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Distributed message passing systems

I Computer networks

I Cellular automata

I Brain

I etc.
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Descriptive Complexity of Distributed Computing

L. Hella, M. Järvisalo, A. Kuusisto, J. Laurinharju, T. Lempiäinen,
K. Luosto, J. Suomela and J. Virtema. Weak models of distributed
computing, with connections to modal logic. PODC 2012.

I Introduces an approach to descriptive complexity of
distributed computing.

I Characterizes several complexity classes of distributed
computing by related modal logics.

I Separates complexity classes of distributed computing with
the help of logical methods.
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Descriptive Complexity of Distributed Computing

Hella et al. 2012 only characterizes classes defined by constant
time distributed automata.

We obtain the following logical characterizations of classes defined
by non-constant-time automata.

Theorem
Recognizability by finite message passing automata is captured by
modal substitution calculus, i.e., FMPA = MSC.

Theorem
Modal theories capture Co-MPA: a class C of pointed Kripke
models is definable by a modal theory iff the complement of C is
recognizable by a message passing automaton (MPA).
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Classical Computation
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Distributed Computation
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Deterministic Distributed Algorithms

A distributed system is defined by a directed labelled graph

(W ,R, p1, ..., pk),

together with an automaton A.

I Each node w ∈W contains a copy (A,w) of the automaton
A.

I R ⊆W ×W is a collection of communication channels.

I Predicates pi ⊆W encode a local input at each node. The i th

input bit at node w is 1 iff w ∈ pi .
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Deterministic Distributed Algorithms

Computation proceeds in sychronous steps.

I In one time step, each machine (A,w)
I receives messages from its neighbours and sends messages to

its neighbours,
I updates its state based on the received messages and previous

state.
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Deterministic Distributed Algorithms

Automaton A is a tuple (Q,M, π, δ, µ,F ).

I Q: states,

I M: messages,

I π : P
(
{p1, ..., pk}

)
−→ Q gives the initial state of each

automaton (A,w),

I δ : P(M)× Q −→ Q determines the next state of (A,w)
based on the previous state and received messages.

I µ : Q −→ M constructs a message m ∈ M that the
automaton (A,w) broadcasts to all its neighbours.

I F ⊆ Q is the set of accepting states.

(Hella et al. 2012 studies also other notions of automata.)
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Distribured Algorithms

A node w accepts if it visits some accepting state q ∈ F at least
once. More formally:

Each communication round n ∈ N defines a global configuration
fn : W −→ Q.

f0(w) := initial state at w .

Call N := the set of messages received by node w in round n + 1.
Then fn+1(w) := the new state at w = δ(N, fn(w)).

The node w accepts if fk(w) ∈ F for some k ∈ N.
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Distributed Algorithms

Automaton A therefore computes a subset S ⊆W —the set of
accepting nodes—-of the domain W of the distributed network
(W ,R, p1, ..., pk).
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Distributed Algorithms

The decision time of an automaton A at a node w is the number
of communication rounds before the node visits an accepting state
for the first time.

An automaton A specifies a constant time algorithm, if there exists
a k ∈ N such that the decision time of A at any node of any
network is at most k .
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Descriptive Complexity of Distributed Computing

Hella et al. 2012 shows (for several types of message passing
automata) that

constant time distributed algoritms = formulae of modal logic.

The modal logic used depends on the type of automata studied.
( For example the class SB(1) is captured by ML; the class MB(1)
is captured by GML, and so on: see the paper for further details.)

M,w |= ♦ψ iff w receives the message “ψ is true”

from some u such that (w , u) ∈ R.

here M = (W ,R, p1, ..., pk).
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Modal Substitution Calculus

Modal substitution calculus (MSC) consists of programs of the
following type:

X1 : − p ∧ ¬q X1 : − (X1 ∧ ¬X4)→ ♦q
X2 : − ♦(p ∧ q) X2 : − X1 ∧ ♦X2

X3 : − p X3 : − p ∧�X1

X4 : − ♦�p X4 : − X4 ∨ ♦p

A program has two two lists of clauses. The clauses on the left are
terminal clauses and the ones on the right iteration clauses.

The right hand side of a terminal clause is any formula of modal
logic. The right hand side of an iteration clause is a formula of
modal logic that can use the variable symbols Xi as well as
ordinary proposition symbols in { p1, ..., pk }.
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Modal Substitution Calculus

X1 : − ψ1 X1 : − ϕ1

. .

. .

. .
Xm : − ψm Xm : − ϕm

Define X 0
i := ψi .

Define X n+1
i to be the modal formula obtained by simultaneously

replacing each variable Xj of the schema ϕi by X n
j .

M,w |= Program iff M,w |= X n
1 for some n ∈ N.

Here M = (W ,R, p1, ..., pk) is a Kripke model (or a distributed
network).
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Descriptive Characterizations

Theorem
MSC captures recognizability by finite messages passing automata.

In other words, for each MSC formula, there exists a corresponding
FMPA, and vice versa.
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Properties of MSC

Theorem
The single variable fragment MSC1 of MSC is not contained in
MSO.
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Properties of MSC

Theorem
The SAT and FINSAT problems of MSC1 are complete for
PSPACE.
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Theorem
In the finite, the fragment of µ-calculus that does not use ν
(negations on the atomic level) is contained in MSC.

Sketch of proof idea.

It is well known that µ-calculus can be defined in terms of modal
equation systems.

Theorem
The fragment of µ-calculus that does not use µ (negations on the
atomic level) is not contained in MSC.
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Descriptive Characterizations

Theorem
Modal theories capture Co-MPA, i.e., a class C of pointed Kripke
models is definable by a modal theory iff the complement of C is
recognized by an infinite message passing automaton.
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Thx!
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Theorem
The single variable fragment MSC1 of MSC is not contained in
MSO.

Sketch of proof idea:

The program (X : − �⊥, X : − �X ∧ ♦X ) recognizes the
nodes w such that every directed walk from w to a dead-end has
exactly the same finite length (and a dead-end is indeed
reachable).
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Theorem
The fragment of µ-calculus that does not use µ (negations on the
atomic level) is not contained in MSC.

Sketch of proof idea.

MSC cannot define non-reachability of a dead-end:
νX .(♦> ∧�X ). For an MSC-automaton, nodes of a cycle graph
appear similar to internal nodes in sufficiently long line-like
graphs.
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Satisfiability is a clopen problem.

The SAT-problem of MSC seems undecidable (Suomela, 2013).
Idea: a one-dimensional cellular automaton can simulate the tape
of a Turing machine, and modal logic seems expressive enough to
deal with unwanted models, such as models with nodes of degree
≥ 3. Also, cycles etc. do not seem to cause any problems here.
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