
Finite model theory
6. Zero-One Laws



Zero-One Laws

In this section we adopt the convention that a finite model M with |M| = n
has the domain {1, . . . , n}. Thus this assumption will be systematically
followed below, mainly without further comment.
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Let τ be a finite relational vocabulary. We let Mτ denote the class of
all finite τ -models; in this section this means τ -models with domains of
type {1, . . . , n}. A property of τ -models is an isomorphically closed class
P ⊆ Mτ , i.e., a class such that if M ∈ P and N is a τ -model such that
N ∼= M, then N ∈ P.

We let Mτ (n) denote the class of models M ∈ Mτ of size n, i.e., the
models M ∈ Mτ with domain M = {1, . . . , n}. If P is a property of
τ -models, then we let P(n) denote the models M ∈ P of size n.
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Let P be a property of τ -models. The probability µn(P) of P over models
of size n is given by

µn(P) = |P(n)|
|Mτ (n)| .

That is, µn(P) is the probability that a randomly chosen τ -model of size n
has property P.

Definition 6.1
The asymptotic probability µ(P) of P is given by

µ(P) = lim
n→∞

µn(P) = lim
n→∞

|P(n)|
|Mτ (n)| .
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Example 6.2
Let τ be the vocabulary {P} with a unary relation symbol P. Consider
the property P that there is precisely one element in P, i.e., |P| = 1. The
probability of this happening in a τ -model of size n is

µn(P) = |P(n)|
|Mτ (n)| = n

2n .

Thus the asymptotic probability µ(P) of this happening when the model
size increases is

µ(P) = lim
n→∞

µn(P) = lim
n→∞

|P(n)|
|Mτ (n)| = n

2n = 0.
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Example 6.3
Let τ be an arbitrary finite relational vocabulary. Consider the property P
that the domain of the model is even. The probability of this happening in
a τ -model of size n is

µn(P) =
{
1 if n is even,
0 if n is odd.

Thus the asymptotic probability

µ(P) = lim
n→∞

µn(P) = lim
n→∞

|P(n)|
|Mτ (n)|

of the property P does not exist.
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Consider the vocabulary τ = {P} with one unary relation P. Find a property
P of τ -models for which the asymptotic probability is 12. Prove your solutioncorrect.
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One such property is PARITY consisting of those τ -models where |P| is
even. (The domain does not have to be even, just |P|.) To prove this,
define the following bijection f :Mτ (n)→Mτ (n) that pairs up models of
size n into pairs (M,N) such that f (M) = N and f (N) = M.

Define f (M) = N if and only if for all i ∈ {1, . . . , n},

i ∈ PM \ PN or i ∈ PN \ PM,

That isN is obtained fromM by defining PN to be the complement relation
of PM.

When n is odd, it is clear that M satisfies parity iff f (M) does not, so
exactly half of models of size n satisfy parity. When n is even, we can
consider models with the even domain {1, . . . , n− 1} and note that half of
them satisfy PARITY, and furthermore, each such model can be extended
to a model with domain {1, . . . , n} in precisely two ways, one changing the
parity status and one keeping it as it is. Thus half of the models with an
even domain satisfy PARITY.
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Definition 6.4
A logic L is said to have the zero-one law if every property of τ -models
definable (with respect to the class of finite τ -models) by a τ -sentence of
L has asymptotic probability of 0 or 1.
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Let τ be a finite relational vocabulary. Let C ⊆ Mτ be some subclass of
the classMτ of all finite τ -models. Let P be a property of τ -models and
recall P(n) denoes the subclass of P containing the models of size n. The
probability µCn(P) of P with respect to models of size n in C is given by

µCn(P) = |P(n) ∩ C|
|Mτ (n) ∩ C| .

That is, µCn(P) is the probability of the property P being realized if we
randomly choose a model of size n from C.

Definition 6.5
The asymptotic probability µC(P) of P with respect to C is given by

µC(P) = lim
n→∞

µCn(P) = lim
n→∞

|P(n) ∩ C|
|Mτ (n) ∩ C| .
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Recall that a graph is a finite {E}-model where E is an irreflexive and
symmetric binary relation. Let G be the class of graphs. A graph has an
isolated node if there exists an element v such that (v , u) 6∈ E (and thus
(u, v) 6∈ E ) holds for all elements u. Let P be the graph property of having
an isolated node, i.e., P is the class of graphs with an isolated node. Figure
out the asymptotic probability µG(P) of a graph having an isolated node.



Zero-One Laws

The asymptotic probability µG(P) of this happening when the graph domain
size increases is

µG(P) = lim
n→∞

µGn (P) = lim
n→∞

|P(n)|
|Mτ (n) ∩ G|

Recall here that P was already a class of graphs, so P(n) = P(n)∩G. Let
us work this limit out.
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Let I(n) be the number of graphs of domain size n with an isolated node.
For convenience and simplicity, suppose now that n ≥ 4. Over a domain of
n nodes, there are n ways of choosing an isolated node and 2(n−1

2 ) ways of
choosing the edges between the remaining nodes. This implies that

I(n) ≤ n · 2(n−1
2 ),

where we note that n ·2(n−1
2 ) of course gives an overestimation, as the same

graph more than one isolated node will be counted multiple times. Thereby

µG(P) = lim
n→∞

µGn (P) = lim
n→∞

|P(n)|
|Mτ (n) ∩ G| ≤

n · 2(n−1
2 )

2(n
2)

= n · 2
(n − 1)!

(n − 3)!2!−
n!

(n − 2)!2! = n · 2
(n − 1)!(n − 2)

(n − 2)!2! −
n!

(n − 2)!2!

= n · 2
−2(n − 1)

2 = n
2n−1 .
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As limn→∞
n

2n−1 = 0, the asymptotic probability µG(P) of having an iso-
lated node is zero. This makes sense, as in a large graph, it is indeed
unlikely for an individual node u not to be linked to any other one of the
(large number of) other nodes.
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Definition 6.6
Let C be some class of finite τ -models for some finite relational vocabulary
τ . A logic L is said to have the zero-one law with respect to C if every
property of τ -models definable with respect to C by a τ -sentence of L has
asymptotic probability of 0 or 1 with respect to C.
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Definition 6.7
Let k ∈ Z+ and `,m ∈ N. Let Ext`,m denote the first-order {E}-sentence

∀x1 . . . ∀x`∀y1 . . .∀ym
( ∧

1≤i≤`

∧
1≤j≤m

xi 6= yj

→ ∃z
( ∧

1≤i≤`
(z 6= xi ∧ E (z , xi)) ∧

∧
1≤j≤m

(z 6= yj ∧ ¬E (z , yj))
))
.

The k-extension axiom is the formula

Extk =
∧

0≤`≤k
Ext`,k−`.

Note that this is a formula of the finite variable logic FVLk+1.
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Informally, the extension axiom Extk states that for any subsets A and B
that do not overlap (i.e., A ∩ B = ∅) and cover at most k nodes (i.e.,
|A|+ |B| ≤ k), there exists a point v 6∈ A∪B that connects via E to every
node in A and to no node of B. Thereby v can be seen as an observation
point that sees precisely everything in A and absolutely nothing in B. And
there exists such an observation point for every two non-overlapping sets A
and B that cover at most k points.
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Lemma 6.8
Let G and H be a graphs that both satisfy Extk , i.e, we have G |= Extk and
H |= Extk . Then the duplicator has a winning strategy in the (k+1)-pebble
game PG′k+1.
Proof. Suppose the duplicator has survived all the way up to a stage S
where the pebble variables vi1 , . . . , vir have been placed on both graphs,
r ≤ k + 1. Let the spoiler place the pebble variable vi (possibly vi ∈
{vi1 , . . . , vir }) in one of the graphs so that in that graph, vi connects to the
pebble variables u1, . . . , u` via E and does not connect to z1, . . . , zm via E .
Here {u1, . . . , u`} ∪ {z1, . . . , zm} = {vi1 , . . . , vir } if vi has not been used in
the earlier rounds, and {u1, . . . , u`} ∪ {z1, . . . , zm} = {vi1 , . . . , vir } \ {vi} if
vi has been used in the previous rounds. We have the following two cases.
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1. If the spoiler places vi on a currently already chosen element, the dupli-
cator responds by choosing the corresponding already chosen element
in the other graph.

2. Otherwise, because the graphs satisfy the extension axiom Extk , the
duplicator can respond so that vi in the other graph connects via E to
u1, . . . , u` and does not connect to z1, . . . , zm.

This concludes the proof.

We note that the extension axiom has been custom made for enabling the
duplicator to win the pebble game PG′k+1.
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Lemma 6.9
The asymptototic probability of the extension axiom Extk is 1 (with respect
to the class of graphs).

Proof. Consider graphs of size n with n ≥ k + 1. Recall the domain of
these graphs is {1, . . . , n}. The probability that there is an edge between
two different elements a, b ∈ {1, . . . , n} is 1

2 . For Extk to fail, there must
be some sets {a1, . . . , a`} and {b1, . . . , bm} of elements (`+m ≤ k) in the
domain and so that for all point d outside the sets, we have that
I d fails to link to all elements of the first set, or
I d links to some element of the the second set.

The two sets should not have points in common, and d should indeed be
external to both of the two sets. Certainly there are less than n` · nm ways
of choosing the sets {a1, . . . , a`} and {b1, . . . , bm} (we are not aiming at
minimal bounds, but instead are satisfied with gross overestimations). And
there are no more than n − (` + m) ways of choosing d . The probability
that a fixed d links to the two sets so that Extk fails is (1− (12)`(12)m).
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Thus the probability that there exist such sets of sizes ` and m with no
suitable d to satisfy Extk is surely not greater than

n` · nm · (1− (12)`(12)m)n−(`+m)

=
(
n` · nm · (1− (12)`(12)m)−(`+m)

)
· (1− (12)`(12)m)n

=P(n) · an

where
P(n) =

(
n` · nm · (1− (12)`(12)m)−(`+m)

)
is a polynomial in n and a is the term (1−(12)`(12)m). Clearly 0 ≤ a < 1, so
the term an (which is exponential in n and thus dominates the polynomial
term P(n)) ensures this probability goes to zero as n approaches infinity.
We fixed ` and m so that `+ m ≤ k. Since k is a fixed constant (unlike n
which we let go to infinity), there is a fixed number of ways we can choose
` and m, and in all of those cases, the above probability goes to zero. Thus
the axiom Extk has asymptotic probability zero of failing.
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Theorem 6.10
The finite variable logic FVL has the zero-one law over the class of graphs.

Proof. Let ϕ be a formula of FVL. Thus ϕ contains a finite number of
variables. Suppose there are (at most) k+1 variables in ϕ, so ϕ is a formula
of FVLk+1. We discuss two cases.

Suppose that there exists a graph G that satisfies Extk and ϕ, i.e., G |=
Extk ∧ ϕ. As G |= Extk , for every graph H such that H |= Extk , the
duplicator wins the pebble game PG′k+1(G,H) by Lemma 6.8. Now, by
Lemma 6.9, the asymptotic probability of Extk is 1, so the proportion of
those graphs H such that the duplicator wins PG′k+1(G,H) approaches
1 as the domain size of H approaches infinity. When the duplicator wins
PG′k+1(G,H), then G and H must agree on formulae of FVLk+1, including
ϕ. Thus the asymptotic probability of ϕ is 1.
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Suppose then that there exists no graph G such that G |= Extk ∧ ϕ.
Therefore, for all graphs H that satisfy Extk , we have H 6|= ϕ. Thus the
proportion of graphs that do not satisfy ϕ approaches 1 as the graph size
grows. Thus the asymptotic probability of ϕ is 0.
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Corollary 6.11
FO and LFP have the zero-one law with respect to the class of graphs.

Proof. Recall that LFP (and thus FO) translates into FVL.
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The general zero-one law of FVL is proved similarly to the case restric-
ticted to graphs. One just needs to take into account the general relational
vocabulary. The details are not different from the case for graphs in any
significant way. We omit the full details.

Theorem 6.12
FVL has the zero-one law.

Corollary 6.13
LFP and thus FO have the zero-one law.
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Problem: Show that PARITY cannot be defined in LFP. Solution: LFP
has the zero-one law and the asymptotic probability of parity is one half.


	

