
Lost in Publications? How to Find Your Way in 50
Million Scientific Documents

Tuukka Ruotsalo∗
Helsinki Institute for

Information Technology
HIIT, Aalto University

Jaakko Peltonen∗

Helsinki Institute for
Information Technology
HIIT, Aalto University

Manuel J.A. Eugster∗
Helsinki Institute for

Information Technology
HIIT, Aalto University

Dorota Głowacka
Helsinki Institute
for Information

Technology HIIT,
University of Helsinki

Giulio Jacucci
Helsinki Institute
for Information

Technology HIIT,
University of Helsinki

Aki Reijonen
Helsinki Institute
for Information

Technology HIIT,
University of Helsinki

Samuel Kaski
Helsinki Institute
for Information

Technology HIIT,
Aalto University
and University

of Helsinki

Abstract

Researchers must navigate big data. Current scientific knowledge includes 50
million published articles. How can a system help a researcher find relevant docu-
ments in her field? We introduce IntentRadar, an interactive search user interface
and search engine that anticipates user’s search intents by estimating them form
user’s interaction with the interface. The estimated intents are visualized on a ra-
dial layout that organizes potential intents as directions in the information space.
The intent radar assists users to direct their search by allowing feedback to be
targeted on keywords that represent the potential intents. Users can provide feed-
back by manipulating the position of the keywords on the radar. The system then
learns and visualizes improved estimates and corresponding documents. Inten-
tRadar has been shown to significantly improve users’ task performance and the
quality of retrieved information without compromising task execution time.

1 Introduction

Exploration and search for relevant data in the available scientific literature are main tasks of a re-
searcher. These tasks are crucial for human analysis of big data, when strong hypotheses about
the data are not yet available. Machine learning systems are needed to assist such exploration and
search. In big data traditional search solutions become increasingly insufficient. One of the main
problems in exploratory search is that it can be hard for users to formulate queries precisely, since
information needs evolve throughout the search session as users gain more information. In a com-
monly observed search strategy, the information seeker issues a quick, imprecise query, hoping to
get into approximately the right part of the information space, and then directs the search to obtain
the information of interest around the initial entry-point in the information space [8]. Current meth-
ods to support users to explore are either based on suggesting query terms, or allowing faster access
to the present search result set by faceted browsing or search result clustering [9, 4]. A disadvantage
of these feedback mechanisms are that they can trap the user to the initial query context and cause
cognitive burden to the user [5].
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(a) The system makes use of a radar visualization metaphor. The current intent estimation for which the results
on the right-side list are retrieved, is visualized for the user on a radar screen (inner dark grey area). The angular
distance corresponds to similarity of intents and the distance to their relevance. Predicted intents, that help users
to find directions on the radar from their currently estimated intent, are visualized on the outer (light gray) area.
The angular distance corresponds to similar intents of the current intent estimation (position is relative to the
keywords in the inner dark grey area). The user can provide feedback by dragging concepts closer to the center
of the radar.

(b) The user increased the relevance of ”gesture recognition”
by dragging it to the center of the radar. The system has com-
puted and visualized new estimated relevant intents, such
as ”pattern recognition”, ”pointing gestures”, ”recognition
rates”, ”nearest neighbor approaches”, and ”hidden Markov
models” to continue the exploration.

Figure 1: The IntentRadar interface and resulting documents for a query ”3d gestures” (a), and the
IntentRadar visualization after an increasing the importance of ”gesture recognition” (b).

We propose that better support for exploration can be provided by visualizing the relevant informa-
tion space using higher level representations of the data, namely keywords extracted from documents
and using reinforcement learning to adjust the visualization [7, 3]. Our system improves interactive
search of 50 million scientific articles from Thomson Reuters, ACM, IEEE, and Springer. 1

2 Search User Interface

The IntentRadar interface is presented in Figure 1. It is designed to assist users in exploring infor-
mation related to a given research topic effectively by allowing rapid feedback loops and assisting
users in making sense of the available information around the initial query context. We use ra-
dial layout and optimize locations of keywords in the inner circle (representing current intent) and
keywords in the outer circle (representing future intents) by probabilistic modeling-based nonlinear
dimensionality reduction (see [7] for details).

1This work was recently presented at CIKM 2013. [7]
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Figure 2: Left: Heatmap visualization of eye-tracking data of an exemplar user of the IntentRadar.
IntentRadar is the main interface element that the user focuses to make sense of the returned in-
formation. Right: the IntentRadar visualization can be inspected in detail using a fisheye lens
that follows the mouse cursor and enlarges labels (at top of this figure). This allows users to have
overview and detailed view to a specific cluster representing a direction in the information space.

Figure 1 (a) presents a system response to an initial query ”3d gestures”. The system has retrieved a
set of documents and visualized the potential intents on the IntentRadar visualization. It offers di-
rections towards, for example, ”video games”, ”user interfaces”, ”gesture recognition” and ”virtual
reality”. In Figure 1 (b) the user has first selected ”gesture recognition” and is offered further op-
tions to continue the exploration towards more specific topics, such as ”nearest neighbor approach”,
”hidden Markov models”, but also towards general topics, such as ”pointing gestures” and ”spatial
interaction” that are estimated to be relevant for the interaction history of the user. The interface
provides a non-intrusive relevance feedback mechanism, where the user pulls keywords closer to the
center of the radar to increase their importance and pushes keywords away from the center of the
radar to decrease their importance. The keywords can be enlarged with a fisheye lens that follows
the mouse cursor (see Figure 2 (Right)). The radial layout has a good tradeoff between the amount
of shown information and comprehensibility compared to alternative visualizations with lower or
higher degrees of freedom that could make interaction with the visualization more difficult [2].

3 Learning Search Intents

The learning of user’s search intents during the interactive search is based on two models: retrieval
model and intent model. The retrieval model estimates the probability of relevant documents based
on the estimates of the intent model. The intent model estimates the present and potential future
intents of the user based on the interaction history.

For the retrieval model, we use the language modeling approach of information retrieval [10]. The
estimation is done by a unigram language model with Bayesian Dirichlet Smoothing, evaluating
probability to generate the user’s desired keywords given by the intent model. To expose the user to
more novel documents we sample a set of documents from the ranked list by Dirichlet Sampling.

For the intent model, we use the LinRel algorithm [1]. In each search iteration, LinRel yields an es-
timate of keyword weights. The simplest strategy would be to select keywords with highest weights
given by the regression model, but as the interaction history of the user may provide only limited
evidence, this exploitative choice could be suboptimal. Instead, LinRel exploratively picks keywords
via controlling the exploration-exploitation tradeoff of the estimation. We select keywords with the
largest upper confidence bound for the score to be visualized, i.e. maximizing the relevance estimate
for the keywords and the uncertainty of the system of the relevance estimate simultaneously. This
allows users to benefit from the intent predictions, while at the same time reducing the system’s
uncertainty of the estimates. As a result, users can continuously direct their search without getting
trapped into the initial query context.

Visualization of search intents is done by nonlinear dimensionality reduction: high-dimensional
features of keywords are their predicted future relevance under different user feedbacks, and they
are reduced by neighbor embedding to angles of keywords on the radar interface.
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Comparison methods above are IntentList (a simplified interface representing intents only as a
list of top keywords) and TypedQuery (a traditional search interface based on typing queries).
Improved task performance: IntentRadar improves users’ task performance (answers submit-
ted for research tasks) compared to state-of-the-art retrieval methods and the prominent com-
mercial search engine Google Scholar [7, 6]. Quality of retrieved information: IntentRadar
helps users to move away from the initial query context, thus allowing to substantially increase
recall while preserving precision in particularly for novel information [7, 3]. Enhanced interac-
tion: Despite more complex visualization, users interacted with the IntentRadar interface twice
to nearly four times more than the comparison systems without compromising the task execution
time. Users also used the visualization as their main user interface component during the search
sessions (see Figure 2 (left)) [7].

Figure 3: Key benefits of the IntentRadar search user interface

4 Findings

The effectiveness of IntentRadar has been studied in task-based experiments where users (30 grad-
uate students from two universities) were asked to solve research tasks using a database of over
50 million scientific articles. The comparisons were conducted against 1) within-system baselines
[7, 3] of list-based visualization and only typed-query interaction, and 2) Google Scholar [6]. Ex-
perts conducted double-blind relevance assessments of articles and keywords presented by any of the
sysystems, on binary scales: relevance—is this article relevant to the search topic, obviousness—is
it a well-known overview article, novelty—is it uncommon yet relevant to a given topic/subtopic.
The assessments were used as ground truth for evaluations of user task performance (assessment of
their answers to tasks), quality of displayed information (precision, recall, F-measure), interaction
support for directing exploration (numbers of interactions, information received in response). Full
details of the procedures are in [7, 3, 6]. The benefits along with references to the original articles are
summarized in Figure 1. The system with IntentRadar interface improved user’s task performance.
The answers that users provided in response to the given search tasks were graded higher by experts.
The interface also enhanced interaction. The users of the IntentRadar interface initiated up to three
times more interaction and the interface reduces users’ scanning time with respect to the available
option space. Most importantly, interactions with the IntentRadar resulted in improved quality of
retrieved information (precision and recall of novel information returned by the search engine in
response to user interactions during search sessions).
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