
Adoption of requirements engineering methods in game
development: A literature and postmortem analysis

Miikka Lehtonen[0000−0002−1957−4173], Chien Lu[0000−0002−3143−4202], Timo
Nummenmaa[0000−0002−9896−0338], and Jaakko Peltonen[0000−0003−3485−8585]

Tampere University, Tampere, Finland
{miikka.lehtonen, chien.lu, timo.nummenmaa, jaakko.peltonen}@tuni.fi

Abstract. As the game industry continues to grow in size and revenue, the cost
of creating games increases as well, and the successful outcome of game develop-
ment projects becomes ever more important. In traditional software engineering,
it is generally agreed that a successful requirements engineering process has a
significant impact on the project. In game development, requirements engineering
methods do not seem to be commonly used. As the development of digital games
includes specialized aspects of software development, it seems likely that game
developers could benefit from adopting these techniques and processes. In this
paper, a thorough reading of central and current academic research on the topic
is performed to form a holistic picture of the central issues and problems pre-
venting the adoption and widespread use of requirements engineering processes
and methods in game development. Additionally, algorithmic analysis of 340
post-mortems written by game developers and published on industry websites
is conducted. These post-mortems discuss the factors which contributed to or
hindered the successful outcome of these game development projects, and the
analysis further supports the identified central issues.

Keywords: Requirements engineering, game development, postmortem analysis, text
mining, literature analysis

1 Introduction

Requirements engineering is a process for handling hardware and software requirements
that has been a part of software development for decades, and much has been written
on its applications in various domains. One definition for requirements engineering
by Hull et al. [7] is “the subset of systems engineering concerned with discovering,
developing, tracing, analyzing, qualifying, communicating and managing requirements
that define the system at successive levels of abstraction”. Digital game development
is no exception. As game development is a specialized form of software development,
it logically follows that at least some portions of requirements engineering could be
applied to the game development process. Several articles and papers have been written
on this topic, presenting problems, limitations and concerns which need to be addressed
if such an attempt were to be successful.

2 Miikka Lehtonen, Chien Lu, Timo Nummenmaa, and Jaakko Peltonen

Academic research on the topic covers a wide spectrum from purely theoretical
academic works to research focusing on the developers and their practices and concerns
through questionnaires and interviews (e.g., [11,9,12,20]). This study aims to form a
holistic picture of this current research, and to tie together knowledge from multiple
sources to discover and present central problems and limitations. To verify the validity of
these problems and limitations, 340 developer-written post-mortems were analyzed. Post-
mortems are a common industry practice where developers reflect on completed software
development projects and bring up problems, concerns and issues which affected the
outcome of the project, either positively or negatively.

The research questions of this study are (1) Based on a reading of current academic
research on the topic, can central problems, concerns and issues be identified? (2) Can
these findings be supported by analysing developer-written post-mortems? The 340
post-mortems were analyzed algorithmically to determine whether keywords related to
the discovered problems appear in them. In addition, a word correlation analysis was
conducted to determine the contexts these keywords might be used in. Our analysis
assesses if the problems related to these concepts and keywords are common in the
industry, as the expectation was that if game developers are frequently encountering
these issues and problems, they would also mention them as contributing factors in
post-mortems.

2 Game development from a software development perspective

In the year 2018 the video games industry was bigger than ever. According to a report
by Newzoo [15], there are over 2.3 billion video game players across the world. The
games industry is expected to generate over 108 billion dollars in revenue, representing
a growth of 7.8% from 2016 [15]. This growth industry contains innumerable game
development studios ranging from lone developers to small companies and large multina-
tional corporations. According to the Entertainment Software Association’s 2017 report
on the American video game industry [2], in 2016 there were over 2450 active game
companies in the United States alone. Among those, 99.7% of them are qualified as small
businesses, meaning they have under 250 employees and less than $7.5 million in annual
revenue. Similar numbers have been reported elsewhere in the world, as according to
the UK Interactive Entertainment Association (UKIE), there were 2261 active game
companies in the United Kingdom as of June 2018 [25].

These thousands of game developers are working on varied games ranging from huge
titles with budgets in the hundreds of millions to eSports titles, mobile games, small
independent projects and everything in between. Game development presents a unique
challenge from a software development perspective. Contrary to the more disciplined and
theory driven world of traditional software development, games development is a more
fractured landscape. Whereas large corporations such as Electronic Arts or Activision,
or even larger independent developers, might adhere to traditional software development
roles and practices – agile methodologies and Scrum being particularly popular in game
development – for smaller independent studios development is probably less regimented
and more free form [13].

Adoption of requirements engineering methods in game development 3

Games as a form of software development also have several other unique characteris-
tics. As an example, whereas traditional software engineering teams consist of software
developers of various disciplines, a game development project will usually have the
normal complement of software developers, but additionally artists, writers and other
purely creative people. These disciplines do not often share a vocabulary and might differ
widely in their needs, methods and work flows. Yet all these disciplines need to find
common ground if the project is to succeed. Additionally, these highly multi-disciplinary
teams seek to create software which philosophically differs greatly from traditional
software. Traditional software development projects aim to create solutions to discrete
problems, whereas games are mass-marketed products aimed to entertain and prompt
emotional responses [9].

From this it follows that the models and theories which drive traditional software
development projects might not be directly and fully applicable to game development.
This is also true for requirements engineering.

3 Requirements engineering in game development literature

Requirements engineering is a collection of different phases, processes and method-
ologies, which seek to take in information from a variety of sources and transform it
into concrete requirements; singular and unambiguous physical or functional needs that
the product or service must be able to meet. Together, these requirements form the
specification of the project, essentially the blueprint the engineers can design according
to and refer to when there is ambiguity [6]. While requirements engineering in traditional
software development is a heavily covered field with academic publications, books, mag-
azines and even conferences dedicated to the subject, this is not the case for requirements
engineering as part of the game development process. We performed a literature survey
to map the current state of academic writing on requirements engineering and game
development. Our approach uses elements of the systematic literature review process
used in previous studies [1,16]. However, the search was executed specifically in order
for the results to be used as background information for our postmortem analysis, and to
be contrasted with the data-driven analysis of postmortems.

3.1 Survey process

Academic search engines such as Google Scholar and the library search engine of the
University of Tampere were utilized. The latter allowed access to various digital libraries,
which further widened the field of possible results. The goal of these searches was to
discover peer reviewed articles, academic publications, conference proceedings and
published books which dealt with games development and requirements engineering.
No specific time constraints were placed on the results. Software development is a fast
moving field, which means that some of the older findings might be outdated. However,
they could also reveal newer research which builds upon their findings or expands it.
Initial searches were performed using the search term "game development" together with
the terms "requirement", "requirements engineering", "formal specification", "methods"
and "processes", both in singular and plural forms, and with wildcards.

4 Miikka Lehtonen, Chien Lu, Timo Nummenmaa, and Jaakko Peltonen

Together, these searches produced a pool of over 16 000 results. As is to be expected
with such broad search terms, most of these results were either marginally related to
the actual research question, or not at all related. Even after discarding most of the
less applicable results, the pool still contained several hundred articles which might be
tangentially related to the research questions. At this point any articles with titles or
abstracts which seemed promising were stored in a separate list to be more carefully
examined later.

As this list of promising articles was read and processed, references to new papers
which seemed relevant to the topic were noted down and added to the list, as were
author names who had written relevant works. They were then read, and the process was
repeated. In this recursive process new papers that were much more relevant to the topic
than those found in the initial search process were discovered, and most of the actual
sources used in the literature survey came from this phase of the process.

3.2 Overall findings from the literature survey

Based on this study, the state of research on the topic proved to be rather healthy, if
not comprehensive. There is certainly a larger volume of research than anticipated,
and requirements engineering proved to be a central topic: as of 2014, 39% of papers
submitted on the topic dealt with requirements engineering in some way [3]. This does
not mean there are no gaps to be found in current research.

Whereas traditional software development and its issues are a topic of some 40+
years of discussion, the same is not true for games. It is generally accepted that there
are similarities and unique factors between the two areas. In recent years more studies
have been conducted as to what actual problems game developers are facing, which is
a crucial area of research [11,9,12,20]. However, concrete solutions and suggestions
are still few and far between: one notable problem area is that many articles bring up
problems in processes and methods, but rarely offer any concrete suggestions beyond
vague calls to adapt best practices from the world of traditional software engineering.
Due to the central differences between traditional software development and games
development, this adaptation would have to be handled with care and consideration, so
academic research on the topic would be beneficial.

We found that a central type of data used for the research was developer interviews
and surveys, however, as an alternative data source Petrillo and Pimenta [19] explored
post-mortems published on Gamasutra, an industry-focused website by developers for
developers. Developer communication in post-mortems can be a useful complementary
information source and we will use it ourselves later in this paper.

Studies, such as those conducted by Kasurinen et al. [11,9,12] have been conducted
on industry practices among various groups of developers. They highlight issues devel-
opers grapple with, as well as the methods and practices used to deal with these issues.
Kasurinen’s large scale surveys and interviews among Finnish industry professionals
found that there are several similarities, but also meaningful differences which mean that
traditional software development methods and lines of thinking will not apply directly.

We identified four key problems, which we introduce below and will discuss in more
detail in separate subsections. The first of these deals with the incompability of the
game design document and the requirements document. Kanode and Haddad [10] talk

Adoption of requirements engineering methods in game development 5

about an important topic, the game design document. In game development, the game
design document is a repository of information about the game. It details the setting,
plot, gameplay, characters and themes of the game. It is not a formal document, and as
such is poorly suited for actual software development. However, the findings of Kanode
and Haddad seem contrary to evidence presented in other papers: they suggest that a
game designer needs to capture all the requirements from a game design document
before the actual production work on the game can begin. Callele et al. [4] counter
this by stating that translating this informal document into something resembling a
requirements document is a massive and complicated process. Even a short, simple
gameplay description in the game design document can generate dozens of pages of
requirements, and even more problematically generating those requirements requires
unrealistically strong and specialized domain knowledge in many fields. Callele et
al. [4] have studied this issue through analyzing real-life game design documentation,
discussions with actual game developers and observing actual development processes.
They conclude that this transition from pre-production to production (taking informal
and often very casual documentation, turning it into a formal document suitable for
development, and then beginning to realize the vision outlined in that document) is one
of the biggest problems in game development and alone responsible for many project
failures.

Another common theme in the discussion of requirements engineering and games is
the unique nature of requirements in games. Traditional software development places a
heavy emphasis on functional requirements (i.e. concrete features in a project), whereas
in game development these are almost standardized among games of the same genre.
Instead, the differences between games come largely from non-functional requirements,
which play a heavier role. Of special interest are so called affective, or emotional
requirements [4]. Games are intended to prompt emotional responses in their players,
and these should also be modelled through requirements engineering. However, the tools
and techniques to do so are still in their infancy.

As a third problem, Kasurinen et al. [11,9,12] point out that whereas change to the
original specification is something needs to be very carefully managed in traditional
software development, in game development changes through iteration are a desired
outcome. As the developers try to “find the fun”, i.e. create the combination of gameplay
and features which makes the game fun, they must be prepared to make even drastic
changes late in the project. We will discuss the issue of iteration, scope, and change
management in more detail in a later subsection. Based on these findings, Kasurinen [11]
concludes that while some common traditional software development methods such as
Scrum can very easily work with game development, others are not so easily compatible
and need special consideration.

As a fourth problem, the literature also suggests [13,14] that currently game develop-
ers do not make widespread use of formal, theory-based methods and processes. At the
same time there is evidence to for the presence of problems traditionally thought to be
fixed by these methods and processes, which suggests that developers could benefit from
a less informal development process. [20].

Based on this literature survey, several key concerns and problems were identified,
which will be analyzed and discussed in more detail in the following section.

6 Miikka Lehtonen, Chien Lu, Timo Nummenmaa, and Jaakko Peltonen

4 Key differences between game developers and traditional
software developers

Game development and traditional software development methods and tools, for in-
stance requirements engineering, are not fundamentally incompatible. There is evidence
that game developers make use of these methods, and get benefits from them [9].

That being said, there do seem to exist some fundamental differences and problems,
which make adapting these traditional processes and methods to game development
difficult. Game developers do seem to suffer from many problems which could be
alleviated or eliminated through better requirements engineering processes and methods.
For example, in post-mortems published on Gamasutra.com, game developers cite factors
such as “inadequate planning”, “underestimating the scope of tasks” and a schedule that
was “too aggressive” [4] as aspects of the project which went wrong and hindered them.

It is worth noting that these findings are not universal. Game development is a
wildly varied field, with studios ranging from one-person teams to massive international
companies. Many developers, especially larger companies, tend to regard their methods
and practices as trade secrets and are not open to discussing them with journalists or
academics. Despite this, from merely reading recruitment posts and requirements for
open positions, it is clear that at least larger companies do value degrees and formal
training when seeking to hire developers.

It is also worth noting that these issues are heavily linked and could also be thought
of as different aspects of the same problem. After all, any differentiation between “a lack
of formal processes and methods” and “poor change control” is going to be somewhat
arbitrary, as the latter could easily be considered a part of the former.

What, then, could be some of these key differences that need to be considered, and
key problems that need to be overcome?
4.1 The incompatibility of the game design document and requirements

engineering documentation

In traditional software engineering projects which utilize requirements engineering
methods and processes, a common guideline for the design work is the requirement
documentation. It is essentially the blueprint against which the product and its features
are compared for specifications and verification.

In game development, a similar role is played by the game design document [4].
While its contents and size vary from team to team and project to project, commonly
it includes descriptions for plot, characters and events as well as gameplay mechanics,
puzzles and so on. Much like the requirement document, the game design document is
often created during pre-production [4].

While these two documents share a similar role, they are not stylistically equal or
even similar. A game design document is usually more free form and written in natural
language [4]. Since it is the primary design document for game development, it has been
proposed that the game design document would also be a major source for requirements
[4,10]. This is logically sound, after all if the document contains descriptions of gameplay

Adoption of requirements engineering methods in game development 7

mechanics and elements, it stands to reason that requirements could be generated from
these descriptions. In fact, some have gone as far as stating that all of the game design
document should be captured as requirements before production should start [10].

Evidence has shown this to be an unrealistic expectation, however. Even a single
paragraph length description of a game design element from the game design document
could produce several pages of requirements. Even worse, many of these requirements
are merely implied, and capturing them requires high level domain knowledge in game
design, genre conventions, technical matters and many other fields [4]. A skilled and
experienced game developer will be able to pick up on some of these cues and impli-
cations, depending on how well versed they are in the different disciplines of game
development (e.g. programming, art and sound design, writing), their team’s own culture,
the capabilities, features and limitations of the game engine the team is using, and the
genre of the game they are working on.

Expecting this kind of expertise from a single person is unrealistic, as is the expecta-
tion of being able to generate good requirements based on heavily implicational natural
language. The latter half of the problem could possibly be alleviated by employing
technical writers, who are skilled in writing precise and unambiguous language, but they
would probably not have the required domain knowledge. The common feeling is that it
is “easier to do it myself than to explain it to someone else” [4] which may be true, but
does not help eliminate the problem.

Even if suitable candidates could be found, or if the job of capturing the implied
requirements were divided among a versatile group of skilled developers, the process
would be extremely time consuming. Game development projects are usually executed
under extremely tight, publisher-driven deadlines, and extending the pre-production
phase to accommodate a lengthier requirements engineering process would probably not
be welcomed [4]. For example, according to a study conducted in Finland, most Finnish
game development projects last under 12 months, with many of them lasting less than 6
months [13].

It would therefore seem that there is a base level incompatibility between traditional
requirements engineering documentation and the artefacts of game development.

4.2 Emphasis on non-functional requirements and affective requirements

In traditional software engineering, the emphasis is on functional requirements. They
describe the key features of the system to be implemented, and are what ultimately
distinguishes it from its competition and allows it to fulfill its stated and desired goals. In
game development, non-functional requirements are considered much more important. In
what is called “horizontal differentiation”, it is claimed that the functional requirements
for games of a particular genre of game are often quite similar to begin with, and non-
functional requirements make the difference and help distinguish a game from its peers
[18,4].

Additionally, unlike in traditional software engineering, more and more game devel-
opers are using pre-made game engines such as Unity1, Unreal Engine2 or CryEngine3,

1 https://unity3d.com Retrieved 27.11.2018
2 https://www.unrealengine.com Retrieved 27.11.2018
3 https://www.cryengine.com Retrieved 27.11.2018

8 Miikka Lehtonen, Chien Lu, Timo Nummenmaa, and Jaakko Peltonen

which further removes emphasis from functional requirements, as these requirements
are already fulfilled by the pre-packaged engine [9].

This in and of itself might not be a problem, as tools for capturing and modelling
non-functional requirements have existed for decades. In game development, however,
non-functional requirements deal with more difficult concepts. In traditional software
engineering, requirements generally refer to concrete and measurable real-world condi-
tions, whereas game-domain specific requirements are more abstract and harder, if not
impossible, to measure [12]. Requirements related to concepts such as fun, storytelling,
aesthetics and so on are key in video game projects, but of course not at all relevant in
traditional software engineering [4]. These requirements also vary from genre to genre
[18]. What is important in a racing game might not be at all relevant in a puzzle game,
or an adventure game.

Unlike traditional software projects, games are intended to produce emotional re-
sponses in their users. Requirements relating to these emotions are referred to as emo-
tional, or affective, requirements and they are viewed as a key component in creating
an engaging gaming experience [4]. The tools and techniques for capturing and mod-
elling these requirements either do not exist, or are not as developed as they should be.
Additionally, validating these requirements is also extremely difficult, as they deal with
highly subjective concepts. Traditional validation methods such as testing are not easy to
implement or very reliable [4].

4.3 Iteration, scope and change management

Change is an inevitable part of almost any software product. No matter how thorough
the pre-production planning, how well executed the requirements engineering process
and how accurate the model, something will eventually change. Change control and
management are considered essential parts of the requirements engineering process,
and significant work both during pre-production and production is carried out to ensure
changes can be tracked and managed as efficiently as possible [22,17,5].

Despite this, change is not seen as an outright goal, and instead more of an unavoid-
able necessity. This is in contrast with game development, where change is often outright
desired. Game development is a heavily iterative endeavor, as the developers try to find
the magical formula of features and gameplay executed just right to make the game as
fun as possible [12,24]. This will inevitably lead to many and in some cases quite drastic
changes to the design and scope of the project.

Due to the emphasis on non-functional and affective requirements, change is also
often the outcome of testing. A version of the game is given to testers, and based on their
feedback changes can be made. Sometimes these changes can be quite drastic, and in
many cases these iterations will carry on quite late in the actual development phase of
the game and changes will occur very close to the end of the project. This is in part due
to the fact that this user-driven testing is not only a tool for validation, but also defining
the quality of the product [12,24].

With this in mind, it would stand to reason that game development could benefit
from more robust change management procedures and methods. A common problem in
game development is scope management. The game will be designed to have a certain

Adoption of requirements engineering methods in game development 9

set of features, and time and resources are budgeted to fulfill these design criteria in the
available time.

During development features get added either due to outright planning, because test-
ing suggested they might work well in the game, or sometimes even because individual
developers felt they were “cool”. Suddenly there are no longer enough resources or
time to finish the game as specified, and sometimes the revised and changed version of
the game no longer works as well as originally planned. This process is referred to as
“feature creep”, and according to some sources, it is one of the biggest problems in game
development [20].

Feature creep is seen as a large problem not only because it creates scheduling
problems, causes games to be delayed and costs money, but also because of its human
cost. Game development is a massive industry, and publishers will often not be willing
to delay projects significantly. Instead what happens is, game developers will work
longer and longer days as deadlines approach. From an International Game Developers
Association (IGDA) report [8], there are stories of people literally living at work, sleeping
under their desks for a few hours when they can. Burnouts and people quitting the games
industry inevitably follow because of these heavy periods of crunch, as it is called.

However, at the same time, this iteration and change is both desired and necessary.
Often developers will “find the fun” quite late in the development process, which means
that if change and experimentation were to be avoided, these games might never have
been finished, or at least not in their final conditions. This issue is compounded by game
development being notoriously difficult for scheduling in general. Evidence suggests
many possible factors as the reasons. One popular suggestion is the multidisciplinary
nature of games development. Different types of developers (e.g. artists, coders, writers,
designers) have different workflows and different types of “production pipelines”, which
can cause delays when some parts of the development team must wait for dependencies
to be completed [20].

In traditional software development, several processes and methods exist for manag-
ing changes and maintaining scope and product integrity despite changes. Therefore, it
seems that game development could benefit from more robust change and scope control
and scheduling mechanisms. Unfortunately, it seems that right now these mechanisms
either do not exist, or are not utilized frequently, in game development.

4.4 Lack of formalized methods and processes

According to two studies conducted in Austria [14] and Finland [13], game developers
do not make good or widespread use of typical methods and processes. In Finland,
61% of the respondents to the survey indicated that they did not use any systematic
development methods. In Austria, 23% of respondents indicated they did not use any kind
of formalized methods or processes. Even those who did self-report using theory-based
methods and processes mostly used adapted and flexible processes which were said to
be comparable to Scrum and XP (Extreme Programming) [14,11]. Further, according to
the Finnish study, developers do not collect metrics or document their activities [11].

This kind of laissez-faire approach permeates all levels of development. For instance,
developers prefer to not engage with traditional requirements engineering activities and

10 Miikka Lehtonen, Chien Lu, Timo Nummenmaa, and Jaakko Peltonen

instead prefer the approach of “test and tune” to replace it. This testing is largely user-
driven, as feedback received from users is used to gauge quality and drive development.
Despite this, the feedback is not commonly collected in any kind of formal or systematic
fashion [9].

Some of this approach can be explained by base level incompatibilities in game
development and traditional software engineering. Whereas traditional software engi-
neering projects are launched to answer specific problems, game development can be
iterative even at the ideation stage. It is common for developers to briefly explore tens
of ideas initially, but only choose a few for detailed implementation, at which point the
project has already moved at least partially to production and any kinds of pre-production
processes are incompatible [9]. There could also be other explanations. A lack of formal
training and the tendency to promote from within could play a role. If a project manager
does not have any training or knowledge about theory-based methods and processes,
how could they hope to make use of them?

Despite this, there is evidence to support the claim that game development could
benefit from adopting more formal, theory-based methods and processes based in estab-
lished software development theories. According to research conducted in Finland, many
developers do already utilize some aspects of project management processes, but do so
informally and in an ad-hoc fashion [9]. This would seem to indicate that the need for
these processes and their benefits exists within the developer community. The problems
formal processes and methods are intended to fix are observable within the game devel-
opment community: difficulty transitioning from pre-production to production, difficulty
in capturing requirements, difficulty in change and scope management and so on [20].

According to research, game development falls into two broad and informal cat-
egories. Larger, more traditional developers still make use of more linear processes
which bear a strong resemblance to the traditional waterfall model, whereas increasingly
especially smaller developers are making use of agile and flexible methods. These agile
methods are often self-created to some degree and might mostly draw inspiration from
more formal schools of thought such as Scrum, Kanban and XP [14,9].

Both styles of development could benefit from requirements engineering processes.
For the more traditional project style, structured requirements engineering processes
could be utilized in largely the same way as in traditional software engineering projects,
hopefully with similar results. Even the more informal projects, which are driven by
iteration and user feedback, could benefit from structured processes and methods to
capture and document this feedback and the requirements it generates [9].

5 Post-mortem analysis

Based on the literature analysis conducted, certain key problem areas and problems could
be identified. As some of these academic writings leaned on industry-focused studies
and were based on the thoughts and opinions of game developers, it can be assumed that
these problems do in fact exist in game development at least to some degree. It was felt,
however, that it would be beneficial to get more context for these findings. How common
are these problems in actual game development?

Adoption of requirements engineering methods in game development 11

Developer-written post-mortems on websites such as Gamasutra.com4 and Gameca-
reerguide.com5 offer insight to industry professionals’ opinions and thoughts on game
development. It was felt that they could provide a revealing and adequate source for
data on the issue, and an alternative to conducting large scale interviews. For examples,
Petrillo et al. [21] tried to understand problems in the development process of electronic
games through analyzing 20 postmortems. Petrillo & Pimenta [19] further analyzed the
same 20 postmortems to investigate the adoption of agile methods in game development.
Washburn et al. [26] have analyzed 155 public postmortems qualitatively to outline the
characteristics of game development. Post-mortems are a common industry practice,
where a developer who served a central role in the project is invited to reflect on their
project. According to Gamasutra.org’s instructions [23], each post-mortem should in-
clude a few aspects that went right in the project, as well as a few aspects that went
wrong. These should be unique to the project, and should offer concrete thoughts other
developers can learn from.

Due to their nature, these post-mortems were assumed to provide a valuable and
reliable insight to the pros and cons of a wide variety of game development projects.
They were therefore fetched and analyzed algorithmically using simple data mining and
natural language processing scripts. The purpose of this analysis was to see if key topics
and words related to what were perceived as central problems in the field, were present
in these post-mortems.

The tests were conducted to test two assumptions.

1. If, for instance, requirements engineering methods and practices are not widely used
in game development, keywords related to the topic would not appear frequently (or
at all) in post-mortems.

2. If game development could benefit from requirements engineering methods and
practices, common problems believed to be alleviated using these methods would
appear at least relatively frequently.

This approach does have some limitations. As each developer is instructed to only include
a few problems in each article, post-mortems are not exhaustive. Problems may not
have been brought up among the few listed in a post-mortem despite influencing the
actual development process. An interview or even a survey would give more focused
information on the topics of this paper, but this is not necessarily a weakness. As these
post-mortems are not guided or directed by research questions or prompts, they do offer
a view into what the developers themselves viewed as central and significant factors in
the success or failure of their games.

Additionally, it is worth noting that correlation does not necessarily equal causation.
Even if both assumptions turned out to be true, it does not automatically mean that
all these problems are caused by the lack of requirements engineering methods and
processes, nor that would they be fixed merely by adopting these methods and processes.
A much more exhaustive study would be required for conclusive results, but that does
not detract from the value of this study.

4 https://www.gamasutra.com/features/post-mortem/ Retrieved 27.11.2018
5 https://www.gamecareerguide.com/archives/postmortems/1/index.php Retrieved 27.11.2018

12 Miikka Lehtonen, Chien Lu, Timo Nummenmaa, and Jaakko Peltonen

5.1 Data gathering

Post-mortem articles are collected with a self-made crawler from Gamasutra.com and
GamecareerGuide.com. By March 2018, we had gathered 218 and 129 post-mortem
articles respectively from the above-mentioned websites. The 347 post-mortems retrieved
in total from the two websites range from 1997 to 2018, and cover everything from small
independent teams to large studios, and everything from small browser games to large,
big budget productions. Games from a variety of different genres are included. Not all
the post-mortems are suitable for this study, as some of them are small “post cards” from
industry events. After eliminating these obviously non-related articles, there were 340
post-mortems left for analysis. These post-mortems cover roughly 300 unique games, as
a few projects were discussed from different perspectives, such as general design and
audio design.

5.2 Initial analysis

Based on the central problems in game development presented in Section 3.2, a list
of keywords was created. These keywords were thought to be related to these central
problems based on existing domain knowledge on the topic. There was no specific
methodology for creating this initial list of keywords, and instead it was always intended
as a simple jumping off point which would hopefully generate interesting and promising
articles, based on which additional keywords could be discovered.

– Project management: crunch, schedule, management, overtime, estimation, feature
creep, creep, feature, scope, communicationm, multi-disciplinary.

– Methods and processes: agile, process, method, Scrum, Kanban, engineering, de-
velopment, transition, extreme programming, backlog, formal.

– Requirements engineering: requirement, emotional, affective, game design, docu-
ment, pre-production, production, requirement engineering, requirements engineer-
ing, specification.

The initial intent was to narrow down the list of 340 post-mortems to find which
post-mortems should be studied more closely, and which could be discarded, as analysing
all the post-mortems would not have been practical and quite probably also not useful.
Therefore, the intent was to prioritize the post-mortems based on how many of these
keywords appeared in them. This analysis was conducted using a self-built programming
script, which iterated through all 340 post-mortems. The script searched for instances of
keywords, noting down the articles in which they appeared, and the results were exported
into a file for analysis.

As the scripts were being refined, the study evolved beyond simply trying to narrow
down the list of post-mortems. It became apparent that getting statistical information
about how often given keywords appeared in articles would be easy, and the focus was
shifted towards this approach.

This approach has some limitations. The first of these is the list of keywords used.
If some relevant or useful term was not thought of, it would not be included on the list
of search terms. As this part of the study was conducted by a single researcher, albeit
with some supervision, it is quite probable that something was overlooked. This problem

Adoption of requirements engineering methods in game development 13

was probably compensated at least in part for by repeated versions the keyword list and
repeated analysis of the subject text. The list of keywords grew significantly over time as
additional terms were discovered through further readings of the source texts, or derived
from results of earlier iterations of the analysis.

Additionally, this approach offers next to no context. While the algorithm will find
all instances of a keyword such as “scope”, it has no way of knowing the context the
term was used in. Did the article refer to the scope of the project, or was the author
talking about a physical scope item in the game? Many of the terms used have multiple
meanings, only some of which are relevant to this paper, so this could have been a real
problem. To compensate for this lack of context, a second test was devised and run.

5.3 Extended analysis

Our aim in this extended analysis was to 1) gather occurrences of keywords in a more
relaxed fashion allowing multiple word forms of each keyword to be detected, and 2)
find context of the keywords by statistical analysis to detect other keywords that tend to
often appear together with them.

To detect keywords in a permissive manner, a natural language processing script was
written. The script first breaks the input text into smaller, sentence length chunks. Next,
the text was lemmatized (i.e. the inflected forms of each word were grouped together
in their dictionary form), and so called “stop words”, or common, short function words
such as the, is, that and which, were removed. After these steps the remaining text was
analyzed. Next, simple statistical analysis was done to detect co-occurring keywords. For
this analysis, sentences which contained words from the keyword list were kept, while
the others were discarded. The remaining sentences were analyzed for word correlation:
correlation of occurrence of one keyword and occurrence of another keyword across the
sentences. The analysis produced a list of found search terms as well as lists of words
they appear together with. This would then give context to these results.

Due to the way the algorithm parses words, it will distinguish between multiple word
keywords such as “feature creep” and individual components of the keyword, in this
case “feature” and “creep”. Thus, the algorithm will not produce skewed false hits for
these component words.

As with the first test, this test was also run several times, first using co-occurrence
analysis, and later with improved correlation analysis. The original list of keywords grew
and changed after each iteration as new keywords were discovered externally, prompting
repetitions of the first study as well. Additionally, the results of this test also helped
refine the list of keywords, as interesting or relevant terms are actually correlated to
original keywords and were subsequently included as keywords themselves.

5.4 Findings

The two studies have produced : a full list of all 340 post-mortems, and the keywords
which appear in them, the total count of how often any keyword appears in each post-
mortem, a list of all the keywords and the most common words that appear near them,
and statistical information about the total number of occurrences for each keyword across
all 340 articles, as well as the percentage of articles each keyword appears in Table 1.

14 Miikka Lehtonen, Chien Lu, Timo Nummenmaa, and Jaakko Peltonen

It becomes apparent that some terms were too broad especially for the initial intent of
the studies even from a cursory glance at the list of keywords. The words “development”,
“feature” and “process” appear in almost all of the articles. However, due to the word
co-occurrence analysis, it is apparent that they do not appear without context and were
as such deemed interesting enough to be left in the pool of keywords.

The word correlation analysis produced a list of each keyword and the most correlated
words they appear together with in the analyzed material. In order to avoid spurious
correlations, we remove infrequent terms and verify remaining correlations with a
student-t based significance test, the t-statistic is computed as ρ

√
N−1
1−ρ2 where ρ is

the correlation coefficient and N is the sample size. In the final list, we keep the top
10 correlated words that co-occur (document-level) more than or equal to 5 times
with the keyword. We also conducted the association test, the p-value is provided in the
parentheses. Correlations for 4 terms are listed in Table 2. The term schedule is correlated
to terms such as “tight”, “slip” and “milestone”. This indicates that the underestimation
of the schedule is a common issue in game development. The term communication
is correlated to different words that represent different perspectives such as frequency
(“occurrence“), target (“team“) and method (“verbal“). Words that are correlated to
the term development are related to scheduling (“cycle“ and “length“) or appliance
(“software“). However, many of the words that are correlated to the term requirement do
not seem to be related with requirements engineering. The full list can be found online
via the link https://bit.ly/2FeQ42U.

In general, terms thought to be related to the requirements engineering process and
its methods appear either very rarely or not at all. “Requirements engineering” (and
its alternative spelling “requirement engineering”) do not appear once. The broader
keyword “requirement” appears in 27.65% of the articles, but it is practically always

Table 1. Occurrences across all articles for a given keyword.

Keyword Frequency Pct. Count Keyword Frequency Pct. Count

development 321 / 340 art. 94.41% 3156 emotional 39 / 340 art. 11.47% 149
feature 278 / 340 art. 81.76% 1582 formal 35 / 340 art. 10.29% 41
process 270 / 340 art. 79.41% 1160 feature-creep 33 / 340 art. 9.71% 43
document 228 / 340 art. 67.06% 453 scrum 33 / 340 art. 9.71% 84
schedule 206 / 340 art. 60.59% 811 agile 27 / 340 art. 7.94% 41
production 205 / 340 art. 60.29% 961 overtime 25 / 340 art. 7.35% 43
communication 146 / 340 art. 42.94% 402 specification 22 / 340 art. 6.47% 35
management 143 / 340 art. 42.06% 332 game-design-document 19 / 340 art. 5.59% 41
scope 134 / 340 art. 39.41% 306 creep 19 / 340 art. 5.59% 23
method 108 / 340 art. 31.76% 205 engineering 15 / 340 art. 4.41% 28
requirement 94 / 340 art. 27.65% 179 estimation 8 / 340 art. 2.35% 11
engineer 92 / 340 art. 27.06% 308 backlog 6 / 340 art. 1.76% 6
crunch 88 / 340 art. 25.88% 198 multi-disciplinary 3 / 340 art. 0.88% 3
pre-production 56 / 340 art. 16.47% 166 affective 1 / 340 art. 0.29% 3
discipline 47 / 340 art. 13.82% 76 kanban 0 / 340 art. 0.29% 0
transition 45 / 340 art. 13.24% 58 requirement engineering 0 / 340 art. 0.29% 0

Adoption of requirements engineering methods in game development 15

Table 2. Words correlated to search terms, shown for four example terms. ρ : correlation coefficient,
n: number of co-occurrences.

search term word ρ p-value n Other correlated words

schedule tight 0.116 2.63e-175 60 occasional, task, behind,
slip 0.095 1.22e-117 45 project, budget, aggressive,
milestone 0.069 1.73e-62 79 instructor

communication occurrence 0.124 2.77e-198 7 skype, lack, facilitate,
team 0.079 2.46e-81 143 inter, proximity, constant,
verbal 0.078 1.09e-79 5 apart

development cycle 0.170 0.00e+00 139 month, ram, date, photoshop,
length 0.130 5.12e-218 137 platform, hardware,
software 0.114 1.30e-168 186 process

requirement mock 0.126 5.82e-206 6 experimental, viable, nail,
fulfill 0.126 2.85e-204 9 skin, export, nature,
playback 0.110 3.95e-155 9 application

used in the non-requirements engineering sense. “Affective” is used precisely once, and
while the keyword “emotional” does appear in 11.47% of the articles, it is not used to
talk about emotional requirements.

Terms related to agile methods and Scrum appear relatively frequently in more
recent postmortems: “Agile” or “Scrum” are mentioned in 17.86% of postmortems from
2006 onwards. “Extreme programming” is mentioned once. Theory-based methods and
specifications in general do not seem to be a frequent topic in post-mortems, as the
keyword “formal” is used in 8.82 % of the articles. Context analysis suggests that when
the term is used, it is rarely used in the context of formal processes: it appears three
times close to the term “process”, and three times close to the term “development”.
“Specification” is used in 6.47% of the articles, and is usually used in the context of
formal design methods.

These findings would seem to back up the arguments presented in current academic
research, and suggest that formal methods and practices, requirements engineering and
other accepted industry best practices are not widely used in game development.

The problems these methods and processes are thought to alleviate appear in the
post-mortems quite frequently. The keyword “crunch” appears in 25.88% of the post-
mortems, and when it appears it is often mentioned several times in the same post-mortem.
Additionally, the term “overtime” appears in 7.35% of the post-mortems, usually in the
context of having to work overtime. The algorithm does not guarantee that there is no
crossover between these results, so both keywords could appear together in at least some
of the post-mortems. Phrases such as “It was an expensive lesson, given the amount
of overtime we had to work to finish the game”, “building several levels, working a
tremendous amount of overtime” and “others were totally fried from the tremendous
amount of overtime” indicate that “overtime” usually appears in the intended sense rather
than describing, for instance, a system working overtime.

16 Miikka Lehtonen, Chien Lu, Timo Nummenmaa, and Jaakko Peltonen

“Feature creep” is used in 9.71% of the post-mortems, and additionally “creep” is
used in 5.59% of the articles, often in a context which suggests it is used to describe fea-
ture creep rather than an action by a game character. Terms such as “schedule” (60.59%) ,
“management” (42.06%), “communication” (42.94) and “document” (67.06%) appear
very often, both in positive and negative contexts, indicating they are factors in the
successes or failures of game development projects.

6 Discussion

The topic of requirements engineering and game development is by no means a new one.
As game development is a specialized field of software development, and requirements
engineering is an accepted and commonly used part of the software engineering process,
the assumption that game development could benefit from requirements engineering
processes and methods is only natural.

Along with this long-standing interest in the topic comes a lot of previous research.
This body of work varies greatly in scope and style. As game development is a practical
real-world problem, it stands to reason that for it to truly be useful, research carried out
on the topic should be conducted with the realities of the discipline in mind, if the goal
is to solve real problems faced by developers.

It is worth stressing that the findings in this paper apply mostly to smaller indepen-
dent developers. Larger and more organized studios may have their own methods and
processes for dealing with these issues and approach the development process much in
the same ways as a traditional software development project would, but as these larger
studios and corporations tend to regard their practices and methods as trade secrets, little
information is available on the subject.

6.1 Discussion of the literature survey results

Key problems and issues were identified based on academic research conducted through
interviews and studies conducted among game developers and game publishers. Some of
these problems make it harder to adopt requirements engineering processes as a part of
the game development process, while some are areas where game development could
clearly benefit from adopting these processes.

Of the problems discovered, the general lack of formal processes and methods among
developers seems to be the most fundamental one. While the emphasis on non-functional
requirements and the lack of tools for capturing and modelling affective requirements
are also significant problems, they can be overcome with work.

That work will not be conducted if developers are not interested in utilizing theory-
based methods and processes, or applying requirements engineering techniques to their
work. The reasons for this perceived lack of interest and its remedies are beyond the
scope this paper, and a large survey would be needed to chart attitudes and problems
before educated guesses could be made. It could be that developers are interested in
utilizing more formal methods, but do not have the knowledge and skills needed, or they
might not be aware of the possibility, having grown used to doing things their own way.

Adoption of requirements engineering methods in game development 17

Note that these are not the only significant challenges or problems game developers
are facing, nor are they the only factors making it harder to adapt requirements engineer-
ing methods and processes to game development. As an example, game development
is a much more multi-disciplinary activity than normal software development. Game
development teams employ software engineers, designers, producers, project managers
and other computer science professionals just like traditional software engineering teams,
but additionally make use of different types of artists (e.g. writers, graphical artists,
musicians, animators, sound technicians) and others. Merely finding common vocabulary
among these wildly varied disciplines can be challenging, but their variety alone intro-
duces difficulties into the requirements engineering process. Capturing and modelling
requirements specific to each of these disciplines requires strong domain knowledge.

Beyond the need for specialized knowledge, all the disciplines of game development
may have their own considerations that need to be taken into account, and scheduling
can also be challenging. Not all of these components might even be actively worked on
during the pre-production phase, where most of the requirements engineering work takes
place. While a significant problem, this is not unique to game development, as traditional
software development projects need specialized domain knowledge for requirements
engineering work as well. For instance, experts on legal concerns, data privacy or
sociology might have specialized domain knowledge needed in the project.

As so many different problems could be discovered so easily, the topic is clearly ripe
for further research, discussion and future work.

6.2 Discussion of the postmortem analysis

The postmortem analysis further supported the finding that requirements engineering
methods and processes are not commonly used in game development. The analysis
shows an almost complete lack of keywords relating to requirements engineering in the
postmortems. The topic itself was not mentioned once in the 340 post-mortems, which
include everything from big budget games to smaller indie products, games created using
traditional waterfall methods to agile projects and so on.

As post-mortems deal with factors which contributed, positively or negatively, to
the outcome of each individual project, the total lack of mentions could mean that
requirements engineering is simply not a concern to any of these developers. This result
is not conclusive, of course, as post-mortems are not all-inclusive lists of all contributing
factors. However, the fact that no developer mentioned requirements engineering as a
factor in the outcome of the project, does give validity to the claim that game developers
do not utilize, nor even think to utilize, requirements engineering methods or processes.

As there is next to no discussion on keywords related to requirements engineering,
this study did not reveal any conclusive evidence for or against the incompatibility
between requirements engineering and the game design document. Keywords such as
scope (39.41%) and document (67.06%) are often mentioned in post-mortems, so clearly
some kind of issue exists, but based on this study little can be said on the topic.

One notable finding could be the relative low frequency at which terms related to
crunch appear in the post-mortems. Crunch is generally considered a widespread problem
in the industry. According to a 2016 survey conducted among the International Game
Developers Association members [27], 65% of developers reported having experienced

18 Miikka Lehtonen, Chien Lu, Timo Nummenmaa, and Jaakko Peltonen

crunch, with 52% reporting having experienced it more than twice in the previous year,
and the topic has been heavily discussed in media as well. Despite this, the keyword
“crunch” appeared in 25.88% of the articles, and the clearly related term “overtime”
appeared in 7.35% of the articles.

This inconsistency could be explained by several factors. The post-mortems deal with
individual projects, rather than individual developers, the contrary of which is true on
the IGDA survey. Thus, even a project where multiple developers reported experiencing
crunch would only represent a single item in the post-mortem data. The post-mortems
also include many smaller indie projects, which might be more loosely scheduled and
could afford to postpone the project rather than crunch to finish it on an external schedule.
Finally, the post-mortems include material from 1997 to 2018, and it could be that in the
earlier material crunch simply was considered an inevitable part of working in the game
industry and not worth reporting as a factor.

Terms related to formal project management processes and methods appear in the
post-mortems quite often, and in contexts which relate to project management: document
(67.06%), production (60.29%), schedule (60.59%), management (42.06%), commu-
nication (42.94%), scope (39.41%). This means that these issues were considered by
developers to be a key factor in the success of the project, whether a positive or negative
one. This would seem to be in line with Kasurinen’s claim that game development would
benefit from more formal, commonly used methods and practices, as they are generally
agreed to improve and facilitate these key areas of the development process [9].

These findings demonstrate that there is clearly need for further and deeper studies
on the issue. Game development is a growth industry where ever-increasing amounts
of money are on the line, depending on the successful outcome of large, expensive and
extremely complex software development projects. It is clear that game development
could benefit from additional formalization, but in order for that to happen, several
hurdles need to be crossed.

Developers need training, and methods and processes need to be adapted and created
to better suit the needs of the industry. While these initiatives probably need to be driven
by developers themselves, academic research has an important role to play as well.
Studies conducted by academics could hopefully breach the wall of secrecy surrounding
many developers and help discover both the causes and eventual fixes for these problems.

7 Conclusions

This paper explored the question of adapting requirements engineering methods and
processes to game development projects. Based on a thorough reading of state-of-the-art
academic research, key problems and limitations were identified. These included: (1) a
general lack of formal processes and methods in game development (2) the emphasis
on non-functional, affective requirements, which traditional requirements engineering
methods and processes are not well suited to (3) emphasis on change as a central
development tool, and the need for better change control, which requirements engineering
could provide (4) the incompatibility between the requirements document and the
game development document, central artefacts in requirements engineering and game
development respectively.

Adoption of requirements engineering methods in game development 19

To study the validity of these claims, 340 developer-published post-mortems were
analyzed algorithmically, using custom programs created for the purposes of this study.
Keywords based on academic findings were searched for, and their total number of
appearances, as well as the frequency of these appearances, were noted. Additionally, they
were analyzed for word correlation to discover, which words the keywords commonly
appeared with. This analysis would seem to support the key problems and limitations
identified in the literature survey, although due to the limitations of the analysis, and
the scope of the identified issues, more research is needed. Possible avenues for future
research could include a similar study on traditional software development projects, to
measure prevalence of requirements engineering methods and processes in these projects
and use of the related terms in developer communication regarding the projects, and to
contrast such prevalences with the ones found here in game development.

Acknowledgement

The work was supported by Academy of Finland decisions 312395 and 313748, and the
Business Finland funded Virpa D project.

References

1. Aleem, S., Capretz, L.F., Ahmed, F.: Game development software engineering process life
cycle: a systematic review. Journal of Software Engineering Research and Development 4(1),
6 (Nov 2016)

2. of America, E.S.: Entertainment Software of America: Analysing the American Video Game
Industry 2016. (2017), http://www.theesa.com/wp-content/uploads/2017/02/ESA-
VG-Industry-Report-2016-FINAL-Report.pdf

3. Ampatzoglou, A., Stamelos, I.: Software engineering research for computer games: A system-
atic review (2010)

4. Callele, D., Neufeld, E., Schneider, K.: Requirements engineering and the creative process in
the video game industry. In: 13th IEEE International Conference on Requirements Engineering
(RE’05). pp. 240–250. IEEE (2005)

5. Cao, L., Ramesh, B.: Agile requirements engineering practices: An empirical study. IEEE
Software (2008)

6. Hofmann, H.F., Lehner, F.: Requirements engineering as a success factor in software projects.
IEEE Software 18(4), 58–66 (7 2001)

7. Hull, E., Jackson, K., Dick, J.: Requirements engineering (third edition) (2011)
8. IGDA Quality of Life Committee: Quality of Life in the Game Industry: Challenges and Best

Practices. Tech. rep., International Game Developers’ Association (2004)
9. Jussi Kasurinen, Andrey Maglyas, K.S.: Is requirements engineering useless in game develop-

ment? In: International Working Conference on Requirements Engineering: Foundation for
Software Quality. pp. 1–16. Springer, Cham (2014)

10. Kanode, C.M., Haddad, H.M.: Software engineering challenges in game development. In:
ITNG 2009 - 6th International Conference on Information Technology: New Generations
(2009)

11. Kasurinen, J.: Games as Software. In: Proceedings of the 17th International Conference on
Computer Systems and Technologies 2016 - CompSysTech ’16 (2016)

http://www.theesa.com/wp-content/uploads/2017/02/ESA-VG-Industry-Report-2016-FINAL-Report.pdf
http://www.theesa.com/wp-content/uploads/2017/02/ESA-VG-Industry-Report-2016-FINAL-Report.pdf

20 Miikka Lehtonen, Chien Lu, Timo Nummenmaa, and Jaakko Peltonen

12. Kasurinen, J., Risto Laine: Games from the Viewpoint of Software Engineering. In: Proc. of
the Federated Computer Science Event. pp. 23–26 (2014)

13. Koutonen, J., Leppänen, M.: How are agile methods and practices deployed in video game
development? A survey into finnish game studios. In: Lecture Notes in Business Information
Processing (2013)

14. Musil Juergen, Schweda, A., Winkler Dietmar, Biffl Stefan: Improving Video Game Develop-
ment: Facilitating Heterogeneous Team Collaboration through Flexible Software Processes. In:
Riel Andreas, O’Connor, R., Tichkiewitch Serge, Messnarz Richard (eds.) Systems, Software
and Services Process Improvement. pp. 83–94. Springer Berlin Heidelberg, Berlin, Heidelberg
(2010)

15. Newzoo: Mobile Revenues Account for More Than 50% of the Global Games Market as
It Reaches $137.9 Billion in 2018 (2018), https://newzoo.com/insights/articles/
global-games-market-reaches-137-9-billion-in-2018-mobile-games-take-
half/

16. Osborne O’Hagan, A., Coleman, G., O’Connor, R.V.: Software development processes for
games: A systematic literature review. In: Barafort, B., O’Connor, R.V., Poth, A., Messnarz,
R. (eds.) Systems, Software and Services Process Improvement. pp. 182–193. Springer Berlin
Heidelberg, Berlin, Heidelberg (2014)

17. Paetsch, F., Eberlein, A., Maurer, F.: Requirements engineering and agile software devel-
opment. In: Proceedings of the Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, WETICE (2003)

18. Paschali, M.E., Ampatzoglou, A., Chatzigeorgiou, A., Stamelos, I.: Non-functional require-
ments that influence gaming experience. In: Proceedings of the 18th International Academic
MindTrek Conference on Media Business, Management, Content & Services - Academic-
MindTrek ’14 (2014)

19. Petrillo, F., Pimenta, M.: Is agility out there? Agile practices in game development. In:
SIGDOC ’10: Proceedings of the 28th ACM International Conference on Design of Commu-
nication (2010)

20. Petrillo, F., Pimenta, M., Trindade, F.: Houston, we have a problem...: a survey of actual
problems in computer games development. In: Proceedings of the 2008 ACM symposium on
Applied computing (2008)

21. Petrillo, F., Pimenta, M., Trindade, F., Dietrich, C.: What went wrong? a survey of problems
in game development. Computers in Entertainment (CIE) 7(1), 13 (2009)

22. Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques. Springer
Publishing Company, Incorporated, 1st edn. (2010)

23. Shirinian, A.: Dissecting The Postmortem: Lessons Learned From Two Years Of Game Devel-
opment Self-Reportage (2011), https://www.gamasutra.com/view/feature/134679/
dissecting_the_post-mortem_lessons_.php

24. Stacey, P., Nandhakumar, J.: Opening up to agile games development. Communications of the
ACM (2008)

25. UKIE: The games industry in numbers (2018), https://ukie.org.uk/research, accessed
2019-01-08

26. Washburn, M.J., Sathiyanarayanan, P., Nagappan, M., Meiyappan, T., Bird, C.: "What Went
Right and What Went Wrong": An Analysis of 155 Postmortems from Game Development.
In: Proceedings of the 38th International Conference on Software Engineering (2016)

27. Weststar, J., Legault, M.J.: Developer Satisfaction Survey 2016 Summary Report. Tech. rep.,
International Game Developers Association (2016), https://cdn.ymaws.com/www.igda.
org/resource/resmgr/files__2016_dss/IGDA_DSS_2016_Summary_Report.pdf

https://newzoo.com/insights/articles/global-games-market-reaches-137-9-billion-in-2018-mobile-games-take-half/
https://newzoo.com/insights/articles/global-games-market-reaches-137-9-billion-in-2018-mobile-games-take-half/
https://newzoo.com/insights/articles/global-games-market-reaches-137-9-billion-in-2018-mobile-games-take-half/
https://www.gamasutra.com/view/feature/134679/dissecting_the_post-mortem_lessons_.php
https://www.gamasutra.com/view/feature/134679/dissecting_the_post-mortem_lessons_.php
https://ukie.org.uk/research
https://cdn.ymaws.com/www.igda.org/resource/resmgr/files__2016_dss/IGDA_DSS_2016_Summary_Report.pdf
https://cdn.ymaws.com/www.igda.org/resource/resmgr/files__2016_dss/IGDA_DSS_2016_Summary_Report.pdf

	Adoption of requirements engineering methods in game development: A literature and postmortem analysis

