ ∃ I5
1 , x

1
1,S

3
1 ,R

5
1”

(
“Root∆(I5

1 , x
1
1,S

3
1 ,R

5
1) ∧

S3
1 = ∅ ∧ x1

1 = 3 ∧

’R5
1 is well formed as a

representation of a 3rd order

relation’ ”
)]

6

∨

138

[
6
¬FirstEq(z)∧

∀ I5
1 , x

1
1,S

3
1 ,R

5
1, ∃ I

5
2 , x

1
2,S

3
2 ,R

5
2(

7

[
“F∆,q(I5

1 , x
1
1,S

3
1 ,R

5
1) =PredEq(z)”

]
→[
“(I5

2 , x
1
2,S

3
2 ,R

5
2) is the unique child

of (I5
1 , x

1
1,S

3
1 ,R

5
1) in av ∆6” ∧

S3
2 = ∅ ∧ x1

2 = 3 ∧

’R5
2 is well formed...’ ”

])
7

]
6

)
5

]
4∧

139

[
4
“IR

(
Fq,ϕ(z)

)
∧I∀
(
Pred≤ϕ(Fq,ϕ(z))

)
”

→ . . .
]

4

∧[
4
“IR
(
Fq,ϕ(z)

)
∧I∃
(
Pred≤ϕ(Fq,ϕ(z))

)
”

→ . . .
]

4

∧[
4
“IR
(
Fq,ϕ(z)

)
∧I∀
(
Pred≤ϕ(Fq,ϕ(z))

)
”

→ . . .
]

4

∧[
4
“Ix
(
Fq,ϕ(z)

)
∧I∃
(
Pred≤ϕ(Fq,ϕ(z))

)
”

→ . . .
]

4

∧
140

[
4
“Ix
(
Fq,ϕ(z)

)
∧I∀
(
Pred≤ϕ(Fq,ϕ(z))

)
”

→ . . .
]

4)
3

]
2

∧

141

∀ I5
1 , x

1
1,S

3
1 ,R

5
1[

2
“Leaf∆(I5

1 , x
1
1,S

3
1 ,R

5
1)→(

3
“the valuation in the path from

the root of av ∆ to the leaf

(I5
1 , x

1
1,S

3
1 ,R

5
1) satisfies the q-free

sub-formula of ϕ”
)

3

]
2

)
1

142

Note that with each leaf valua-
tion we can build a propositional
formula in {F, T} from the q-free
sub-formula of ϕ.

Each TO atomic formula in ϕ
R3,τ (S1, . . . , S|τ |) is replaced with
the truth value of the fact that the
tuple of SO relations assigned to
the SO variables S1, . . . , S|τ |, be-
longs to the TO relation assigned
to R3,τ .

And we proceed similarly for the
SO atomic formulas.

Then, to evaluate the resulting
formula, we can use the TO for-
mula in the fragment T for the For-
mula-Value query mentioned above.

143

SATQBF(Σ2
j) as a Sequence
of av’s

in HO7,exp(3) = HO5

(known to be in HO4)

“∃ sequence (of linear size) (V7
S, E

7
S)

of av’s ∆6 = (V6
∆, E

6
∆) out-trees

of size exp(3), and depth growing

from 1 to |Vq|”;

“∃ linear digraph Gq = (Vq, Eq)”

that represents de sequence of

quantified variables in ϕ, ordered

as 〈3rd, 2nd, 1st〉 order variables;

144

“∃ bijection (of linear size) F7
VS,ϕ :

V7
S → {x : (Ix(z)∨IR(z)∨IR(z))}

that preserves E7
S and ≤ϕ, and

maps every av ∆6 to its corre-

sponding quantifier in ϕ”;(
1

[
“V6

∆ is a set of tuples (I5, x1,S3,R5)”
]

∧ “∀ av’s V6
∆, E

6
∆, V

6
∆′, E

6
∆′ ”

(
2

145

[
3

“FirstE7
S
(V6

∆, E
6
∆)”→

(
4
“(V6

∆, E
6
∆) is an av with just

one node (I5, x1,S3,R5)”

∧

“S3 = ∅ ∧ x1 = 3 ∧

’R5
1 is well formed as a

representation of a 3rd order

relation’ ”
])

4

]
3

∧

146

[
3

“SuccE7
S
(V6

∆′, E
6
∆′, V

6
∆, E

6
∆)”→

“av ∆ is an extension of av ∆′

by one level in depth, so that”:

147

(
4

[
5

(
6
“I∃
(
Pred≤ϕ(F7

VS,ϕ(V6
∆, E

6
∆)
)
∧

IR
(
V6

∆, E
6
∆

)
”
)

6
→

∀ I5
1 , x

1
1,S

3
1 ,R

5
1, ∃ I

5
2 , x

1
2,S

3
2 ,R

5
2(

6
“Leaf∆′(I5

1 , x
1
1,S

3
1 ,R

5
1)” →[

“(I5
2 , x

1
2,S

3
2 ,R

5
2) is the unique child

of the image of (I5
1 , x

1
1,S

3
1 ,R

5
1)

in av ∆6” ∧ “S3
2 = ∅ ∧ x1

2 = 3 ∧

’R5
2 is well formed...’ ”

])
6

]
5
∧

148

[
5
“I∀
(
Pred≤ϕ(F7

VS,ϕ(V6
∆, E

6
∆)
)
∧

IR
(
V6

∆, E
6
∆

)
”
)

6
→ . . .

]
5
∧[

5
“I∃
(
Pred≤ϕ(F7

VS,ϕ(V6
∆, E

6
∆)
)
∧

IR
(
V6

∆, E
6
∆

)
”
)

6
→ . . .

]
5
∧[

5
“I∀
(
Pred≤ϕ(F7

VS,ϕ(V6
∆, E

6
∆)
)
∧

IR
(
V6

∆, E
6
∆

)
”
)

6
→ . . .

]
5
∧[

5
“I∃
(
Pred≤ϕ(F7

VS,ϕ(V6
∆, E

6
∆)
)
∧

Ix
(
V6

∆, E
6
∆

)
”
)

6
→ . . .

]
5
∧

149

[
5
“I∀
(
Pred≤ϕ(F7

VS,ϕ(V6
∆, E

6
∆)
)
∧

Ix
(
V6

∆, E
6
∆

)
”
)

6
→ . . .

]
5

)
4

]
3∧

150

[
3

“LastE7
S
(V6

∆, E
6
∆)”→

∀ I5
1 , x

1
1,S

3
1 ,R

5
1(

4

“Leaf∆(I5
1 , x

1
1,S

3
1 ,R

5
1)→

[
5
“the valuation in the path from

the root of av ∆ to the leaf

(I5
1 , x

1
1,S

3
1 ,R

5
1) satisfies the q-free

sub-formula of ϕ”
]

5

)
4

]
3

)
2

)
1

151

References

[Boerger, 2003] E. Börger, R. F. Stärk, “Abstract State
Machines. A Method for High-Level System Design and
Analysis”, Springer, 2003.

[Bollobás, 2002] B. Bollobás, “Modern Graph The-
ory”, Springer, Graduate Texts in Mathematics, 184,
2002.

[Downey, Fellows, 1999] R. G. Downey, M. R. Fellows,
“Parameterized Complexity”, Springer, Monographs in
Computer Science, 1999.

[Ferrarotti, González, Turull-Torres,2017] F. Ferrarotti,
S. González, J. M. Turull Torres, “On Fragments of Higher
Order Logics that on Finite Structures Collapse to Sec-
ond Order”, Logic, Language, Information, and Compu-
tation, 24th International Workshop (WoLLIC 2017),Lec-
ture Notes in Computer Science, 10388, Springer, J. Kennedy
and Ruy de Queiroz, 125-139, 2017.

[Ferrarotti, González, Schewe, Turull-Torres,2018] F.
Ferrarotti, S. González, K.-D. Schewe, J. M. Turull-Torres,
“Systematic Refinement of Abstract State Machines with
Higher-Order Logic”, 6th International ABZ Conference
ASM, Alloy, B, TLA, VDM, Z, June 5th-8th, 2018, Southamp-
ton, UK.

[Ferrarotti, González, Schewe, Turull-Torres, 2018a]

152

F. Ferrarotti, S. González, K.-D. Schewe, J. M. Turull-
Torres, “The Polylog-Time Hierarchy Captured by Re-
stricted Second-Order Logic”, CoRR, vol. abs/1806.07127,
2018. [Online]. Available: https://arxiv.org/abs/1806.07127

[Ferrarotti, Ren, Turull-Torres, 2014] F. Ferrarotti,
W. Ren, J. M. Turull-Torres, “Expressing properties in
second- and third-order logic: hypercube graphs and
SATQBF”, Logic Journal of the IGPL, 22, 355-386, 2,
2014.

[Garey,Johnson,1979] Garey, M. R., Johnson, D. S.
1979. “Computers and Intractability - A guide to the
Theory of NP-Completeness”. W. H. Freeman and Co.,
San Francisco, Calif.

[Hella,Turull-Torres,2006] Hella, L., Turull Torres, J.
M., “Computing queries with higher order logics”, TCS
355, 2006.

[Hella,Turull-Torres,2006a] Hella, L., Turull Torres, J.
M., “Complete Problems for Higher Order Logics”, in
“Computer Science Logic 2006, Proceedings”, Springer,
LNCS 4207, pp. 380-394, 2006.

[Immerman, 1999] N. Immerman, “Descriptive Com-
plexity”, Springer, Graduate texts in computer science,
1999.

[Schellhorn,Ernst,Pfhler,Bodenmller, Reif , 2018] G.

153

Schellhorn, G. Ernst, J. Pfhler, S. Bodenmller, W. Reif,“Symbolic
execution for a clash-free subset of ASMs”, in “Abstract
State Machines, Alloy, B, TLA, VDM and Z (ABZ 2016)”,
Ed. by M. Butler, K.-D. Schewe, Science of Computer
Programming, 158, 21-40, https://doi.org/10.1016/j.scico.2017.08.014.

154

