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Abstract

Visual analytics (VA) systems help data analysts solve complex problems interactively, by inte-

grating automated data analysis and mining, such as machine learning (ML) based methods, with

interactive visualizations. We propose a conceptual framework that models human interactions

with ML components in the VA process, and that puts the central relationship between automated

algorithms and interactive visualizations into sharp focus. The framework is illustrated with several

examples and we further elaborate on the interactive ML process by identifying key scenarios where

ML methods are combined with human feedback through interactive visualization. We derive five

open research challenges at the intersection of ML and visualization research, whose solution should

lead to more effective data analysis.
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1. Introduction

Real-world data analysis usually relies heavily on both automatic processing and human exper-

tise. Data size and complexity often preclude simply looking at all the data, and make machine

learning (ML) and other algorithmic approaches attractive, and even inevitable. However, the

power of ML cannot be fully exploited without human guidance. It remains a challenge to translate5
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real-world phenomena and analysis tasks, which are often under-specified, into ML problems. It is

difficult to choose and apply appropriate methods in diverse application domains and tasks. More

importantly, it is crucial to be able to incorporate the knowledge, insight, and feedback of human

experts into the analytic process, so that models can be tuned and hypotheses refined.

In a typical setting, domain experts use ML and visualization methods provided by common10

software tools (e.g., SPSS, R, Tableau) “out of the box”. Realistically, the domain experts’ pro-

ficiency in ML may be limited, and the underlying computations may not be transparent and

comprehensive enough to provide the feedback needed to guide model refinement. Visualizations

are often used to display the ML model results without offering interactions that trigger recalcula-

tions. This results in a very standardized configuration of the ML and visualization pipelines based15

on default parameters that domain experts may not know how to adapt. The situation may be

improved by having domain experts collaborate with data scientists, improving the effectiveness of

analysis, but also leading to a much more costly iterative design process. ML researchers usually

know how to tune models directly in ML platforms (e.g., Matlab, R, Python) and provide results to

domain experts. However, domain experts generally find it necessary to learn how models behave20

and how to evaluate results to provide useful feedback.

By integrating ML algorithms with interactive visualization, visual analytics (VA) aims at pro-

viding visual platforms for analysts to interact directly with data and models [1]. Tam et. al [2]

illustrated in case studies that human-centric ML can produce better results than purely machine-

centric methods. In such cases, an analyst is enabled to steer the computation and interact with25

the model and data through an interactive visual interface. Despite much effort to date, though,

solutions from ML and VA are still not interwoven closely enough to satisfy the needs of many

real-world applications [3, 4]. For example, in existing toolkits (such as WEKA, Elki, or javaML),

tight integration between interactive visualization and ML process is missing. Most of these tools

present modeling results as static visualizations; interactions are often limited to command line in-30

terfaces or user interface controls that are not intuitive and accessible to end-users. Toward better

integration of ML and VA, in recent years conceptual frameworks that characterize the interplay

between them have been proposed [1, 3, 4, 5]. It appears most frameworks were designed from the

perspective of interactive visualization, focusing on the role of the “human in the loop”. A closer

connection between visualization and common ML paradigms (such as unsupervised and (semi-)35

supervised learning; classification, regression, clustering, etc.) including specifics of these methods
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(e.g., SVM vs. random forests in classification) and their implementations is needed. In this paper,

we put a sharper focus on scenarios in which complementary ML and VA methods are combined,

and propose a framework for a tighter relationship between ML and VA. To do so, we identify

aspects of automated ML techniques that are amenable to interactive control, and illustrate these40

with examples. We further describe human factors within this process that should be considered

carefully in the design of interactive visual ML systems, and enumerate analysis scenarios. The

proposed conceptual framework opens perspectives on new ways of combining automated and in-

teractive methods, which will lead to better integrated, and, ultimately, more effective data analysis

systems.45

Researchers in both ML and visualization have realized for some time that closer collaboration

could help to solve this problem. An interdisciplinary team with experts from the ML and visualiza-

tion communities was formed at a Dagstuhl Seminar on “Bridging Information Visualization with

Machine Learning” [6]. The framework proposed in this study is the outcome of several iterations

of discussions, feedback, and framework refinements made by this team. The initial version of this50

framework [6] was based on a survey of several earlier frameworks and systems combining ML and

interactive visualization. Subsequently, the framework was refined by applying it to a larger set of

example applications (identified in the visualization, ML, and HCI literature) and by incorporating

external feedback from experts, such as conference submission reviews. This led us to a process

of framework refinement, carried out over 1.5 years, including extensions and simplifications, vali-55

dation, and evaluation by analyzing existing VA systems and ML techniques. This paper extends

an initial report in ESANN 2016 [7] to include an extended review of prior work, a more detailed

framework, examples of providing automated support for each stage, identification and description

of scenarios where analysis and feedback take place, and additional discussion throughout.

The rest of this paper is structured as follows. Section 2 discusses related work on the interplay60

of machine learning and human feedback. Section 3 introduces our conceptual framework and

the key stages in its interactive pipeline, and they are illustrated with examples in Section 4.

Section 5 examines the human interaction loop in more detail, describing the stages of action

and analysis scenarios where interaction occurs. Section 6 identifies five challenges and associated

opportunities in creating systems that fully use the framework. Section 7 gathers conclusions and65

final discussions.
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Figure 1: Visual Analytics Framework by Keim et al. [1]. ML interactions are related to model building and parameter

refinement.

2. Related Work

The literature describes related models that capture the interplay between ML system com-

ponents and human feedback loops. We will discuss several different perspectives on this topic,

divided into VA models, interaction taxonomies, interactive ML, and human-centered design. This70

section concludes with a high-level summary for interested readers without ML expertise.

Visual Analytics Models. Pipeline-based models such as the Reference Model for Information

Visualization [8] or the Knowledge Discovery Process in Databases (KDD) [9] usually contain feed-

back loops that cover all the subcomponents with the potential for user interaction. In the standard

VA model [1], the analysis process is characterized by interactions between data, visualizations,75

models of data, and users, for knowledge discovery (see Figure 1). ML interaction in this frame-

work is aimed at model building and parameter refinement. Sacha et al. extended this model [4]

to encompass the process of human knowledge generation. This extended model clarifies the role

of humans in knowledge generation, and highlights the importance of supporting tighter integra-

tion of human and machine. Several other models focus on a clear depiction of the human data80

analysis process, including Pirolli and Card’s sensemaking process [10], and Pike et al.’s science of

interaction [11]. Endert et al. characterized the interaction process between a human analyst and
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automated analysis techniques as the “human is the loop” [12] and proposed a model for coupling

cognition and computation [3]. More recently, Chen and Golan [13] provided an abstract model

to describe six classes of human-machine workflows in combination with an information-theoretic85

measure of cost-benefit. Their model allows one to analyze workflows composed of machine compu-

tations and human interactions supported by different “levels” of visualizations. All these models

reflect a high-level understanding of system and human concepts.

Interaction & Task Taxonomies. Another set of models related to our endeavor seek to char-

acterize and organize the tasks and interactions in a visual data analysis process. For example,90

Brehmer and Munzner [14] propose a comprehensive visualization task taxonomy. However, model

interactions only arise in tasks they refer to as “aggregate” or “derive” tasks. Landesberger et

al. [15] define a taxonomy that includes interaction and data processing. Their taxonomy pro-

vides two types of data processing interactions: data changes, such as editing or selecting data,

and processing changes, such as scheme or parameter changes. They incorporate Bertini and95

Lalanne’s [16] distinction of human intervention levels, that distinguishes, for example, between

scheme tuning (e.g., parameter refinement) and scheme changing (e.g., changing the model) inter-

actions. Mühlbacher et al. [17] investigate and categorize several types of user involvement for black

box algorithms with different characteristics. The characterization of interactions in our framework

is orthogonal to these taxonomies and extends them with a dedicated view on interaction with ML100

components.

Interactive Machine Learning. While the above models were strongly framed from the view-

point of visualization and VA, there is also growing interest in the ML community to incorporate

human interaction more fully in the analysis and learning processes. A typical scenario would be

that a human observes or explores the current state of a learning system, and explicitly or implic-105

itly guides an ongoing training process. This is often referred to as human-in-the-loop machine

learning, or more broadly, interactive machine learning. The classical example is recommender

systems that infer users’ personal preferences from previous choices. User can provide continuous

feedback, such as by recording additional choices, or by explicitly scoring (liking/disliking) indi-

vidual items [18, 19, 20]. In similar scenarios, the user provides class labels, for which a machine110

learning classifier is (continuously) trained. This concept is strongly linked to the topic of active

learning [21, 22], which aims at efficient choices of samples during training epochs to achieve fast
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Figure 2: Stages of interaction [24].

convergence of a learning algorithm. An increased demand for involving user feedback is underscored

by recent work investigating more elaborate user models or more intricate forms of interaction. For

example, Amershi et al. [5] propose a set of high-level paradigms by which user involvement in ML115

may be characterized, similar to models that have been discussed in the VA community [1]. They

also stress the importance of accounting for user behavior, and the potential benefits of collaborative

research between ML experts and the human-computer interaction community. Similarly, Groce

and colleagues investigate sample selection strategies to test classifiers effectively via systematic

feedback requests to end users [23].120

Human-Centered Design. Another perspective on the analysis process is provided by the human-

computer interaction (HCI) domain. We are able to adopt commonly known concepts and terms

in our interactive ML setting, considering the interplay between human and machine. A famous

example is Norman’s Stages of Action cycle [24], shown in Figure 2. At the center of the cycle

are the Goals that a human analyst wants to achieve. Norman distinguishes between two major125

stages of an interaction: Execution and Evaluation. In the Execution phase, the human (1) forms

an intention to act and (2) specifies a sequence of actions that is (3) finally executed to the world.

Subsequently, in the Evaluation phase, the state of the world has to be (1) observed, (2) interpreted,

and (3) finally compared and evaluated with respect to the initial goals. Norman further describes
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the distances or “gulfs” between the human goals and the world that need to be bridged when130

humans interact with (digital) interfaces. The Gulf of Execution describes the problem when the

human does not know how to perform an action, whereas the Gulf of Evaluation indicates that

humans are not able to evaluate the result of an action. Human-centered user interface design at-

tempts to bridge these gaps. User interface features need to be visible and offer Affordances to the

end user. These (perceived) affordances are relationships between a person and a physical/digital135

object, and suggest how the object might be used [24]. Visual Cues (e.g., visual elements, icons, or

animations that attract attention) may guide the end user during the analysis process. On the one

hand, a system should communicate the progress of ongoing computations or the quality of results

to the analyst. On the other hand, visual cues may guide the analyst to “handles” or objects that

can be manipulated within the interface. In this respect, the concept of direct manipulation [25]140

has been demonstrated to enable intuitive operations to end users. Interactive visualizations of ML

model structures and data items allow direct interaction that is more convenient and more easily

interpreted than text commands.

Machine Learning Overview. A wide range of ML algorithms and methods have been pro-

posed and employed in practice. One way to distinguish these methods is based on their learning145

paradigm, which is either supervised (examples of system inputs and desired outputs are both

provided), unsupervised (no desired outputs are specified), or semi-supervised (not all outputs are

available, typically only a few). While supervised methods aim to learn the input-output relation-

ship from the provided examples, unsupervised methods attempt to extract hidden structures from

them. These learning paradigms can be instantiated into specific categories of ML tasks. Regres-150

sion aims to best predict any form of continuous outputs as a function of the inputs. Classification

aims to predict class labels or memberships associated with the inputs. On the unsupervised side,

clustering aims to identify groups or hierarchies present in data. Similarly, dimensionality reduction

and manifold learning both aim to identify linear or nonlinear relationships between the observed

variables and to represent the subspace where most of the data variation happens with fewer latent155

variables. These are a few examples of emblematic ML tasks, among many others, like associa-

tion rule learning, missing value imputation, time series prediction and outlier detection, novelty

detection. In practice, several of these abstract tasks are combined in a data flow to solve real-

world problems and analysis. For example, one might apply dimensionality reduction (to mitigate
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the computational impact of working with high dimensional data) before applying regression or160

time series prediction. Such combinations of methods, though useful in practice, lead to composite

models with heterogeneous parameterization, which are difficult to train, and time-consuming to

validate.

In summary, both VA and ML communities have noticed the gaps between automatic ML165

and human interactions in data analytics systems, which limit their effectiveness in solving real

world application problems. Various models to conceptualize the potential integration of ML and

interactive visualizations have been proposed. These models, however, still have either a strong

human/visualization focus, or a strong algorithmic focus. In this paper we propose a new conceptual

framework that covers both aspects with the objective of providing a more systematic view of how170

interactive visualization and ML algorithms can be integrated in practice.

3. Human-Centered Machine Learning Framework

As shown in Figure 3, our framework unifies, embeds, and extends existing theories on interactive

ML and VA by integrating and generalizing observations from emergent case studies and examples.

The framework combines typical ML and VA pipeline components (A–D) with an analysts’ iterative175

evaluation and refinement process (E ). An analyst can interact with the individual stages in this

pipeline through a visual interface (D), which acts as a mediator or “lens” between the human

and the ML components (dashed arrows). Changes are then sent back to the visual interface and

presented to the analyst (solid arrows). The dark blue boxes in the figure denote examples of

automated methods that support the analyst in performing specific interactions. Our framework180

illustrates that a multidisciplinary perspective combining ML and VA is needed to provide usable

and accessible access to end-users (domain experts). For example, data operations, visualization

techniques, and human-computer interaction (blocks A, D, and E in Figure 3) are addressed in the

visualization community, whereas ML algorithms, setups, and optimization (blocks B and C ) are

core to ML research. Next, we detail the interactions involved in each stage of the analysis process,185

and discuss possible automatic support to facilitate these interactions.

Edits & Enrichment (A). In ML, data is often seen as fixed or immutable, but many VA tools

support data cleaning, wrangling, editing, and enrichment, which is essential in many applications
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Figure 3: Proposed conceptual framework: A reference interactive VA/ML pipeline is shown on the left (A–D),

complemented by several interaction options (light blue boxes) and exemplary automated methods to support in-

teraction (dark blue boxes). Interactions derive changes to be observed, interpreted, validated, and refined by the

analyst (E). Visual interfaces (D) are the “lens” between ML models and the analyst. Dashed arrows indicate where

direct interactions with visualizations must be translated to ML pipeline adaptations. The colors of the pipeline

components refer to the ones defined in the VA process model [1] shown in Figure 1.

[26]. For example, in a typical active learning scenario in ML, a domain expert may want to

incrementally add labels to data while training a classifier in order to inject domain knowledge190

and improve the quality of the classifier. Another example of Edits & Enrichment interaction is

the testing of “what-if scenarios” on the data. The analyst might want to change or remove some

data points and see the effect to test certain assumptions about the data. Data editing is often

followed by a “warm restart” of the ML pipeline, iteratively propagating results to the analyst.

From an ML perspective, data editing combined with user feedback can be seen as a form of cross-195

validation/bootstrap. In these techniques, the ML model is re-trained with “modified” data, either

data held out in cross-validation and leave-one-out, or changed into some other observed instance

that is then reintroduced in the bootstrap sample. However, traditional cross-validation/bootstrap

are performed with strict rules about how data are held out or modified, to pursue statistical goals

about generalization performance, whereas the editing and feedback discussed here are performed200

by the user to carry out a task, not constrained to a specific mathematical formalization of the

task. Hence data editing might be seen as a kind of “meta” cross-validation, requiring proper

quality assessment for the user’s task.

Automatic Support: Various statistical and ML techniques exist for preconditioning and pro-
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cessing data. These techniques can be implemented in interactive systems for data wrangling, such205

as missing value detection and replacement, sampling, and data transformation. When datasets

are large, the analyst can apply sampling techniques (e.g., vector quantization or hierarchical clus-

tering) to derive a representative subset for interactive analysis. Similar methods can also be used

for efficient labeling, for example, by adding an annotated class label to all items in a particular

cluster.210

Preparation (B). Many ML pipelines or VA workflows incorporate preprocessing steps that are

selected and adjusted by a-priori domain experts. Being outside of the scope of the central ML

model, the design options and parameters in these steps often have a different status. For instance,

they may not be subject to cross-validation in some cases. While edit-and-enrich interactions focus

on persistent changes to data (possibly individual items), preparation interaction applies a uniform,215

transient transformation of features to a larger set of observations. Typical preparation activities

include transformation of data such as standardization, scaling, Fourier or wavelet transforms, and

weightings. Weightings include filtering (0-weights) of data items, as well as feature selection [27].

In this respect, we often observe a gap in the “judgment of (dis)similarity” between a human and the

“default” metrics used in ML methods. Analysts usually focus on specific features or subsets within220

their data. This requires feature weightings, or defining more complex (dis)similarity functions.

Automatic Support: ML offers several measures and methods to optimize Preparation. For

example, feature weighting can be supported in the form of relevance [28], metric [29, 30], or kernel

learning [31]. Other setups make use of cost functions or stress for optimizing parameterizations of

preprocessing steps. Furthermore, other methods such as correlation (e.g., Pearson correlation) or225

factorial analysis support analysts in understanding feature dependencies within data.

Model Selection & Building (C). An essential idea of VA is to enable analysts to interact

directly with ML models so they can integrate domain knowledge into the analysis process. In Model

Selection, analysts choose among various ML algorithm families, or a set of pre-built model results.

Another possibility is to build ML model ensembles interactively. Model Building interactions focus230

on changing a given ML model through the adjustment of model parameters. While internal model

parameters are usually optimized automatically, others, such as design or form, and meta- or hyper-

parameters, need to be adapted by the analyst according to their assumptions. Model building

interactions can lead to ML model changes that affect its form, constraints, quality, and accuracy.
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Form parameters define basic structures (such as the number of nodes in a neural network), whereas235

constraints reflect more detailed assumptions (e.g., defining fixed anchor points in a dimensionality

reduction algorithm). In some applications it is also desirable to tune the quality and accuracy of

the ML result (e.g., by interacting with the confusion matrix of a classifier).

Automatic Support: Model Selection can be supported automatically or semi-automatically, for

example, with Akaike or Bayes information criteria, cross validation, bootstrap [32], etc. These tech-240

niques assess the quality of a model based on its complexity (roughly, the number of free parameters)

and the generalization error, which allows different ML models to be compared and ranked. When

there are too many models to exhaustively compare all using model selection methods, higher-level

Model Building can also be supported by automatic methods, especially for metaparameter opti-

mization (i.e., parameters that cannot be tuned by optimization within the model family and where245

the analyst is not able to provide “useful” feedback). For example, heuristic approaches such as

genetic algorithms can be applied to select features and a regularization parameter for support vec-

tor machine classifiers based on the quality (cross-validated performance or theoretical performance

bounds) of the classification result [33].

Exploration & Direct Manipulation (D). The various characteristics, parameters, and results250

of all pipeline stages can be presented to the analyst as visualizations in a user interface. On

the one hand, data can be visualized using a plethora of known visualization techniques. On the

other hand, visualizations of ML components can be presented as well. VA aims to combine the

two variants by incorporating ML results or patterns (e.g., identified groups, classes, or outliers)

into data representations. We found visual representations for different parts of the ML pipeline,255

such as data and model spaces (Figure 4-a), pre-built model variants including their characteristics

(Figure 4-b) and quality (Figure 4-a/b/d), but also the ML structures (Figure 4-d). Interactive

visualizations that allow for Direct Manipulation of visual objects make ML interactions amenable

to analysts. Usually, simple Exploration interactions, such as changing a graphical encoding, or

navigating within views, do not feed back to ML components but help the analyst to understand260

and interpret the visualization. However, the preceding discussion also mentioned several situations

where interactions in visual interfaces are “passed through” to ML changes that trigger recalculation

of the ML pipeline, as indicated by dashed arrows in Figure 3. This concept has become known

as “semantic interaction” that maps intuitive observation level interactions in a visualization to
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Figure 4: A selection of examples that effectively involve analysts into the ML process by interactive visualization.

Courtesy of Jeong [34], Mülbacher [35], Endert [36], van den Elzen [37].

appropriate ML changes [36].265

Automatic Support: Automated methods can be used to detect and highlight specific visual

patterns, such as class separation, correlation, outliers, or sequences. These methods imitate hu-

man perception with the goal of better helping human analysts find interesting, visible patterns in

the data. Aupetit and Sedlmair [38], for instance, provide a rich set of over 2000 measures that

automatically detect visual class separation patterns. Similarly, different visualization techniques270

(e.g., scatterplots, parallel coordinates, or matrices) may be employed to provide different perspec-

tives of data and ML results. In summary, recommending “interesting’ visualizations has excellent

potential for improving the effectiveness of data analysis.
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Execution & Evaluation (E). This step involves the entire interactive and iterative analysis

process, including all the above-mentioned interaction components A-D. Interactive visualizations275

(D) not only serve as an aid or “lens” that facilitates the process of interpretation and evaluation of

ML results, but also make the execution of ML interactions amenable to analysts. In an ideal VA

system, analysts actively engage in an iterative process of observing, interpreting, and evaluating

the system’s outputs, followed by subsequent execution of interactions to refine the analysis. This

duality of interaction design goals has been characterized by Norman’s pioneering work on Stages of280

Action [24] (see Section 2 for more details). However, the system should actively enable and support

this duality by providing usable and interpretable visual interfaces considering human-centered

design, such as affordances [24, 39], direct manipulation [25], and interpretable representations. We

will provide a more detailed perspective on this human loop in Section 5 describing an analyst’s

thinking, sense-making, and reasoning process influenced by various human factors.285

Automatic Support: Boy et al. [40] investigated visual cues as perceived affordances in a “sug-

gested interactivity” study, with the goal of providing guidance to analysts. Furthermore, the

analysis process itself can be recorded (as a sequence of interactions) and visualized to enable

browsing through various analysis states, adding analytic provenance capabilities [41]. In this con-

text, the quality of an interaction result can be measured and compared within such a sequence to290

automatically distinguish beneficial from detrimental changes. For example, Kapoor et al. mea-

sured the accuracy of a classifier before and after interaction [42]. However, such measures are

rarely available today, especially in more exploratory or speculative types of analysis.

4. Example Systems

Our framework was inspired by studying current data analysis systems that engage analysts295

through interactive visualization. In this section, we discuss ForceSPIRE [36] as an example of how

interactive visualization can be integrated into each stage of an automatic analysis process. We

will also briefly review some other relevant examples, and map their interactions to our framework

to show how it covers many different types of interactive visualization, as well as its potential for

identifying interactions missing in the analysis process.300
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4.1. ForceSPIRE

ForceSPIRE [36] is an interactive text visualization and analysis system. It takes a collection of

text documents as input and shows them in a force-directed layout, driven by document similarity

(measured by comparing common terms). The analyst can explore documents in this spatial rep-

resentation, and take advantage of domain knowledge about them by means of interactions such as305

document movement, highlighting, annotation and search. Below is a mapping of these interactions

to our framework:

Edits & Enrichment (A). The data (text documents) can be enriched with annotations, for

example, by adding topic-terms that do not explicitly occur in the text.

Preparation (B). Document similarities are derived from common terms, which are transferred310

into a weighted feature vector for each document. Term weights are adapted based on user inter-

actions, such as highlighting and searching for specific terms. In addition, term weights may be

updated if the analyst rearranges document positions in the layout. Documents that are moved

closer are considered more similar, and the term weights are adapted accordingly.

Model Selection & Building (C). A force-directed graph model is derived to create a two315

dimensional spatialization of the documents. Document nodes are treated as physical objects,

where the number of entities or terms per document defines its mass, so larger documents move

more slowly. Document similarities are represented by graph edges or ideal springs connecting

related document nodes. Spring forces are calculated from common terms and an importance value

or weight per term. The analyst may add constraints to the document layout by pinning specific320

nodes to fixed positions.

Exploration & Direct Manipulation (D). Documents are visualized as nodes that can be

opened or closed on demand. This allows the analyst to explore documents, inspect details on

demand, and provide feedback as needed. The visualization offers direct manipulation interactions

that can be translated to ML-pipeline adaptions. These “semantic interactions” adapt the under-325

lying term-weight model or add constraints into the document layout. In this way, the analyst can

enrich the spatialization with semantic meaning to support the human reasoning process.
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Execution & Evaluation (E). Each interaction that is performed results in an observable be-

havior within the visualization. For example, new clusters may emerge as a result of pinning a

document in the layout, as some documents may move further away, and others may move closer330

to the pinned document. In such cases, the analyst needs to interpret and validate the results and

provide further feedback.

4.2. Other Examples

We found many other examples of VA systems described in the literature that support aspects

of the proposed analysis process. In this section, we briefly review a few examples that illustrate a335

wide variety of realizations. Table 1 summarizes these examples in terms of the framework compo-

nents (A–E).

Inter-Active Learning [43] is a concept proposed by Höferlin et al. aimed at extending active

learning. In line with standard active learning approaches, the proposed system allows the analyst340

to iteratively add class labels (A) to train a classifier. In contrast with traditional active learn-

ing, the analyst can also pose queries to identify points to be labeled. Additionally, the analyst

is provided with multiple views that visualize the classifier quality (D) and let the analyst tune

parameters of the classifier (C).

345

DataWrangler [44] provides a good example of supporting Edits & Enrichment (A). The

system automatically validates selected data and suggests data transformations to the analyst to

implement data editing operations.

iPCA [34] (Figure 4-a) is an interesting example that offers different perspectives and interac-350

tions within data and model space. The analyst can edit or remove data items (A) in linked views

(e.g., scatter plot, parallel coordinates, or matrix views) (D) and observe the results (E). It is also

possible to define dimension loadings using sliders (B).

Dis-Function [45] learns distance functions from user feedback. When the analyst rearranges355

data points in a two dimensional embedding (D), a calculation of a new distance functions (or fea-

ture weights) is triggered (B). By immediately revealing the resulting changes (updated scatter plot
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and bar chart), the approach gives analysts a convenient way of exploring alternative configurations

of preprocessing steps (E).

360

The partition-based framework by Mühlbacher and Piringer [35] (Figure 4-b) provides the

analyst with different pre-built regression model variants that can be selected and refined (C). The

system visualizes these regression models in a matrix view in combination with further features

and quality information (D). The analyst can apply feature-transformations and offers preparation

parameters that are used for feature partitioning (B). All interactions trigger recalculations of the365

regression model variants and quality metrics enable the analyst to evaluate these changes (E).

BoababView [37] (Figure 4-d) visualizes the structure of a decision tree in combination with

data, feature, and quality information (D). The analyst can perform tree operations (e.g., split or

merge nodes) and adapt specific parameters, such as split points values (C). The analyst can inspect370

and follow changes of the data flow within the tree, and evaluate the precision of the classifier at

any stage (E).

EnsembleMatrix [42, 46] lets analysts build classifier ensembles by discovering several com-

bination strategies (C). The system offers several confusion matrix visualizations for each classifier375

with a combined main matrix, as well as a linear classifier combination view (D). An extension of

the tool further measures the accuracy of an ensemble classifier before and after user interaction to

support analysts in their evaluation process (E).

Voyager [47] provides the analyst with visual recommendations for faceted browsing through a380

series of automatically generated visualizations (D) that match the underlying data’s characteristics

with user preferences.

DimStiller [48] allows analysts to design and validate several steps of a dimensionality re-

duction workflow (A–D). This approach makes it possible to compare alternative workflows and385

validate each step of the ML pipeline to identify which phases can be improved (E).
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Table 1: Examples grouped by framework components (A–E).

Part Examples

(A)
Adding class labels [43], adjusting & removing data [34], adding textual anno-

tations [36], suggesting transformations [44]

(B)
Re-arrange data points [45], dimension loadings [34], term weightings [36],

preparation parameters [35]

(C)

Parameter tuning [43], making model selections [35], building ensemble clas-

sifiers [46], defining constraints in a force-directed layout [36], tree operations

[37]

(D)

Multiple linked views [34, 43], 2D-spatialization with direct interactions [36, 45],

pre-built ML variants [35], tree-visualizations [37], (confusion) matrix [34, 37,

46], browsing visualizations [47]

(E)
Responsive visualization updates [34, 35, 37, 36, 45], ML workflow design [48],

measuring interaction quality [42]

5. Human-Centered Machine Learning Loop

In this section, we focus more closely on the analyst’s feedback loop, described as an iterative

cycle of Executions and Evaluations (shown in Figure 3-E and in more detail in Figure 5). This

loop “connects” an analysis system and an analyst whose ability to provide feedback depends on390

individual factors, as well as the visual interfaces of the system. We will outline individual human

factors of the analyst, and elaborate on potential stages of action in more detail (Figure 5-left).

Subsequently, we enumerate several analysis scenarios to illustrate types of feedback that can be

provided by an analyst (Figure 5-right).

5.1. Stages of Action395

We adopt Norman’s Stages of Action [24] to distinguish two phases within the human-in-the-

loop model, shown in Figure 5. This model describes the interplay and collaboration between the

system and the analyst. While the previous section described details of the analysis system, we

now shift our focus to the analyst, and describe the phases of Execution and Evaluation in more

details.400

17



Figure 5: Human-centered ML process loop shown in more detail. The loop reveals important characteristics of

analytic activity; the right hand side shows different analysis scenarios.

The Analyst. The analyst forms goals based on individual prior knowledge, and assumptions

about the data/visual interface. The ability of analysts to provide feedback depends on factors

such as technical competence (e.g., expertise in data analysis, ML, mathematics, statistics, or visu-

alization) and application domain knowledge (e.g., biology, business, digital humanities, or sports).

Analysts may have highly diverse backgrounds and therefore varying level of skills and related ca-405

pabilities. Consequently, they may provide different kinds of feedback and “take on different roles”.

Typically, data scientists, such as ML experts with strong mathematical skills, can train specialized

ML models and techniques, but may miss significant anomalies in data generation or collection.

Conversely, domain experts may be very aware of these details, but overlook important properties

of models they might approach as off-the-shelf black boxes. To overcome this, in interdisciplinary410

research, ML experts, visualization experts, and data owners usually work in collaborative teams.

In this case, visualization provides a common platform for communication. These differences and

gaps between different types of users can be addressed by a Liaison, a person sharing language

and knowledge from the application domain and from the visualization domain, with the goal of

mediating communication issues [49].415

Execution. Applying Norman’s Stages of Execution to our interactive ML setting (1) the inten-

tions to act may be based on assumptions about the ML model or the data at hand, (2) the sequence

of actions describes the different ML pipeline adaptions, and (3) the actual execution is realized

through the visual interface (or visualization) and heavily depends on its usability. As pointed
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out in the previous paragraph, analysts usually need user interfaces tailored to their individual420

capabilities. Visual metaphors and actions (e.g., moving points, or providing labels) need to be ac-

cessible and familiar. Command line interfaces and specific parameters are often operable for data

scientists, however application domain experts often expect simple and intuitive user interfaces to

provide feedback. Note that the visual interactions should faithfully reflect and translate the ana-

lysts assumptions to ML pipeline adaptions. If the analyst is not able to perform a desired action425

(e.g., because of poor usability of the user interface) there is a gap between human and machine,

also known as “gulf of execution” [24].

Evaluation. Before the analyst is enabled to provide (further) feedback, he/she has to Evaluate

the current state of the system. In our described VA/ML pipeline, changes made by the analyst

or feedback given by the analyst (should) cause (1) observable reactions in the analysis system.430

These observations—in our context usually represented as visual patterns (e.g., groups, sequences,

outliers)—have to be (2) interpreted by the analyst who can leverage his/her domain knowledge.

Finally, the analyst has to (3) validate and verify the derived insights according to previous goals

and assumptions. Visual interfaces should therefore allow the analyst to compare different states of

the analysis system, by switching between visualization results before and after the computations.435

Animations and transitions between states or progressive/intermediate ML results may enhance

the interpretability of complex ML models. Design studies have to be conducted in order to “bring

the entire ML pipeline closer” to the domain experts mental models, language, and metaphors

[50]. Interpretability is essential for evaluating the obtained results and also for providing further

feedback in subsequent loops/iterations [51]. Note that misinterpretations may cause poor feedback440

and therefore impair the ML pipeline configuration. This gap between machine and the human is

known as “gulf of evaluation” [24]. Especially in ML when the analyst is presented with a final

result, it is often a challenge to find out “why” the result is not good enough. Several methods may

be combined into complex pipelines, making it hard to assess the quality of the individual blocks.

5.2. Analysis Scenarios445

This section enumerates six analysis scenarios illustrating a variety of strategies and feedback

that can be incorporated in a visual interactive ML setup. Notice that some scenarios overlap,

and can be combined or switched during an analysis session. Specifically, the first two scenarios
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(confirmatory analysis and hypothesis forming) can be seen as higher level analysis goals, in contrast

with the latter four scenarios.450

Confirmatory Analysis. An ML model is built on assumptions about the domain and data at

hand. In an interactive ML session, analysts may make use of different ML types to model and

confirm hypotheses. In this activity, they often correct and refine model parameters to more closely

match their assumptions; they also may need to generate and collect evidence to either verify or

falsify hypotheses [4]. Such evidence may be provided by statistical tests, or by inspecting visual455

patterns generated by a more complex ML algorithm. For example, a grouping of similar obser-

vations can be computed by clustering, or classification. However, analysts also have expectations

about groupings and may need to check whether their assumptions are consistent with the ML

results. In many cases, techniques do not fit “out of the box” and need to be refined by an expert.

Hypothesis Forming. Another analysis goal is to generate, form and refine hypotheses. In this460

case, the analysis is more exploratory, and ML models can be invoked and visualized to get broad

overviews. Several unsupervised ML methods are effective for revealing certain structures that are

otherwise hidden in data (e.g., feature selection, dimensionality reduction, clustering, outlier or

novelty detection). Visualizations support the analyst in spotting patterns that can be investigated

in more detail. Such patterns can be, for example, manifolds, outliers, sequences, clusters, or trends.465

Note that spotting patterns may be the result of pure serendipity during analysis. However, once

a pattern has been spotted, an analyst generally needs to discover “why” the pattern exists, and

consequently forms more concrete hypotheses and may switch to confirmatory analysis.

Confronting ML Results or Structures. In an iterative ML process, the analyst provides feed-

back about results to the ML pipeline. Domain experts, who are able to exploit domain knowledge,470

can effectively adapt ML results if they spot errors within visualizations that do not match their

assumptions or prior knowledge. For example, they can re-organize automatically generated groups

[52] or adjust class labels [53]. Furthermore, parameters or weights can be tuned to adapt ML

structures to focus the analysis on specific features, or to determine the granularity of the ML

algorithms (e.g., the number of clusters desired). Reorganizing points (“declaring distances”) can475

correct distances between specific observations when they are known to the analyst (e.g., [45]).

20



Adapting ML Pipelines. Depending on the data and analysis task at hand, the ML pipeline

may not be “comprehensive” enough and may require reconfiguration to accommodate additional

ML computations or features of the dataset. ML models can be thought of as atomic components

that can be combined and then require some meta-assessment, with the difficulty that validation480

faces combinatorial growth and can become intractable. An ML algorithm could, for example,

require additional pre-processing, specific feature selections and transformations. If ML models

become “too complex” some parts of the ML pipeline may need to be simplified or even removed

(for example, in case of model overfitting).

“What-If”-Analysis. Interactions enable the analyst to experiment with an ML pipeline and485

observe how it reacts to changes or feedback. This may contribute to better understanding of how

the model behaves, even without ML expertise. An example is to investigate how the final ML

results are affected by adapting dimension loadings in a problem of dimensionality reduction (such

as in iPCA [34]). In such a case, the analyst can identify which data items are affected and related

to specific features. The same can be done with manipulating data observations. The analyst may490

examine what happens if a particular observation is present or absent in the data.

Expert Verification. ML models aim to detect structure and patterns in data, such as trends.

However, in a real world use case, patterns have to be cross-checked based on “external” knowledge.

One possibility is to apply the ML model to other external data sources to test whether the pattern

recurs as in a kind of manual validation or test procedure. These data sources may be obtained495

from another database or repository. However, if such data is not available, the domain expert

has to judge whether observed structures or patterns are plausible and useful. In this case, several

domain experts may collaboratively discuss the outcome, or design further experiments.

6. Challenges & Opportunities

On the path toward systems that fully implement the proposed framework, we encounter several500

important research challenges that must be overcome. We identified five relevant challenges at the

intersection of ML and visualization research. We will describe how joint research in these areas

opens up novel opportunities to advance practical data analysis.
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Designing Interaction for ML Adaption. A variety of ML algorithms, offering a broad set

of design options and parameters, have been described in the literature. Yet, we find no generic505

way to interface ML with visualization. Current visual analytics systems are often restricted to

working with a small set of ML techniques and parameters. Furthermore, within current inter-

faces, switching between ML models is likely to disrupt a human’s sense of context in the analysis

process. To address, this, new approaches are needed that support analysts in making sense of

such model changes. In addition, existing examples such as ForceSpire and iPCA nicely illustrate510

how understandable direct interactions can be combined with model changes in a straightforward

manner. Direct manipulation has proven effective and easy-to-learn for accessing computational

tools [25]. It has, however, not been extensively explored in the context of ML so far. Often, ML

models are designed for unique, static configurations, whereas in VA iterative refinement is needed.

Mapping user inputs to more complex algorithmic actions along the entire ML pipeline remains515

an open problem. One key question is how to translate “simple” interactions within the visual

interface to data manipulation, preprocessing, or ML model-adaption operations and combinations

thereof. —Opportunities: Central to our conceptual framework is the idea that the underlying ML

design options and meta-parameters, which usually cannot be optimized automatically, can often

instead be steered by convenient, iterative user interactions. Accessible interactions and smooth520

transitions between different ML models will help analysts to develop intuition or form mental

models [54] about the underlying data, as well as about the function or behavior of complex ML

methods. Consider the case of switching between different ML models: at what point does the sys-

tem realize—from user feedback—that the current ML model might not be the most appropriate

one anymore? It could then suggest an alternative model, and smoothly transition to it. Instead525

of linear projection with PCA, it might, for instance, suggest a more complex nonlinear dimension-

ality reduction method like multidimensional scaling or t-SNE. Continuous model spaces [55, 56]

contribute some preliminary ideas towards such solutions, which are dependent on the ML models’

meta- or hyper-parameters and their interpretability. Further, more general ways to apply and

adapt ML through expert feedback (e.g., labeling or rating) would allow us to take advantage of a530

larger, more powerful set of ML methods. The previous examples demonstrate that there is vast

space for future research, given the great variety of available ML techniques and their associated

parameter spaces. A joint effort from both the ML and VA communities is needed to face this

research challenge.
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Guidance. Another major challenge is to adequately support application domain experts in steer-535

ing the ML pipeline. Analysts can be overwhelmed by the wide range of ML models and parameters,

along with the challenges of working with large data sets. Moreover, analysis problems are often

incompletely defined, and change over time, resulting in a complex analysis process with much

trial-and-error. Consequently, analysts may change, adapt, or switch tasks frequently. While ana-

lysts may bring crucial domain-dependent information to problem-solving, they often lack advanced540

programming skills and statistical expertise, and therefore require assistance and guidance (e.g., by

providing recommendations about operations on data and alternative models.) —Opportunities:

It is important to better understand the tasks, practices, and stumbling blocks of domain experts

(which likely differ from those of visualization or ML experts). Adopting a design study methodol-

ogy is a viable approach towards gaining better understanding of such user characteristics [50] and545

providing appropriate guidance. Furthermore, enhanced measures and tools could point analysts to

interesting data, parameterizations, and ML models through automatic recommendations. While

many measures exist, both depicting data and perceptual characteristics (e.g., [57]), currently it

is not well understood how they can be effectively exploited in interactive analytical processes.

Consider a relevance feedback approach where the learning system retrieves a set of interesting550

visualizations based on iterative user feedback. In each iteration the analyst marks the presented

results either as positive (interesting) or negative (uninteresting) [53]. How could the system detect

if a pattern was spotted and the analysis task changes from overview to detail? Therefore, we

envision the usage of analytic provenance which “captures the interactive exploration process and

the accompanied human reasoning process during sensemaking” [41]. This information could guide555

the analysis process to meet the analysts’ needs, which might be derived from their behavior. In

the VA community, research has been carried out on capturing, visualizing, and reusing analytic

provenance. However, more work is needed on modeling such information to shape or refine the

overall analysis as well as specific ML methods. Doing this is an interesting research problem that

will require expertise from the ML community.560

Measuring Quality & Consistency. In the rich human-in-the-loop analysis process we envision,

it is crucial to ensure both ML model quality and visualization quality. Yet, these two types of quality

assurance do not always align well. For example, in a visual representation of a data embedding,

after dimensionality reduction, there might be a trade-off between preservation of the original data
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structure, and readability of patterns, due to intrinsically high dimensionality. While measures have565

been developed that describe each of these aspects of quality in data analysis (e.g., [55], [56], [57],

and [58]), the challenge is to help analysts to find the right balance between them, so that meaningful

analysis is enhanced. Beyond measuring ML and visualization quality, our framework suggests a

third type of quality assessment, which is the level of consistency between the ML model and the

analyst’s expectations. The goal of data analysis is to extract reliable and relevant knowledge from570

data. Assuming that there exists some “ground truth” to back up such knowledge, it is the goal

of ML and visualization to reveal it with high fidelity. At the same time, the user will have a

priori knowledge and expectations, which in the ideal case should closely match what the analysis

reveals. While an ML model will surely seek to accurately describe the data, essential pieces of

information or context known by analysts may be unavailable to an algorithm. In this case, the set of575

ML assumptions may be incomplete, a challenge often encountered in exploratory data analysis. —

Opportunities: To externalize this missing information, it is important to check consistency between

what the ML model presents and what the analyst expects. If inconsistent, the analyst should either

suspect a problem with the ML model and provide feedback about missing information, or accept

that the expected patterns were not found in the data. If consistent, analysts usually conclude there580

is a confirmation of their expectation. Note, although consistency between human and machine is

desirable, it does not guarantee correct reflection of the underlying ground truth in the data per

se. Currently, consistency checks are often done manually. Automatic methods that systematically

check consistency, highlight inconsistencies and recommend any needed remediation could help.

Joint effort from both ML and VA communities is needed to enhance these measures, especially by585

combining and bridging them.

Handling Uncertainty. There are several stages in our framework where uncertainty might be

dealt with explicitly. Uncertainty may arise from several sources of unreliability or vagueness,

such as data described by probability density descriptions, missing data, or even systematic errors

in modeling. Visualizations themselves can also introduce uncertainty, for example, due to reso-590

lution or contrast effects [59]. In our framework, uncertainty implicitly propagates through the

pipeline and eventually may affect the analyst’s trust-building process [60]. Properly describing,

quantifying, and formally propagating uncertainty in all pipeline stages will be a major challenge

in developing robust, effective tools. —Opportunities: Alternative visualizations can be gener-
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ated and investigated to raise the analyst’s awareness of the sources of uncertainty within the ML595

pipeline. Furthermore, analysts can be supported in (interactively) exploring, understanding and

reducing uncertainty [61]. Better integration of uncertainty measures from data, preprocessing, ML

models, and visualization can be expected to provide a holistic perspective and understanding of

uncertainty. There is much previous work on visualization techniques to display data uncertainty

of spatial data, such as volume or flow visualization [62, 63]. We find less work on uncertainty600

visualization of abstract data, such as high-dimensional data visualization [64]. As abstract data

is typical in ML applications, there is a need for improved uncertainty visualization along the an-

alytical pipeline outlined in our framework. A joint effort by ML and visualization researchers is

needed to handle uncertainty within the entire pipeline.

ML-Vis Interoperability. A final challenge arises because most existing ML algorithms, toolkits605

and libraries were not designed to support interactive visualization. Scalability problems in compu-

tation may cause long delays that impede interaction; parameters may not be adaptable or visible;

and relevant information (e.g., quality measures or internal ML structures) may be inaccessible.

The ability to communicate these types of algorithmic information and to take advantage of them

to construct better user interfaces is often described as “opening the black box” [17]. Especially610

in the case of direct human interactions, it is often difficult to speed up the ML computations

enough to provide the desired responsive behavior of the visualization. Another challenge is to

train ML techniques from interactive inputs, which typically are few in number. —Opportunities:

The visualization community could benefit from ML algorithms and libraries that meet specific

requirements, such as exposing intermediate or progressive results, and providing meaningful and615

interpretable parameters or handles to integrate them with interactive visualizations. Additional

information, such as model structures, preprocessings, and quality information can be visualized.

Recently, novel VA systems have been described that provide approximated or progressive com-

putations with interactive and steerable visualizations (e.g., progressive t-SNE [65] or progressive

PCA [66]). These examples suggest considerable potential for an expanded, generalized integra-620

tion of ML with visualization. In summary, both communities could gain much from library and

framework designs informed by the requirements of both interactive visualization and ML.
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7. Conclusions

We propose a framework that characterizes important forms of interaction that are possible with

ML components in a VA process. In general, such interaction offers considerable potential for im-625

proved support of ML interpretability, understandability, evaluation and refinement. We found that

a multidisciplinary perspective can bridge the gaps between automated ML methods and human

reasoning. The proposed framework offers a balanced perspective on the design and configuration

of the analytic pipeline, incorporating important aspects of both automated techniques and human

interaction. Of course, current VA tools and ML components pose many interesting challenges for630

future work at the intersection of visualization and ML. To address these challenges, closer collab-

oration between ML and visualization researchers will be vital.

The conceptual framework proposed in this report was developed over a period of 1.5 years. During

this process, this framework was iteratively validated and refined, comparing it with previous mod-

els and real-world systems as illustrated in Section 4. By doing this, we were able to verify how well635

the framework fits such models and systems. This process lead to both extending the framework

to add missing features, and summarizing and generalizing common aspects of it across multiple

example systems and existing models. The main benefit was to ground our theoretical framework

in real-world systems and applications.

A full evaluation of any theoretical framework, assessing how useful it will be to others, is beyond640

the scope of a single paper. An effective theoretical model should be expected to stand the test of

time, and to repeatedly demonstrate its validity [67]. It is our hope that empirical evaluations of

future systems and solutions implementing the proposed framework will add evidence to prove its

worth [68]. By guiding researchers and practitioners in the design of novel data analysis solutions,

in the long run its “real” value can be established.645
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