Symmetric Circuits with Non-Symmetric Gates

Anuj Dawar

Department of Computer Science and Technology, University of Cambridge

based on joint work with Gregory Wilsenach

HellaFest, Murikanranta, 5 July 2018
Lauri Hella and Generalized Quantifiers

FPC—*Fixed Point Logic with Counting* is a reference logic in descriptive complexity theory. It captures a large and natural fragment of *polynomial-time computable* properties.

(*Anderson, D. 2014/7*) give a characterization of FPC in terms of *symmetric circuits*.
A circuit C is a *directed acyclic graph* with:

- source nodes (called *inputs*) labelled x_1, \ldots, x_n;
- any other node (called a *gate*) with k incoming edges is labelled by a Boolean function $g : \{0, 1\}^k \rightarrow \{0, 1\}$ from some fixed basis (*e.g.* AND/OR/NOT);
- some gates designated as *outputs*, y_1, \ldots, y_m.

C computes a function $f_C : \{0, 1\}^n \rightarrow \{0, 1\}^m$ as expected.
A language $L \subseteq \{0, 1\}^*$ can be described by a family of Boolean functions:

$$(f_n)_{n \in \omega} : \{0, 1\}^n \to \{0, 1\}.$$

Each f_n may be given by a circuit C_n made up of Boolean gates, with n Boolean inputs and one output.

If the size of C_n is bounded by a polynomial in n, the language L is in the class P/poly.

If, in addition, the function $n \mapsto C_n$ is computable in polynomial time, L is in P.

Anuj Dawar July 2018
Circuit Complexity Classes

For the definition of $P/poly$ and P, it makes no difference if the circuits only use $\{\text{AND, OR, NOT}\}$ or a richer basis with unbounded fan-in; threshold; or counting gates.

However,

AC_0 — languages accepted by bounded-depth, polynomial-size families of circuits with unbounded fan-in AND and OR gates and NOT gates;

and

TC_0 — languages accepted by bounded-depth, polynomial-size families of circuits with unbounded fan-in AND and OR and threshold gates and NOT gates;

are different.

A threshold gate $\text{Th}_t^k : \{0, 1\}^k \rightarrow \{0, 1\}$ evaluates to 1 iff at least t of the inputs are 1.
Symmetric Functions

We say a function \(g\{0, 1\} \rightarrow \{0, 1\} \) is symmetric if its value is invariant under all permutations of the \(k \) inputs.

\(k \)-input AND, OR and threshold gates all evaluate symmetric functions, as do majority gates.

Since a circuit \(C \) is a DAG, rather than, say, an ordered DAG, it is important that the labels on gates are symmetric functions.
Invariant Circuits

Instead of a language $L \subseteq \{0, 1\}^*$, consider a class C of directed graphs. This can be given by a family of Boolean functions:

$$(f_n)_{n \in \omega} : \{0, 1\}^{n^2} \to \{0, 1\}.\$$

A graph on vertices $\{1, \ldots, n\}$ has n^2 potential edges. So the graph can be treated as a string in $\{0, 1\}^n$.

Since C is closed under isomorphisms, each function f_n is invariant under the natural action of S_n on n^2. We call such functions graph invariant.
Symmetric Circuits

More generally, for any relational vocabulary τ, let

$$\tau(n) = \sum_{R \in \tau} n^{\text{arity}(R)}$$

We take an encoding of n-element τ-structures as strings in $\{0, 1\}^{\tau(n)}$ and this determines an action of S_n on such strings.

A function $f : \{0, 1\}^{\tau(n)} \rightarrow \{0, 1\}$ is τ-invariant if it is invariant under this action.

We say that a circuit C with inputs labelled by $\tau(n)$ is symmetric if every $\pi \in S_n$ acting on the inputs of C can be extended to an automorphism of C.

Every symmetric circuit computes an invariant function, but the converse is false.
Formulas to Circuits

Any formula of *first-order logic* translates into a uniform family of constant-depth, polynomial-size symmetric Boolean circuits.

For each subformula $\psi(x)$ *and each assignment* \bar{a} *of values to the free variables, we have a gate.*

Existential quantifiers translate to big disjunctions, etc.

Any formula φ of FP translates into a uniform family of polynomial-size symmetric Boolean circuits.

For each n, φ *translates into a first-order formula of depth polynomial in* n *and with a constant bound* k *on the number of free variables in a sub-formula.*

Any formula of FPC translates into a uniform family of polynomial-size symmetric threshold (or majority) circuits.
Theorem (Anderson-D.)
A class of structures is definable in FPC if, and only if, it is decided by a P-uniform family of symmetric circuits, using AND, OR, and majority gates.

The gates are unbounded fan-in.

It is important that we have majority or threshold gates. Having only the standard Boolean functions gives us something strictly weaker than FPC.

Adding further symmetric functions to the basis does not further increase the expressive power of such symmetric circuit families.
Support Theorem

A key technical tool in the proof is the support theorem.

Say a set \(X \subseteq [n] \) is a support of a group \(G \leq S_n \) if the pointwise stabilizer of \(X \) is included in \(G \).

For a symmetric circuit \(C \) with automorphism group \(S_n \), we say that \(X \subseteq [n] \) is a support of a gate \(g \) iff it is a support of the stabilizer of \(g \).

Support Theorem: If \((C_n)_{n \in \omega} \) is a P-uniform family of symmetric circuits, then there is a \(k \) such that every \(g \in C_n \) has a support of size at most \(k \).
FPrk is *fixed-point logic with rank*.

This properly extends the expressive power of FPC while still being inside \(P \).

The logic has *rank operators* which allow us to define the rank of a matrix over a finite field.

For our purposes, it is sufficient that every formula of FPrk translates, over structures of size \(n \) to a formula of first-order logic extended with *rank quantifiers*, using a constant number of variables.

Rank quantifier:

\[\text{rk}(p, t, x, y) \varphi \]

is true if the 0-1-matrix (interpreted over the finite field \(\mathbb{F}_p \)) defined by \(\varphi(x, y) \) has rank at least \(t \).
Define *rank gates* as Boolean functions:

\[\text{rk}_p^t : \{0, 1\}^{m \times n} \rightarrow \{0, 1\} \]

where the result is 1 if the input, seen as an \(m \times n \) matrix over \(\mathbb{F}_p \), has rank at least \(t \).

We want to translate formulas of \(\text{FPrk} \) to circuits using such gates.

Note that such a function is *not symmetric*.

We have to put more structure on the circuit than just a *directed acyclic graph*.
In (D., Wilsenach 2018), we

- generalize the notion of circuit to allow such *non-symmetric* gates;
- define the notion of *symmetric circuits* in this more general context; and
- give a circuit characterization of FPrk.
In general, we consider a \textit{multi-sorted} vocabulary τ with sorts U_1, \ldots, U_l and relations R_1, \ldots, R_m, each with a type i_1, \ldots, i_r with $i_j \in [l]$.

This defines a polynomial τ^{k_1, \ldots, k_l} which gives the length of a string encoding a structure in which the sorts of sizes k_1, \ldots, k_l.

A function $g : \{0, 1\}^{\tau(k_1, \ldots, k_l)} \rightarrow \{0, 1\}$ is \textit{τ-invariant} if it is invariant under the natural action of $S_{k_1} \times \cdots \times S_{k_l}$ on the strings.
Circuits with τ-invariant gates

We consider circuits with gates that compute τ-invariant functions.

Now, the structure of the circuit is not simply a DAG. A gate computing a τ-invariant function must have its incoming edges labelled with the elements that make up $\tau(k_1, \ldots, k_l)$.

We also need to refine the notion of automorphism of a circuit. It must not only preserve the graph structure, but when it takes g to g', it needs to preserve the τ-structure on the children of g.

With this, we can define the notion of a symmetric circuit again, as one where every permutation in S_n extends to an automorphism of the circuit.
A *generalized quantifier* Q now translates into a natural family of gates g_Q (one for each input size).

And, we can easily see that any formula of the logic $\text{FP}(Q)$ gives rise to a family of P-uniform *symmetric* circuits using gates from AND, OR, NOT and g_Q.

Can we get the *converse*?
The proof from *(Anderson, D.)* translating symmetric circuits to FPC relies on some technical ingredients.

The first is the *support theorem*. The proof in *(Anderson, D.)* relies heavily on the fact that each gate computes a symmetric function.

We are able to prove a more general support theorem using different techniques. This yields a translation of P-uniform families of symmetric circuits using gates from AND, OR, NOT and g_Q to $L^{\omega}_{\infty \omega}(Q)$.

To get the translation to $\text{FP}(Q)$, there is another obstacle to be overcome.
Detecting Circuit Automorphisms

The proof of (Anderson, D.) uses the P-uniformity of the circuit family to conclude that important properties of the circuit C_n are *polynomial-time* decidable and therefore expressible in FP on *ordered structures*.

In the more general context, some of these properties are not in P, unless *graph isomorphism* is.

For instance, to decide if a given $\pi \in S_n$ extends to an automorphism of C_n may require checking isomorphism of τ-structures at individual gates.

We get around this by introducing a further restriction of *transparency*.
A circuit C is *transparent* if

- whenever g is a gate evaluating a τ-invariant function, the labelling of the inputs of g by $\tau(k_1, \ldots, k_l)$ is *injective*; and
- whenever g, h are *distinct* τ-invariant gates, the subcircuits below them are *not syntactically identical*.

We can show that any formula of $\text{FP}(Q)$ translates to a P-uniform family of symmetric, *transparent* circuits using gates from AND, OR, NOT and g_Q.

And now, we can also show the converse.

This is shown for FPrk in *D., Wilsenach 2018* but holds more generally.
Generalized Gates

The translation of *generalized quantifiers* to *generalized gates* suggests a further generalization.

For a group $G \leq S_n$, we say that a function $g : \{0, 1\}^n \to \{0, 1\}$ is G-invariant if it is invariant under the action of G on its inputs.

So, a τ-invariant function is $S_{k_1} \times \cdots \times S_{k_l}$-invariant where we treat this as a subgroup of $S_{\tau(k_1,\ldots,k_l)}$.

We can define a suitable notion of *automorphism* of circuits where the inputs of G-invariant gates are mapped by G-isomorphisms.

What logics do families of symmetric circuits in this context give rise to?