Computational Studies on Electronic and Dielectric Properties of Polymer Compounds

Henna Ruuska¹, Eero Arola², Kari Kannus¹, Seppo Valkealahti¹, and Tapio T. Rantala²

E-mail: Henna.Ruuska@tut.fi

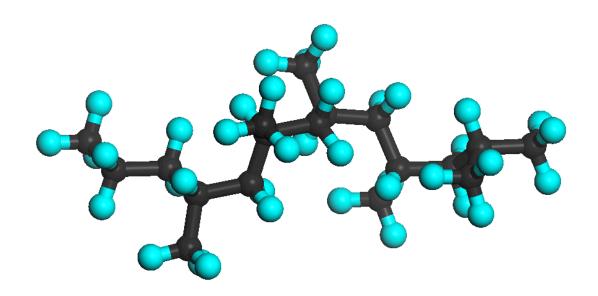
¹Institute of Power Engineering, Tampere University of Technology, Finland ²Institute of Physics, Tampere University of Technology, Finland

Background

- New polymer materials have potential for the use in the high-voltage technology applications
- Microscopical mechanisms for the electronic and dielectric properties not well understood
- Computational and theoretical approaches are valuable tools in studying these mechanisms

Targets of our computational studies

- Electronic properties of polymers
 - \square Electronic structure, band gap energy $E_{\rm g}$
- Dielectric properties of polymers
 - □ Dipole moment, polarizability, dielectric constant
- Spectroscopic properties of polymers
 - Absorption spectroscopy (complex dielectric function)



Computational frameworks

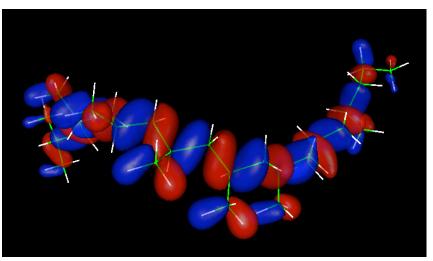
- Semi-empirical methods of quantum chemistry:
 - MNDO, MINDO/3, AM1 ja PM3 parameterization (MOPAC package)
 - Molecules containing hundreds of atoms
 - Seems not to predict well electric polarization properties
- Methods based on the density functional theory:
 - Molecular based, first-principles all-electron DFT methods within the generalized gradient approximation (GGA) (Gaussian 03 package)
 - Solid state based, first-principles pseudopotential DFT methods within the GGA (CASTEP package)

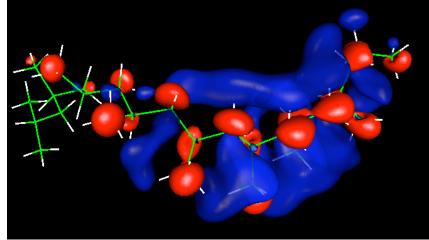
Semiempirical vs. DFT results for isotactic polypropylene (IPP)

Optimized structure of a model molecule for IPP: C₁₈H₃₈

 Structural properties well predicted with both semiempirical and DFT methods

Semiempirical vs. DFT results for electronic properties: Polarizability (α), band gap (E_g) and dielectric constant (ϵ_r)


Method	α (a_0^3)	E _g (eV)	$\varepsilon_{\rm r}^{(1)}$
Semi-emp	127	14	1.040
DFT	240	6	1.076

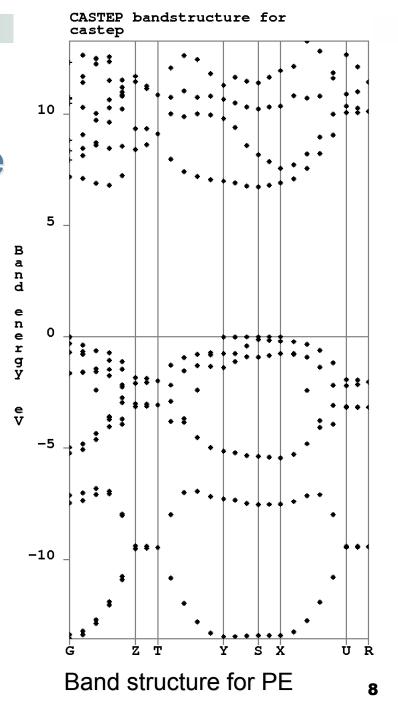

⁽¹⁾
$$\varepsilon_r = 1 + \{0.892441 \text{ x } 10^{-4} \text{ x } [\rho \text{ in kg/m}^3] [\alpha \text{ in } a_0^3] / [M \text{ in amu}] \}$$

- Semi-empirical and DFT results differ significantly
- ε_r too small because the lack of polymer chain-chain interaction (molecular model) and rotation polarization mechanism in calculations

ŊΑ

HOMO and LUMO orbitals of a PP model molecule (DFT)

- HOMO orbital is highly delocalized, LUMO orbital more localized
- Geometrical aspects of HOMO and LUMO orbitals can give useful information about the nature of the polarization



DFT PWPP results for orthorhombic polyethylene (PE) crystal: Band structure

Band gap:

Eg = 6.7 eV (calculated)

Eg = 7.5 eV (experimental)

DFT PWPP results for orthorhombic polyethylene (PE) crystal: Dielectric constant

Dielectric constant ε_r for PE

$\varepsilon_r^{\text{theor}}(0)^{(1)}$	$\varepsilon_{\rm r}^{\rm theor}(0)^{(2)}$	$\varepsilon_{\rm r}^{\rm experim}(0)$
2.80	2.68	2.4 (40 μm film)

(1) Calculated without scissor operator correction ($\Delta = 0$)

(2) $\Delta = 7.5 \text{ eV (exp.)} - 6.7 \text{ eV (calculated)} = 0.8 \text{ eV}$

=> Theoretical ε_r differs 12% of the experimental value!

Conclusions and future work

- Semi-empirical methods
 - not suitable for studying dielectric properties of polymers
- DFT methods
 - □ suitable for studying dielectric properties of polymers
 - both molecular and solid state studies
- Future work:
 - □ DFT calculations for PE and PP with N-containing side groups (CN, NO, NO₂)
 - □ Calculated absorption spectras
 - Mathematical model for rotation polarization (may be very important for soft matter polarization calculations)