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Short summary:
▶ We introduce two novel methods for producing immediately

interpretable classifiers for tabular data.
▶ The classifiers are short Boolean formulas.
▶ Despite immediate explainability of our classifiers, the obtained

errors are simlar to ones given by state-of-the-art classifiers for
tabular data.



Background

▶ A key challenge of modern AI: classifiers are often black boxes.
−→ Difficult to understand why a particular result was obtained.

▶ The right of individuals to obtain explanations of automated
decisions made about them is mentioned, e.g., in
▶ The EU data protection regulation
▶ Joo jooo

−→ Explanations are important especially in questions involving
a social or security-related dimension.



Background

▶ The present study investigates explainability via Boolean logic.

▶ Results published in, e.g.,

R. Jaakkola, T. Janhunen, A. Kuusisto, M. F. Rankooh, M. Vilander.
Short Boolean Formulas as Explanations in Practice. Logics in
Artificial Intelligence (JELIA) 2023.

▶ Based on a research programme “Explaining AI via Logic (XAILOG)”
of the Helsinki-Tampere Logic Consortium. Funded by the Academy
of Finland.



Overview

We study explainability via short Boolean formulas. In particular,
study tabular datasets and produce Boolean formulas that act as
immediately interpretable classifiers.



Overview

▶ Boolean data model:
▶ set W of data points
▶ set {p1, . . . , pk} of attributes, i.e., unary relations pi ⊆ W
▶ target attribute q ⊆ W to be classified and explained
▶ q ∉ {p1, . . . , pk}

▶ Explanation:
▶ A short Boolean formula 𝜑 over {p1, . . . , pk} with small error

▶ Explanation error:
▶ Percentage of points that disagree on 𝜑 and q over W , i.e.,

| {w ∈ W : w satisfies ¬(𝜑 ↔ q)} |
|W |
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• 15 letters as data points
• The two blue attributes p1 and p2 try to approximate the large red attribute q.
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• 15 letters as data points
• The two blue attributes p1 and p2 try to approximate the large red attribute q.
• the union p1 ∨ p2 fails on the four entries b,l,k,o. Thus

Error (p1 ∨ p2) =
4
15

= 0.267



Overview of method 1

We study data sets from the UCI machine learning repository. For each
data set, we find a very short Boolean formula that

▶ has an explanation error similar to errors obtained by other
means (e.g., neural networks) in the literature,

▶ is optimized in relation to overfitting—longer formulas would
overfit.

Short length guarantees the formula is immediately interpretable.

Please note, the original datasets are not Boolean. We Booleanize non-
Boolean attributes. In the below examples, numerical attributes are
Booleanized at the median (above meadian meaning “true”).



Overview

Method 1 works as follows once the data has been Booleanized.
1. Scan through Boolean formulas of increasing lengths ℓ.
2. for each ℓ, find a formula that minimizes the error among

formulas up to that length.
3. Stop at the length ℓ where overfitting begins.



Overview

▶ In addition to experiments, we obtain theoretical results that
explain quantitatively how and why Boolean overfitting arises.

▶ This includes new theoretical bounds for data size sufficient to
avoid overfitting.

▶ Current implementations based on ASP (method 1) and Python
(method 2).



Statlog—German credit data set: Who gets a loan?
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Statlog—German credit data set: Who gets a loan?

¬

(
negative_balance

∧
above_median_loan_duration

)∨
employment_on_managerial_level

Formula length: 6
Error: 0.27

Naive Bayesian classifiers give error 0.25 in Yang, Geoffrey, Webb1. Neural
networks give error 0.24 in Griffith et al.

Note, under certain reasonable assumptions, finding the overfitting boundary
means best possible results have been obtained.

1. For references, see the paper R. Jaakkola, T. Janhunen, A. Kuusisto, M. F. Rankooh, M. Vilander: Short Boolean Formulas as

Explanations in Practice. Logics in Artificial Intelligence (JELIA) 2023.



Breast cancer Wisconsin—is a tumor benign?
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Breast cancer Wisconsin—is a tumor benign?

¬(((p ∧ q) ∨ r) ∧ s)

p = thick clump
q = bare nuclei
r = single epithelial cell size property measure
s = non-uniform cell shape

Formula length: 8
Error: 0.047

Naive Bayesian classifiers give error 0.026 in Yang, Geoffrey, Webb. Several
methods used in Ster and Dobnikar, including neural networks; best error
0.032.



For error and reliability analysis, we obtain the following upper bound
for the bias gap

1
2

√︂

2k

n
▶ The gap is used for estimating sufficient sample size n based on

k , and vice versa.

▶ For example, for the credit data set of size 1000, using three
propositions guarantees a small bias gap of 0.045. Our example
classifier

¬

(
negative_balance

∧
above_median_loan_duration

)∨
employment_on_managerial_level

uses three attributes.



The bias gap is the difference between
▶ the expected error of the best possible Boolean classifier in data

of fixed size n and
▶ the error of the theoretically best possible Boolean classifier,

i.e., the error of the best classifier when n → ∞.

In other words, the bias gap gives the difference between the errors of
the best classifiers obtainable from real-life data and the theoretically
best classifier.



Implementation of method 1

▶ Implementation based on
Answer-Set Programming
ASP.

▶ Hypothesis space pruned via
eliminating symmetries.

▶ Scales surprisingly well.

Runtime
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Overview of method 2

1. Discretize the data to Boolean form. (To demonstrate high robustness
of our method, we here very crudely discretize at the median.)

2. Then, for a gradually increasing number ℓ, use feature selection to
choose a set {p1, . . . , pℓ} of attributes. Use the set {p1, . . . , pℓ}
to compute the best possible Boolean DNF-formula for predicting
q.

3. Using early stopping, halt at the number of features where overfitting
begins. If overfitting does not happen, stop at 10 features (the
parameter 10 can be adjusted, but the choice 10 turned out sufficient
for all experiments). Look back at the sequence of formulas
obtained and select the first formula with accuracy within one
percentage point of the last formula.



The method is very fast and still produces short formulas.

Data set Selected
features

Total
attributes

Data
points

BankMarketing 8 48 4521

BreastCancer 5 9 683

CongressionalVoting 8 48 435

GermanCredit 8 61 1000

HeartDisease 3 23 304

Hepatitis 3 74 155

StudentDropout 8 112 4424

Colon 3 5997 63

Leukemia 4 21169 73

Compass 7 55 4966

Covertype 3 54 423680

Electricity 7 14 38474

EyeMovement 4 26 7608

RoadSafety 5 324 111762
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The Hepatitis dataset gives

p1 ∨ (¬p2 ∧ ¬p3)

where p1, p2, p3 relate to measures on the patients abdominal fluid,
antivirals and spleen, respectively.

he accuracy is 85 percent, while XGBoost obtains 62 and the random
forests 77 percent.



We also show that under mild conditions, for any 𝜖, 𝛿 > 0, if the data
size is

n ≥ 2 ln(2k+1/𝛿)
𝜀2 ,

then with probability 1 − 𝛿, the error is less than 𝜖 . Here k is the
number of attributes used.

Can be used for estimating the number of attributes that can be used if
we know the data size and wish to obtain a classifier of some required
accuracy.



Conclusion:

short Boolean formulas can be useful as easily interpretable
explanations and classifiers.

Thank you!


