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Abstract. Finding relationships between multiple views of data is essential both
in exploratory analysis and as pre-processing for predictive tasks. A prominent
approach is to apply variants of Canonical Correlation Analysis (CCA), a clas-
sical method seeking correlated components between views. The basic CCA is
restricted to maximizing a simple dependency criterion, correlation, measured di-
rectly between data coordinates. We introduce a new method that finds dependent
subspaces of views directly optimized for the data analysis task of neighbor re-
trieval between multiple views. We optimize mappings for each view such as lin-
ear transformations to maximize cross-view similarity between neighborhoods of
data samples. The criterion arises directly from the well-defined retrieval task, de-
tects nonlinear and local similarities, measures dependency of data relationships
rather than only individual data coordinates, and is related to well understood
measures of information retrieval quality. In experiments the proposed method
outperforms alternatives in preserving cross-view neighborhood similarities, and
yields insights into local dependencies between multiple views.

1 Introduction

Finding dependent subspaces across views (subspaces where some property of data is
statistically related or similar across views) is a common data analysis need, where
Canonical Correlation Analysis (CCA) [10] is a standard unsupervised tool. Prepro-
cessing to find dependent subspaces is useful both for prediction and for analysis: in
predictive tasks, such subspaces help if non-dependent parts of each view may arise
from noise and distortions. In some data analysis tasks, finding the dependent sub-
spaces may itself be the main goal; for example in bioinformatics domains dependency
seeking projections have been used to identify relationships between different views of
cell activity [25, 11]; in signal processing a similar task could be identifying optimal fil-
ters for dependent signals of different nature, e.g., speech and the corresponding tongue
movements of the speakers as in [32].

Methods like CCA maximize simple correlations between data point coordinate fea-
tures across the projected subspaces. However, in many data domains the coordinates
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may not be of main interest but rather the data relationships that they reveal. It is then of
great interest to develop dependency seeking methods that directly focus on the data re-
lationships. For example, consider a database of scientists, defined in one view by their
level of interest in various research topics, and in another view by their level of interest
in various hobbies. In a database like this, finding relationships of people is the common
interest, e.g. to find nearest colleagues for a scientist, having the most similar (neighbor-
ing) research interests; or to find hobby partners having the most similar (neighboring)
hobby interests; the question is then, can we predict the research colleagues from hobby
partners or vice versa? Research topics and hobbies are very dissimilar views, and not
all of their variation will be related, but we can try to find subspaces of research and
hobby interests, so that research neighbors and hobby neighbors are as highly related
as possible in those subspaces.

In this paper we propose a method that solves this task: we present a novel method
for seeking dependent subspaces across multiple views, preserving neighborhood rela-
tionships of data. Our method directly maximizes the between-view similarity of neigh-
borhoods of data samples, a natural measure for similarity of data relationships among
the views. The method detects nonlinear and local dependencies, has strong invariance
properties, is related to an information retrieval task of the analyst, and performs well
in experiments.

Relating data items is one of the main elementary tasks in Shneiderman’s taxon-
omy of tasks in visual data analysis [22]. Our method is optimized for finding related
(neighboring) data items, formulated as optimizing an information retrieval task. In-
formation retrieval of neighbors has been successful as a criterion for dimensionality
reduction [27, 19, 20, 3, 21, 34–36], here we use a similar approach to learn dependent
subspaces of multiple views. Since our method directly serves the task of relating data
items (across views) in Shneiderman’s taxonomy, in this sense it arguably comes closer
to needs of data analysts than maximizing some variant of coordinate correlation.

We find linear projections (linear subspaces) of views. Linear projections have ad-
vantages of simplicity and easy interpretability with respect to original data features.
Even if projections are linear, the dependency criterion we optimize is flexible and de-
tects nonlinear dependencies across views.

We present our method in Section 2, properties and extensions in Section 3, related
work in Section 4, experiments in Section 5, and conclusions in Section 6.

2 Method: Dependent Neighborhoods of Views

Our method finds similar neighborhood relationships between views. We define the
neighborhood relationships and then discuss how to measure their cross-view similarity.
Instead of hard neighborhoods where two points are or are not neighbors, we use more
realistic probabilistic neighborhoods.

Assume there are Ndata input data items, where each item has paired features over
multiple views V = 1, . . . ,Nviews. We consider transformations of each view by a map-
ping fV which is typically a dimensionality reducing transformation to a subspace
of interest; in this paper, for simplicity and interpretability we use linear mappings
fV (xi,V ) = WV xi,V where WV ∈Rdimlow(V )×dimorig(V ) are the to-be-optimized parameters



of the mapping, and dimorig(V ) and dimlow(V ) are the number of dimensions of V and
its subspace respectively.

Probabilistic neighborhood between data items. Consider a particular view (fea-
ture set) V . The most simple representation of a neighborhood around some point i is
the set of other points that are close enough to it, for example all points inside a fixed
radius or a fixed number of nearest points. However, such neighborhoods would be
overly simple: typically analysts would not make a hard binary decision whether some
point should be considered a neighbor of i or not. Instead of hard neighborhoods where
two points are or are not neighbors, we use more realistic probabilistic neighborhoods.
Suppose the analyst is inspecting the other points around i, by looking at the points in
some low-dimensional transformation of view V , and we ask the analyst to choose one
of the other points j as an example neighbor (e.g., in order to pick out that point to
inspect it next). Then each of the other points j has some probability that the analyst
will pick that one, intuitively so that points close-by to i have large probability to get
picked and points far-off from i have low probability. Following this principle, the local
neighborhood of a data item i in any transformation fV of view V can be represented
by the conditional probability distribution pi,V = {pV ( j|i; fV )} over other data items
j 6= i, where pV ( j|i; fV ) tells the probability that data item j is picked as a representative
neighbor of i; that is, the probability that an analyst who inspected item i will next pick
j for inspection. The pV ( j|i; fV ) can be defined in several ways, as a decreasing function
of distance dV (i, j; fV ) between features of data items i and j in view V . Here we define
it by a simple exponential falloff with respect to squared distance of i and j, as

pV ( j|i; fV ) =
exp(−d2

V (i, j; fV )/σ2
i,V )

∑k 6=i exp(−d2
V (i,k; fV )/σ2

i,V )
(1)

where σi,V sets the falloff rate around i in the view. We tried two simple ways to set the
σi,V : one is as a fraction of maximal pairwise distance so

σi,V = σ0 ·max
j,k
‖x j,V −xk,V‖, (2)

or alternatively, set

σi,V =

√
dimlow(V )

dimorig(V )
· mean

j,l∈kNN( j)
{‖xl,V −x j,V‖} (3)

i.e., calculate the average distance between x j,V and its k-th nearest neighbor xl,V , then
give the average a heuristic correction factor

√
dimlow(V )/dimorig(V ) since the average

distance is obtained from the original space yet σi,V is used in a subspace. Other local
choices to e.g. achieve a desired entropy are possible, see [27]. With linear mappings
the probabilities become

pV ( j|i; fV ) =
exp(−‖WV (xi,V −x j,V )‖2/σ2

i,V )

∑k 6=i exp(−‖WV (xi,V −xk,V )‖2/σ2
i,V )

(4)

where the matrix WV defines the subspace of interest for the view and also the distance
metric within the subspace. Our method learns the mapping parameters WV for each
view.



2.1 Comparison of Neighborhoods Across Views

Neighborhoods represented as probability distributions can be compared by difference
measures. We discuss two measures for different purposes, and their information re-
trieval interpretations.

Kullback-Leibler divergence. For two distributions p = {p( j)} and q = {q( j)},
the Kullback-Leibler (KL) divergence is an information-theoretic asymmetric differ-
ence measure defined as

DKL(p,q) = ∑
j

p( j) log
p( j)
q( j)

. (5)

The KL divergence is nonnegative and zero if and only if p = q. Traditionally it is
interpreted to measure the amount of extra coding length needed when coding exam-
ples with codes generated for distribution q when the samples actually come from dis-
tribution p. We treat views symmetrically and compute the symmetrized divergence
(DKL(p,q)+DKL(q, p))/2.

KL divergence is related to an information retrieval criterion: DKL(p,q) is the cost
of misses in information retrieval of neighbors, when neighbors are retrieved using re-
trieval distribution q but they actually follow distribution p. DKL(p,q) is also the cost
of false neighbors when neighbors are retrieved using p but they actually follow q. The
relationships were shown in [27] and used to compare a reduced-dimensional neigh-
borhood to an original one; we use it in a novel way to compare neighborhoods across
(transformed) views of data. The symmetrized divergence is the total cost of both misses
and false neighbors when neighbors following the distribution in one transformed view
are retrieved from the other transformed view with its neighbor distribution.

The value of the KL divergence can depend highly on differences between individ-
ual probabilities p( j) and q( j). A single missed neighbor can yield a high divergence
value: for any index j if p( j)> ε for some ε > 0, DKL(p,q)→ ∞ as q( j)→ 0. In real-
life multi-view data differences between views may be unavoidable, so we prefer a less
strict measure focusing more on overall similarity of neighborhoods than severity of
individual misses. We discuss such a measure below.

Angle cosine. A simple similarity measure between discrete distributions is the
angle cosine between the distributions as vectors, that is,

Cos(p,q) =
∑ j p( j)q( j)√

(∑ j(p( j))2)(∑ j(q( j))2)
,

which can be seen as the Pearson correlation coefficient between elements of p and q; it
is thus a neighborhood correlation—a neighborhood based analogue of the coordinate
correlation cost function of CCA.1 The angle cosine is bounded above and below: it

1 To make the connection exact, typically correlation is computed after substracting the mean
from coordinates; for neighbor distributions of n data items, the mean neighborhood probabil-
ity is the data-independent value 1/(n− 1)2 which can be substracted from each sum term if
an exact analogue to correlation is desired.



has highest value 1 if and only if p = q and lowest value 0 if supports of p and q are
nonoverlapping.

Similarity of neighborhoods by itself is not enough. The KL divergence and angle
cosine (neighborhood correlation) measures only compare similarity of neighborhoods
but not potential usefulness of the found subspaces. In high-dimensional data it is often
possible to find subspaces where neighborhoods are trivially similar. For example, in
data with sparse features it is often possible to find two dimensions where all data is re-
duced to a single value; in such dimensions neighborhood distributions would become
uniform across all data since, hence any two such dimensions appear similar. To avoid
discovering trivial similarities we wish to complement the measures of similarity be-
tween neighborhoods with terms favoring nontrivial (sparse) neighborhoods. A simple
way to prefer sparse neighborhoods is to omit the normalization from neighborhood
correlation, yielding

Sim(p,q) = ∑
j

p( j)q( j) (6)

which is the inner product between the vectors of neighborhood probabilities. Unlike
Cos(p,q), Sim(p,q) favors sparse neighborhoods: it has highest value 1 if and only if
p = q and p( j) = q( j) = 1 for only one element j, and lowest value 0 if the supports of
p and q are nonoverlapping.

The information retrieval interpretation is: Sim(p,q) is a proportional count of true
neighbors from p retrieved from q or vice versa. If p has K neighbors with near-uniform
high probabilities p( j) ≈ 1/K and other neighbors have near-zero probabilities, and
q has L neighbors with high probability q( j) ≈ 1/L, then Sim(p,q) ≈ M/KL where
M is the number of neighbors for which both p and q are high (retrieved true neigh-
bors). Thus Sim(p,q) rewards matching neighborhoods and favors sparse neighbor-
hoods (small K and L). One advantage of this formulation is to avoid matching two
neighborhoods that seem to match only because they are highly uninformative: for ex-
ample if p and q are both uniform over all neighbors, they have the same probability
values and would be “similar” in a naive comparison of probability values, but both are
actually simply uninformative about the choice of neighbors. Sim(p,q) would prefer a
more sparse, more informative match, as desired.

2.2 Final Cost and Optimization Technique

We wish to evaluate similarity of neighborhoods between subspaces of each view, and
optimize the subspaces to maximize the similarity, while favoring subspaces having
sparse (informative) neighborhoods for data items. We then evaluate similarities as
Sim(pi,V , pi,U ) where pi,V = {pV ( j|i; fV )} is the neighborhood distribution around data
item i in the dependent subspace of view V and fV is the mapping (parameters) of the
subspace, and pi,U = {pU ( j|i; fU )} is the corresponding neighborhood distribution in
the dependent subspace of view U having the mapping fU . As the objective function
for finding dependent projections, we sum the above over each pair of views (U,V ) and
over the neighborhoods of each data item i, yielding

C( f1, . . . , fNviews) =
Nviews

∑
V=1

Nviews

∑
U=1,U 6=V

Ndata

∑
i=1

Ndata

∑
j=1, j 6=i

pV ( j|i; fV )pU ( j|i; fU ) (7)



where, in the setting of linear mappings and neighborhoods with Gaussian falloffs, pV is
defined by (4) and is parameterized by the projection matrix WV of the linear mapping.

Optimization. The function C( f1, . . . , fNviews) is a well-defined objective for depen-
dent projections and can be maximized with respect to the projection matrices WV of
each view. We use gradient techniques for optimization, specifically limited memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS). Even with L-BFGS, (7) can be hard to
optimize due to several local optima. To find a good local optimum, we optimize over
L-BFGS rounds with a shrinking added penalty driving the objective away from the
worst local optima during the first rounds; we use the optimum in each round as initial-
ization of the next. For the penalty we use KL divergence based dissimilarity between
neighborhoods, summed over neighborhoods of all data items i and view pairs (U,V ),
giving

CPenalty( f1, . . . , fNviews) =
1
2

Nviews

∑
V=1

Nviews

∑
U=1,U 6=V

Ndata

∑
i=1

(DKL(pi,V , pi,U )+DKL(pi,U , pi,V )) (8)

which is a function of all mapping parameters and can be optimized by L-BFGS; (8)
penalizes severe misses (pairs (i, j) with nonzero neighborhood probability in one view
but near-zero in another) driving the objective away from bad local optima. In practice
KL divergence is too strict about misses; we use two remedies below.

Bounding KL divergence by neighbor distribution smoothing. To bound the KL
divergence, one way is to give the neighbor distributions (1) a positive lower bound.
In the spirit of the well-known Laplace smoothing in statistics, we revise the neighbor
probabilities (1) as

pV ( j|i; fV ) =
exp(−d2

V (i, j; fV )/σ2
i,V )+ ε

∑k 6=i exp(−d2
V (i,k; fV )/σ2

i,V )+(Ndata−1)ε
(9)

where ε > 0 is a small positive number. Without smoothing KL-divergence DKL(pU , pV )
could become unbounded: if there is a pair (i, j) for which pU ( j|i; fU ) is nonzero and
pV ( j|i; fV ) tends to zero, then DKL(pU , pV ) tends to infinity.

With smoothing, it is easy to see pV ( j|i; fV ) ≥ ε/((1+ ε)(Ndata− 1)) and thus the
divergence has an upper bound: we have DKL(pU , pV ) ≤ log(1/min j pV ( j|i; fV )) ≤
log((Ndata− 1)(1+ ε)/ε) where the first inequality arises because probabilities in pU
sum to one, and the second arises from the lower bound of probabilities in pV . We
set ε = 10−6 to give a reasonable upper bound for the KL-divergence. To keep nota-
tions simple, we still denote this smoothed neighbor distribution as pV ( j|i; fV ). To avoid
over-complicated formulation and for consistency, we also use this version of neighbor
probabilities in our objective function (7), even though the value of the objective is
bounded by itself. We simply set ε = 10−6 which empirically works well.

Shrinking the penalty. Even with bounded KL divergence, optimization stages
need different amounts of penalty. At end of optimization, nearly no penalty is pre-
ferred, as views may not fully agree even with the best mapping. We shrink the penalty
during optimization; the objective becomes

CTotal( f1, . . . , fNviews) =C( f1, . . . , fNviews)− γ CPenalty( f1, . . . , fNviews) (10)



where γ controls the penalty. We initially set γ so the two parts of the objective func-
tion are equal for the initial mappings, C( f1, . . . , fNviews) = γ CPenalty( f1, . . . , fNviews), and
multiply γ by a small factor at the start of each L-BFGS round to yield exponential
shrinkage. The initial γ should be set as a tradeoff, sufficiently large to penalize bad
local optima at the start of optimization while avoiding overpenalization of potential
useful optima near the end of optimization. We set γ = 0.9 based on our internal exper-
iments.

Time complexity. We calculate the neighbor distributions for all views, and opti-
mize the objective function involving each pairs of views, thus the naive implementation
takes O(dN2

dataN2
views) time, with d the maximal dimensionality among views. Acceler-

ation techniques [34, 26, 29] from neighbor embedding could be adopted to reduce time
complexity of a single view from O(N2

data) to O(Ndata logNdata) or even O(Ndata). But
scalability is not our first concern in this paper, so we use the naive O(N2

data) implemen-
tation for calculating the neighbor distributions for each view involved.

On the other hand, L-BFGS in practice has similar or better performance than
BFGS, which has been shown to have a fast superlinear convergence rate as a quasi-
Newton method, given the Hessian matrix is Lipschitz continuous near a minimizer
[18].

3 Properties of the Method and Extensions

Information retrieval. Our objective measures success in a neighbor retrieval task of
the analyst: we maximize count of retrieved true neighbors across views, and penalize
by severity of misses.
Invariances. For any subspace of any view, (1) and (4) depend only on pairwise dis-
tances and are thus invariant to global translation, rotation, and mirroring of data in that
subspace. The cost is then invariant to differences of global translation, rotation, and
mirroring between views and finds view dependencies despite such differences. If in
any subspace the data has isolated subsets (where data pairs from different subsets have
zero neighbor probability) invariance holds for local translation/rotation/mirroring of
the subsets as long as they preserve the isolation.
Dependency is measured between whole subspaces. Unlike CCA where each canon-
ical component of one view has a particular correlated pair in the other view, we max-
imize dependency with respect to the entire subspaces (transformed representations)
of each view, as neighborhoods of data depend on all coordinates within the depen-
dent subspace. Our method thus takes into account within-view feature dependencies
when measuring dependency. Moreover, dependent subspaces do not need to be same-
dimensional, and in some views we can choose not to reduce dimensionality but to learn
a metric (full-rank linear transformation).
Finding dependent neighborhoods between feature-based views and views exter-
nal neighborhoods. In some domains, some data views may directly provide neigh-
borhood relationships or similarities between data items, e.g., friendships in a social
network, followerships in Twitter, or citations between scientific papers. Such relation-
ships or similarities can be used in place of the feature-based neighborhood probabili-
ties pV ( j|i; fV ) above. This shows an interesting similarity to a method [19] used to find



similarities of one view to an external neighborhood definition; our method contains
this task as one special case.
Other falloffs. Exponential falloff in (1) and (4) can be replaced with other forms like
t-distributed neighborhoods [16]. Such replacement preserves the invariances.
Other transformations. Our criterion is extensible to nonlinear transformations in fu-
ture work; replace linear projections by another parametric form, e.g. neural networks,
optimize (10) with respect to its parameters; the transformation can be chosen on a
view-by-view basis. Optimization difficulty of transformations varies; the best form of
nonlinear transformation is outside the paper scope.

4 Related Work

In general, multi-view learning [33] denotes learning models by leveraging multiple po-
tentially dependent data views; such models could be built either for unsupervised tasks
based on the features in the views or for supervised tasks that involve additional anno-
tations like categories of samples (e.g. [9]). Multi-view learning often assumes paired
data items across views, unlike multi-task learning (e.g. [14, 15, 6, 5]) where usually
only underlying statistical trends are shared across data sets. In this paper we con-
centrate on unsupervised multi-view learning, and our prediction tasks of interest are
predicting neighbors across views.

The standard Canonical Correlation Analysis (CCA) [10] iteratively finds compo-
nent pairs maximizing correlation between data points in the projected subspaces. Such
correlation is a simple restricted measure of linear and global dependency. To mea-
sure dependency in a more flexible way and handle nonlinear local dependency, linear
and nonlinear CCA variants have been proposed: Local CCA (LCCA) [31] seeks lin-
ear projections for local patches in both views that maximize correlation locally, and
aligns local projections into a global nonlinear projection; its variant Linear Local CCA
(LLCCA) finds a linear approximation for the global nonlinear projection; Locality Pre-
serving CCA (LPCCA) [24] maximizes reweighted correlation between data coordinate
differences in both views. In experiments we compare to the well known traditional
CCA and LPCCA as an example of recent state of the art.

As a more general framework, Canonical Divergence Analysis [17] minimizes a
general divergence between distributions of data coordinates in the projected subspace.

The methods mentioned above work on data coordinates in the original spaces.
There are also nonlinear CCA variants [12, 2, 28, 1, 30, 8] for detecting nonlinear de-
pendency between multiple views. Although some variants above are locality-aware,
they introduce locality from the original space before maximizing correlation or other
similarity measures in the low-dimensional subspaces. Since locality in the original
space may not reflect locality in the subspaces due to noise or distortions, such criteria
may not be suited for finding local dependencies in subspaces.

The CODE method [7] creates an embedding of co-occurrence data of pairs of origi-
nal categorical variables, mapping both variables into a shared space. Our method is not
restricted to categorical inputs – its main applicability is to high-dimensional vectorial
data, with several other advantages. In contrast to CODE, we find dependent subspaces
(mappings) from multiple high-dimensional real-valued data views. Instead of restrict-



ing to a single mapping space we find several mappings, one from each view, which do
not need to go into the same space; our output spaces can even be different dimensional
for each view. Unlike CODE our method is not restricted to maximizing coordinate sim-
ilarity: we only need to make neighborhoods similar which is more invariant to various
transformations.

The above methods and several in [33] all maximize correlation or alternative de-
pendency measures between data coordinates across views. As we pointed out, in many
domains coordinates are not of main interest but rather the data relationships they re-
veal; we consider neighborhood relationships and our method directly finds subspaces
having similar neighborhoods.

5 Experiments

We demonstrate our method on artificial data with multiple dependent groups between
views, and three real data sets: a variant of MNIST digits [13], video data, and stock
prices. In this paper we restrict our method to find linear subspaces, important in many
applications for interpretability, and compare with two prominent linear subspace meth-
ods for multiple views, CCA and LPCCA. To our knowledge, no other information re-
trieval based approaches for finding linear subspaces is known up to the time when we
did the experiment. Future work could compare methods for nonlinear mappings [33]
to variants of ours for the same mapping; we do not focus on the mapping choice, and
focus on showing the benefit or our neighborhood based objective.

On the artificial data set, we measure performance by correspondence between
found projections and the ground truth. On the real data we use mean precision-mean
recall curves, a natural performance measure for information retrieval tasks, and a mea-
sure for dependency as argued in Section 2.

Experiment on artificial data sets. We generate an artificial data set with 2 views
with multiple dependent groups in each pair of corresponding dimensions as follows.
Denote view V (∈ {1,2}) as X (V ) ∈ R5×1000, and its i-th dimension as X (V )

i . For each i,
we divide the 1000 data points in that dimension into 20 groups {gi j}20

j=1 with 50 data

points each. For each gi j and view V , we let x̂(V )
i jk , Fi jm

(V )
i j + εi jk (1 ≤ k ≤ 50), with

m(V )
i j ∼N (0,5), εi jk ∼U [−0.5,0.5] and Fi j ∈ {−1,1} a random variable allowing pos-

itive or negative correlation inside the group. We assemble x̂(V )
i jk into X̂ (V ) ∈R5×1000, and

randomly permute entries of X̂ (1)
i and X̂ (2)

i in the same way but differently for different
i, to ensure cross-dimension independency. Lastly we perform a PCA between X̂ (1)

i and
X̂ (2)

i for each i, to remove cross-dimension correlation. We assemble the resulting X (V )
i

into X (V ).
We use the neighborhood falloff as in (2) with σ0 = 0.05, and pursue 2 transfor-

mations mapping from the 5D original space to a 1D latent space for each of the two
views. Ground truth projections for both views will then be W (i) = (δi j)

5
j=1 ∈ R1×5.

Results are in Fig. 1: compared with CCA, our method successfully finds one of the
ground truth transformations (e.g., the 5th one), despite mirroring and scale, recovering
the between-view dependency.
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Fig. 1: Result for artificial data with dependent groups. Left to right: one of the ground
truths; 1D subspace pair recovered by our method; 1D subspace pair recovered by CCA.
Our method recovers the dependency between views in the 5th dimension despite mir-
roring and scale differences; CCA fails to do so.

Our method CCA LPCCA

Mean 1.00 0.51 0.51
Std 0.00 0.043 0.043

Table 1: Means and standard deviations of the correspondence measure (11); our
method outperforms CCA and LPCCA, recovering the dependency in all artificial data
sets.

We measure performance by correspondence between the found projections and the
ground truth transformation: let W1,W2 ∈R1×5 be projections found by a method, define

Corr(W1,W2) = max
i

1
2

(
|W (i)W T

1 |
‖W1‖2

+
|W (i)W T

2 |
‖W2‖2

)
(11)

as the correspondence score. High score means good match between the found pro-
jections and ground truth. We repeat the experiment calculating correspondence on 20
artificial data sets generated in the same way. The table in Figure 1 summarizes the
statistics. Our method outperforms CCA and LPCCA (with k = 5), finding the depen-
dency on all 20 data sets.

Experiment on real data sets with two views. We show our method helps match
neighbors between the subspaces of two views after transformation. We use the follow-
ing 3 data sets.

MNIST handwritten digit database (MNIST). MNIST contains 70000 gray-scale
hand-written digit images of size 28×28. We create a training set and a testing set with
2000 images each. In the training set, we randomly choose 200 images from each digit
to balance the distribution, while the testing set is another 2000 random images without
balancing. We apply nonlinear dimensionality algorithm on both the left half and the
right half of the images to create the two views to simulate a scenario where views have
nonlinear dependency; we use Neighbor Retrieval Visualizer (NeRV) [27] embedding



to 5 dimensions with λ = 0.1 and λ = 0.9 respectively. The experiment is repeated 17
times, covering 68000 images.

Image patches from video (Video). We take image patches from a subset of frames in
a video (db.tt/rcAS5tII). Starting from frame 50, we take 5 consecutive frames
as a short clip at every 50 frames until frame 5200, then create two views from im-
age patches in two fixed rectangles in those frames, rect1 = [800,900]× [250,350] and
rect2 = [1820,1920]× [800,900]. We measure 5-fold cross-validation performance after
randomly permuting the clips.

Stock prices (Stock), from Kaggle competition “Winton stock market challenge”
(goo.gl/eqdhKK). It contains prices of a stock at different times. We split the time
series in the given training set into two halves, and let view 1 be the amplitudes from
the Fourier transform results of the first half, and view 2 be the phases from the Fourier
transform results of the second half.

For each data set we seek a pair of transformations onto 2D subspaces for the views.
We measure performance by mean precision-mean recall curves of neighbor retrieval
between 1) the two subspaces from the transformations, and 2) one of the original views
and the subspace from the transformation for the other view. The better the performance
is, the more to the top (better mean precision) and right (better mean recall) the curve
will be in the figure. We set the neighborhood falloff as in (3) with k = 5, and the
number of neighbors in the ground truth as 5 for MNIST and Stock, 4 for Video, and
let the number of retrieved neighbors vary from 1 to 10 as we focus on the performance
of the matching for the nearest neighbors. We compare the performance with CCA and
LPCCA. Figure 2 (column 1–3) shows the results.

We now show our method can find dependent subspaces for multiple (more than
two) views. The task can be particularly essential to bioinformatics since it is shown
that “no single inference method performs optimally across all datasets” [4]. In this
experiment we use Cell-Cycle data with five views. The views are from different mea-
surements of cell cycle-regulated gene expression for the same set of 5670 genes [23].
We preprocess data as in [25] with an extra feature normalization step. We seek five
two-dimensional subspaces from the five views, comparing to the PCA baseline with
2 components. We again use mean precision-mean recalls curves as the performance
measure, additionally average the curves across the 10 view pairs or view-transformed
coordinate pairs, besides averaging over the five repetitions in 5-fold cross-validation.
Figure 2 (column 4) shows we outperform the baseline.

Finding subspaces with different dimensions. We show our method can find de-
pendent subspaces with different dimensions. We create three two-dimensional Lis-
sajous curves Lk(t)= (cos

√
2k−1t +2π(k−1)/3, cos

√
2kt+2π(k−1)/3), k= 1,2,3.

We create the first view X (1) ∈ R6×1000 as X (1)
1,1:1000 = (0, · · · ,999) and X (1)

d≥2,1:1000
i.i.d∼

N (0,1), and the second view X (2) ∈ R6×1000 as the concatenation of the coordinates
in the Lissajous curves. We seek a one-dimensional subspace from X (1), and a two-
dimensional subspace from X (2); the aim is to find the nonlinear dependency between
one-dimensional timestamps, and a two-dimensional representation for the three trajec-
tories summarizing the two-dimensional movements of the three points along Lissajous
curves. Figure 3 shows the Lissajous curves, found subspaces, and optimized projection
pair. Our method successfully finds the informative feature in X (1), and keeps trans-
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Fig. 2: Mean precision-mean recalls curves from different real data on the test sets. Left
column: view 1 as the ground truth; right column: subspace from view 1 as the ground
truth. We can see curves from our method are to the top and/or right of the curves from
other methods in most parts of all sub-figures, meaning our method achieves better
precision and recall on average. Row 1–3: our method outperforms CCA and LPCCA;
Row 4: our method outperforms PCA.
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Fig. 3: Lissajous curves (a) and the found subspaces from our method. (b) – (d) show
we find the correct dependency: (b): perfect linear correlation shows the time dimension
was found. (c): the number of “quick turns” (14 in total) in the smooth curves roughly
matches that in the original curves. (d): projection weights, darker color means smaller
magnitude; high magnitude of W(1)’s first entry and the complementary pattern in W(2)

suggest we capture the dependency correctly.

formed coordinates of X (2) smooth, with roughly the same amount of “quick turns” as
in original Lissajous curves. The magnitudes in the optimized projections also suggest
they capture the correct dependency.

6 Conclusions

We presented a novel method for seeking dependent subspaces across multiple views,
preserving neighborhood relationships of data. It has strong invariance properties, de-
tects nonlinear dependencies, is related to an information retrieval task of the analyst,
and performs well in experiments. Potential future work includes further evaluation
across a range of data domains, dimensionalities, and case studies.
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