
Symmetric Circuits with Non-Symmetric Gates

Anuj Dawar

Department of Computer Science and Technology, University of Cambridge

based on joint work with Gregory Wilsenach

HellaFest, Murikanranta, 5 July 2018



Lauri Hella and Generalized Quantifiers

Workshop on Finite Model Theory and Databases, San Diego, 1992.

Anuj Dawar and Lauri Hella: “The Expressive Power of Finitely Many
Generalized Quantifiers”, LICS 1994, Inf. Comp 1995.

Workshop on Finite Model Theory, Helsinki 1994.

British Council/CIMO Academic Cooperation Grant, 1997–98.

Anuj Dawar July 2018



FPC and Symmetric Circuits

FPC—Fixed Point Logic with Counting is a reference logic in descriptive
complexity theory. It captures a large and natural fragment of
polynomial-time computable properties.

(Anderson, D. 2014/7) give a characterization of FPC in terms of
symmetric circuits.

Anuj Dawar July 2018



Circuits

A circuit C is a directed acyclic graph with:

• source nodes (called inputs) labelled x1, . . . , xn;

• any other node (called a gate) with k incoming edges is labelled by a
Boolean function g : {0, 1}k → {0, 1} from some fixed basis (e.g.
AND/OR/NOT);

• some gates designated as outputs, y1, . . . , ym.

C computes a function fC : {0, 1}n → {0, 1}m as expected.

Anuj Dawar July 2018



Circuit Complexity

A language L ⊆ {0, 1}∗ can be described by a family of Boolean
functions:

(fn)n∈ω : {0, 1}n → {0, 1}.

Each fn may be given by a circuit Cn made up of Boolean gates, with n
Boolean inputs and one output.

If the size of Cn is bounded by a polynomial in n, the language L is in
the class P/poly.

If, in addition, the function n 7→ Cn is computable in polynomial time, L
is in P.

Anuj Dawar July 2018



Circuit Complexity Classes

For the definition of P/poly and P, it makes no difference if the circuits
only use {AND,OR,NOT} or a richer basis with ubounded fan-in;
threshold; or counting gates.

However,

AC0 — languages accepted by bounded-depth, polynomial-size
families of circuits with unbounded fan-in AND and OR gates
and NOT gates;

and

TC0 — languages accepted by bounded-depth, polynomial-size
families of circuits with unbounded fan-in AND and OR and
threshold gates and NOT gates;

are different.

A threshold gate Thkt : {0, 1}k → {0, 1} evaluates to 1 iff at least t of
the inputs are 1.

Anuj Dawar July 2018



Symmetric Functions

We say a function g{0, 1} → {0, 1} is symmetric if its value is invariant
under all permutations of the k inputs.

k-input AND, OR and theshold gates all evaluate symmetric functions, as
do majority gates.

Since a circuit C is a DAG, rather than, say, an ordered DAG, it is
important that the labels on gates are symmetric functions.

Anuj Dawar July 2018



Invariant Circuits

Instead of a language L ⊆ {0, 1}∗ , consider a class C of directed graphs.
This can be given by a family of Boolean functions:

(fn)n∈ω : {0, 1}n
2

→ {0, 1}.

A graph on vertices {1, . . . , n} has n2 potential edges.
So the graph can be treated as a string in {0, 1}n.

Since C is closed under isomorphisms, each function fn is invariant under
the natural action of Sn on n2.

We call such functions graph invariant.

Anuj Dawar July 2018



Symmetric Circuits

More generally, for any relational vocabulary τ , let

τ(n) =
∑
R∈τ

narity(R)

We take an encoding of n-element τ -structures as strings in {0, 1}τ(n)
and this determines an action of Sn on such strings.

A function f : {0, 1}τ(n) → {0, 1} is τ -invariant if it is invariant under
this action.

We say that a circuit C with inputs labelled by τ(n) is symmetric if every
π ∈ Sn acting on the inputs of C can be extended to an automorphism
of C.

Every symmetric circuit computes an invariant function, but the converse
is false.

Anuj Dawar July 2018



Formulas to Circuits

Any formula of first-order logic translates into a uniform family of
constant-depth, polynomial-size symmetric Boolean circuits.

For each subformula ψ(x) and each assignment a of values to
the free variables, we have a gate.
Existential quantifiers translate to big disjunctions, etc.

Any formula ϕ of FP translates into a uniform family of polynomial-size
symmetric Boolean circuits.

For each n, ϕ translates into a first-order formula of depth
polynomial in n and with a constant bound k on the number of
free variables in a sub-formula.

Any formula of FPC translates into a uniform family of polynomial-size
symmetric threshold (or majority) circuits.

Anuj Dawar July 2018



Symmetric Circuits and Bases

Theorem (Anderson-D.)

A class of structures is definable in FPC if, and only if, it is decided by a
P-uniform family of symmetric circuits, using AND, OR, and majority
gates.

The gates are unbounded fan-in.

It is important that we have majority or threshold gates. Having only the
standard Boolean functions gives us something strictly weaker than FPC.

Adding further symmetric functions to the basis does not further increase
the expressive power of such symmetric circuit families.

Anuj Dawar July 2018



Support Theorem

A key technical took in the proof is the support theorem.

Say a set X ⊆ [n] is a support of a group G ≤ Sn if the pointwise
stabilizer of X is included in G.

For a symmetric circuit C with automorphism group Sn, we say that
X ⊆ [n] is a support of a gate g iff it is a support of the stabilizer of g.

Support Theorem: If (Cn)n∈ω is a P-uniform family of symmetric circuits,
then there is a k such that every g ∈ Cn has a support of size at most k.

Anuj Dawar July 2018



FPrk

FPrk is fixed-point logic with rank.

This properly extends the expressive power of FPC while still being inside
P.

The logic has rank operators which allow us to define the rank of a
matrix over a finite field.

For our purposes, it is sufficient that every formula of FPrk translates,
over structures of size n to a formula of first-order logic extended with
rank quantifiers, using a constant number of variables.

Rank quantifier:
rk(p, t, x, y)ϕ

is true if the 0-1-matrix (interpreted over the finite field Fp) defined by
ϕ(x, y) has rank at least t.

Anuj Dawar July 2018



Circuits with Rank Gates

Define rank gates as Boolean functions:

rktp : {0, 1}m×n → {0, 1}

where the result is 1 if the input, seen as an m× n matrix over Fp has
rank at least t.

We want to translate formulas of FPrk to circuits using such gates.

Note that such a function is not symmetric.

We have to put more structure on the circuit than just a directed acyclic
graph.

Anuj Dawar July 2018



Circuits for FPrk

In (D., Wilsenach 2018), we

• generalize the notion of circuit to allow such non-symmetric gates;

• define the notion of symmetric circuits in this more general context;
and

• give a circuit characterizaton of FPrk.

Anuj Dawar July 2018



τ -invariant gates

In general, we consider a multi-sorted vocabulary τ with sorts U1, . . . , Ul
and relations R1, . . . , Rm, each with a type i1, . . . , ir with ij ∈ [l].

This defines a polynomial τk1, . . . , kl which gives the length of a string
encoding a structure in which the sorts of sizes k1, . . . , kl.

A function g : {0, 1}τ(k1,...,kl) → {0, 1} is τ -invariant if it is invarinant
under the natural action of Sk1 × · · · × Skl on the strings.

Anuj Dawar July 2018



Circuits with τ -invariant gates

We consider circuits with gates that compute τ -invariant functions.

Now, the structure of the circuit is not simply a DAG.

A gate computing a τ -invariant function must have its incoming edges
labelled with the elements that make up τ(k1, . . . , kl).

We also need to refine the notion of automorphism of a circuit. It must
not only preserve the graph structure, but when it takes g to g′, it needs
to preserve the τ -structure on the children of g.

With this, we can define the notion of a symmetric circuit again, as one
where every permutation in Sn extends to an automorphism of the circuit.

Anuj Dawar July 2018



Circuits for Logics with Generelized Quantifiers

A generalized quantifier Q now translates into a natural family of gates
gQ (one for each input size).

And, we can easily see that any formula of the logic FP(Q) gives rise to a
family of P-uniform symmetric circuits using gates from AND, OR, NOT
and gQ.

Can we get the converse?

Anuj Dawar July 2018



Translating Circuits to Formulas

The proof from (Anderson, D.) translating symmetric circuits to FPC
relies on some technical ingredients.

The first is the support theorem. The proof in (Anderson, D.) relies
heavily on the fact that each gate computes a symmetric function.

We are able to prove a more general support theorem using different
techniques.

This yields a translation of P-uniform families of symmetric circuits using
gates from AND, OR, NOT and gQ to Lω∞ω(Q).

To get the translation to FP(Q), there is another obstacle to be
overcome.

Anuj Dawar July 2018



Detecting Circuit Automorphisms

The proof of (Anderson, D.) uses the P-uniformity of the circuit family to
conclude that important properties of the circuit Cn are polynomial-time
decidable and therefore expressible in FP on ordered structures.

In the more general context, some of these properties are not in P, unless
graph isomorphism is.

For instance, to decide if a given π ∈ Sn extends to an
automorphism of Cn may require checking isomorphism of
τ -structures at individual gates.

We get around this by introducing a further restriction of transparency.

Anuj Dawar July 2018



Transparent Circuits

A circuit C is transparent if

• whenever g is a gate evaluating a τ -invariant function, the labelling
of the inputs of g by τ(k1, . . . , kl) is injective; and

• whenever g, h are distinct τ -invariant gates, the subcircuits below
them are not syntactically identical.

We can show that any formula of FP(Q) translates to a P-uniform family
of symmetric, transparent circuits using gates from AND, OR, NOT and
gQ.

And now, we can also show the converse.

This is shown for FPrk in (D., Wilsenach 2018) but holds more generally.

Anuj Dawar July 2018



Generalized Gates

The translation of generalized quantifiers to generalized gates suggests a
further generalization.

For a group G ≤ Sn, we say that a function g : {0, 1}n → {0, 1} is
G-invariant if it is invariant under the action of G on its inputs.

So, a τ -invariant function is Sk1 × · · · × Skl -invariant where we
treat this as a subgroup of Sτ(k1,...,kl).

We can define a suitable notion of automorphism of circuits where the
inputs of G-invariant gates are mapped by G-isomorphisms.

What logics do families of symmetric circuits in this context give rise to?

Anuj Dawar July 2018


