
Finite model theory
1. Models

1 of 59



The notion of a model

Algebra and discrete mathematics study mathematical structures. For ex-
ample the group (Z,+) and the ring (Z,+, ·) are structures.

The notion of a model formalizes the idea of a structure.

To define the notion of a model formally, let us first recap the notions of a
relation and function.
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Relations

Let Z+ denote the positive integers, i.e., Z+ = {1, 2, 3, . . . }. If X is a set,
recall that Xn denotes the n-fold Cartesian product of X with itself, i.e.,

Xn = { (x1, . . . , xn) | x1, . . . , xn ∈ X }.

Definition 1.1
An n-ary relation over a set X is any set R ⊆ Xn.

In other words, an n-ary relation over X is any set R of tuples (x1, . . . , xn)
of elements of X . The number n is also called the arity of R.
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Relations

Example 1.2
The set

P = { x ∈ R | x > 0 }

is the unary (i.e., 1-ary) relation over R that contains precisely the
positive real numbers. The set

Q = { x ∈ R | x ∈ Q }

is the unary relation over R containing precisely the rationals.
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Relations

Example 1.3
The set

S = { (x , y) ∈ R2 | x ≤ y }

is the binary (i.e., 2-ary) relation over R containing the pairs (x , y) such that
x ≤ y . Clearly S is the ‘smaller or equal to’ relation over R. Note that in the
literature, the symbol ≤ can sometimes be identified with the corresponding
relation S, so we could write, say, that (2, 3) ∈ ≤ and (10, 1) 6∈ ≤ .
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Relations

Example 1.4
Let E = R2 denote the Euclidean plane. The set

P = { (x , y , z) ∈ E 3 | x + y = z }

is the ternary (i.e., 3-ary) relation over E = R2 containing precisely those
triples (x , y , z) of vectors x , y , z in E such that x + y = z . Thus P
corresponds to vector summation in the Euclidean plane.
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Relations
Binary relations are perhaps the most common type of relation in the liter-
ature.

Let R be a binary relation over X , i.e., R ⊆ X 2 = X × X .
1. R is reflexive if (x , x) ∈ R for all x ∈ X .

R is irrefleksive if (x , x) /∈ R holds for all x ∈ X .
2. R on symmetric if we have

(x , y) ∈ R ⇒ (y , x) ∈ R

for all x , y ∈ R.

R on antisymmetric if

∀x , y ∈ X
( (

(x , y) ∈ R and (y , x) ∈ R
)
⇒ x = y

)
.

3. R on transitive if

∀x , y , z ∈ X
( (

(x , y) ∈ R and (y , z) ∈ R
)
⇒ (x , z) ∈ R

)
.
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Example 1.5

The figure shows a binary relation R = {(a, b), (b, c), (c, b)} over the set
{a, b, c}. This relation is not symmetric because we have (a, b) ∈ R but
(b, a) 6∈ R. However, R is not antisymmetric either, because we have
(b, c), (c, b) ∈ R but b 6= c.
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Relations

Definition 1.6
Let R, S ⊆ X × X be binary relations. The inverse relation of R is the
relation

R−1 = {(y , x) | (x , y) ∈ R}.

The composition of R ja S is the relation

R ◦ S = {(x , z) ∈ X × X |
there exists y ∈ X such that (x , y) ∈ R ja (y , z) ∈ S}.

It is easy to show that R ◦ (S ◦ T ) = (R ◦ S) ◦ T .
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Relations

Lemma 1.7
Consider

⋃
n∈Z+ Rn where R1 = R and Rn+1 = R ◦ Rn. The relation⋃

n∈Z+ Rn is transitive.

Proof. Let us first prove that Rm ◦ Rn = Rm+n for positive integers m, n.
We prove this by induction on m. When m = 1, we have R1 ◦Rn = R ◦Rn

and this equals Rn+1 by definition, so the base case is clear. Assume then
that Rk ◦Rn = Rk+n. Now Rk+1 ◦Rn = (R ◦Rk) ◦Rn = R ◦ (Rk ◦Rn) =
R ◦ (Rk+n) = Rk+n+1, so we are done.

Let us then prove
⋃

n∈Z+ Rn transitive. Suppose (x , y), (y , z) ∈
⋃

n∈Z+ Rn.
Thus (x , y) ∈ Rm and (y , z) ∈ Rn for some n and m. Therefore we have
(x , z) ∈ Rm ◦ Rn = Rm+n. As Rm+n ⊆

⋃
n∈Z+ Rn, we have (x , z) ∈⋃

n∈Z+ Rn, so we are done.
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Relations
Definition 1.8
Consider a binary relation R ⊆ X × X . The transitive closure TR(R) is
the smallest transitive set T such that R ⊆ T . More formally, the transitive
closure TR(R) is the transitive set T such that
1. R ⊆ T and
2. T ⊆ V for all transitive sets such that R ⊆ V .

Example 1.9
Recall that N = {0, 1, 2, . . . }. Consider the binary relation

S = {(s, t) ∈ N2 | t = s + 1 }.

The relation S is called the successor relation over N. The transitive closure
TC(S) of S is the strict linear order over N, i.e., the relation

< = {(s, t) ∈ N2 | s < t}.

We sometimes denote this relation by <N.
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Relations

Theorem 1.10
Let R ⊆ X × X be a binary relation. Let F be the set of transitive sets
T ⊆ X × X such that R ⊆ T. Then

TC(R) =
⋂

F .

On the other hand,
TC(R) =

⋃
n∈Z+

Rn

where R1 = R and Rn+1 = R ◦ Rn.

Proof. We first prove that TC(R) =
⋂
F by proving that

⋂
F is the

smallest set that is transitive and contains R as a subset. We begin by
noting that F 6= ∅ because X × X ∈ F . Thus

⋂
F is a defined set.
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We then note that
⋂
F is transitive:

(x , y), (y , z) ∈
⋂
F ⇒ (x , y), (y , z) ∈ T for all T ∈ F
⇒ (x , z) ∈ T for all T ∈ F
⇒ (x , z) ∈

⋂
F .

As
⋂
F is the intersection of all transitive sets containing R as a subset, it

is now clear that
⋂
F is the smallest transitive set containing R. Thus we

have shown that TC(R) =
⋂
F .

We then prove that TC(R) =
⋃

n∈Z+ Rn. Lemma 10 shows that
⋃

n∈Z+ Rn

is transitive. Thus it now suffices to show than for all transitive sets S
containing R, the set S also contains

⋃
n∈Z+ Rn.

Thus let S be an arbitrary transitive set such that R ⊆ S. We show by
induction that Rn ⊆ S for all n. By definition of S, we have R1 = R ⊆ S.
Assume then that Rn ⊆ S. Let (x , z) ∈ Rn+1 = R ◦ Rn. Thus (x , y) ∈ R
and (y , z) ∈ Rn for some y . As R,Rn ⊆ S, we have (x , y), (y , z) ∈ S. As
S is transitive, we have (x , z) ∈ S.
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Relations

Example 1.11
Let P denote the ‘parent relation’ connecting a person x to a person y iff
y is a parent of x . Then TC(P) is the ‘ancestor relation’ connecting x to
y iff y is an ancestor of x .
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Relations
Let us then consider some important types of relations.

Definition 1.12
Let R be a binary relation over X .
1. R is a preorder if it is reflexive and transitive.
2. R is a partial order if it is reflexive, transitive and antisymmetric.
3. R is a weak linear order if it is reflexive, transitive, antisymmetric

and satisfies the following comparativity condition:

for all x , y ∈ X , we have (x , y) ∈ R or (y , x) ∈ R.
4. R is a strict linear order if it is irreflexive, transitive and satisfies the

following trichotomy condition:
for all x , y ∈ X , exactly one of the following holds:
I (x , y) ∈ R,
I (y , x) ∈ R,
I x = y .
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Relations
The ’less or equal than’ relation ≤ over the reals/rationals/integers is an
example of a weak linear order, and the corresponding relation < is a strict
linear order

In the literature, a ‘linear order’ can mean a weak linear order or a strict
linear order. The context will dictate which one is meant.

Definition 1.13
Let R be a binary relation over X . Then R is an equivalence relation
if it is reflexive, transitive and symmetric. The relation R is an identity
relation (also known as an equality relation) if R = { (x , x) | x ∈ X }.

Example 1.14
Consider the binary relation B of ‘having been born the same year’, i.e.,
for any people x and y , we have (x , y) ∈ B iff x and y were born the
same year. This relation B is an equivalence relation.
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Functions

Let us recap the basic definitions relating to functions, also known as
maps.

Let A and B be sets and n ∈ Z+. A function f : An → B associates every
tuple (a1, . . . , an) ∈ An with precisely one element f (a1, . . . , an) ∈ B of
B. In particular, a unary (i.e., 1-ary) function f : A → B associates every
element of a ∈ A with precisely one element f (a) ∈ B of B.

The set An is called the domain of f : An → B while B is the codomain
of the function. The range of f : An → B is the set

{ f (a1, . . . , an) | a1, . . . , an ∈ A }.
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Functions

An n-ary partial function f from An to B is a function f : V → B for
some set V ⊆ An. In particular, a unary (i.e., 1-ary) partial function from
A to B is a function f : V → B for some V ⊆ A.
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Functions

Let n ∈ Z+. An n-ary function over a set X is a function f : Xn → X with
domain Xn and codomain X .

An n-ary function over X is identical to the (n + 1)-ary relation

{
(
(x1, . . . , xn), f (x1, . . . , xn)

)
| x1, . . . , xn ∈ X }

= {
(
x1, . . . , xn, f (x1, . . . , xn)

)
| x1, . . . , xn ∈ X }

over X . In other words, every n-ary function over X is an (n+1)-ary relation
over X .
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Functions

An n-ary partial function over X is a function f : V → X where V ⊆ Xn.
In particular, a unary partial function over X is a function f : V → X for
some V ⊆ X .
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Functions

Definition 1.15
Let f : A → B be a unary function. The function f is an injection if for
all different x and y in A, we have f (x) 6= f (y). In other words, different
elements never map to the same element. The function f is a surjection if
for all b ∈ B, there exists some a ∈ A such that f (a) = b. In other words,
every element b of the codomain B has some element mapping to it. The
function f is a bijection if it is an injection and a surjection.
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Functions

Let f : A → A be a unary function over A. An element a ∈ A is called a
fixed point (or a fixpoint) of f if f (a) = a.

Example 1.16

The figure shows a binary relation R = {(a, b), (b, a), (c, c)} over the set
{a, b, c}. The relation R is also a unary function f with a fixed point c,
i.e., f (c) = c. The pair (c, c) is called a reflexive loop of R.
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Models
We then begin discussing the notion of a model. We first provide an informal
discussion of the notion. Consider the fields

(R,+R, ·R, 0, 1)

and
(Q,+Q, ·Q, 0, 1)

where

1. +R is the binary function +R : R2 → R denoting summation of reals,

2. ·R the binary function ·R : R2 → R denoting multiplication of reals,

3. +Q the binary function +Q : Q2 → Q denoting summation of
rationals, and

4. ·Q the binary function ·Q : Q2 → Q denoting multiplication of
rationals.

The fields (R,+R, ·R, 0, 1) and (Q,+Q, ·Q, 0, 1) are examples of models.
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Models

Also the ordered fields
(R,+R, ·R, 0, 1,≤R)

and
(Q,+Q, ·Q, 0, 1,≤Q)

are models. Here

≤R = { (x , y) ∈ R2 | x ≤ y } and

≤Q = { (x , y) ∈ Q2 | x ≤ y }

are the binary linear order relations over R and Q, respectively.
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Models

Intuitively, models are mathematical entities that encode enough informa-
tion about some mathematical realm of interest. For example, the model

(R,+R, ·R, 0, 1)

enables us to do arithmetic with real numbers. Similarly,

(Q,+Q, ·R, 0, 1)

enables arithmetic with rationals.

However, models have also further uses outside classical mathematics. For
example, databases are typically identified with relational models, i.e., mod-
els consisting of relations.

25 of 59



Models

Having defined the notion of a model informally, we now begin working
towards a formal definition. To that end, we next discuss the notion of a
symbol. There are three types of symbols: function symbols, relation
symbols and constant symbols.

Function symbols are typically symbols such as f , g , h, et cetera. Each
function symbol is associated with an arity n ∈ Z+.

Relation symbols are typically symbols such as R, S,T ,P et cetera. Each
relation symbol is associated with an arity n ∈ Z+.

Constant symbols are typically symbols such as c, d , e et cetera. We do not
associate an arity with constant symbols, although they are often considered
to be nullary (i.e., 0-ary) function symbols in the literature.
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Models

A vocabulary is a set of symbols. A vocabulary can also be called a signa-
ture. An algebraic vocabulary consists of function and constant symbols
only. A relational vocabulary consists of relation symbols and constant
symbols only. (We note that in the literature, a ‘relational vocabulary’ is
sometimes not allowed to contain constant symbols.) A purely relational
vocabulary refers to relational vocabularies without constant symbols.

Vocabularies are typically denoted by τ or σ (where σ relates to the term
‘signature’).
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Models

Definition 1.17
Let τ be a vocabulary. A τ -model M is a pair (M,T ) where
1. M is a nonempty set, called the domain of the model,
2. T is function with domain τ that maps

I each n-ary relation symbol R ∈ τ to an n-ary relation RM ⊆ Mn over
M,

I each n-ary function symbol f ∈ τ to an n-ary function f M : Mn → M
over M,

I each constant symbol c ∈ τ to some element cM ∈ M.

28 of 59



Models

Models are typically denoted by, e.g., the symbols A,B,M et cetera, and
we adopt the convention that the corresponding domain sets are then A,
B, M et cetera. The domain M of a model M can also be denoted by
dom(M).

Note, it may be inconvenient to use the fraktur letters (e.g., M) when
writing models by hand (on paper or on the blackboard). In general it does
not matter how models are written by hand, as long as it is clear from the
context what means what. For example calligraphic symbols (e.g.,M) may
be more convenient for writing by hand.
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Models

Example 1.18
Recall the model (R,+R, ·R, 0, 1,≤R). Strictly speaking, we should write
this model as a pair R = (R,T ) where the map T has the vocabulary
{+, ·, 0, 1,≤} as its domain such that
1. T (+) = +R is the binary summation function over the R. Note here

that while + is a function symbol, we let +R denote the corresponding
function.

2. T (·) = ·R is the binary multiplication function over R. here · is a
function symbol and ·R denotes the corresponding function.

3. T (0) = 0R ∈ R is the constant zero. Here 0 is a constant symbol
while 0R is the corresponding constant in R.

4. T (1) = 1R ∈ R is the constant one. Here 1 is a constant symbol while
1R is the corresponding constant in R.

5. T (≤) =≤R= { (x , y) ∈ R2 | x ≤ y }, so the first symbol ≤ is a
relation symbol and ≤R denotes the corresponding relation.
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Models

We rarely need to be as formal as in the above example. Typically it would
suffice to talk about the model (R,+R, ·R, 0, 1,≤R) instead of the pair
(R,T ). We could even refer to this structure as the model R as long as it
is clear from the context what structure we actually mean.

Similarly, it is not always necessary to differentiate between a relation sym-
bol R and the related relation RM. As long as it is fully clear what is meant
from the context, we may use the symbol R to denote the relation RM.
The same goes for function symbols and constant symbols.
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Models

Let τ = {R} be a vocabulary with one binary relation symbol R. The figure
shows a model ({a, b, c},T ) where T (R) = {(a, b), (b, c), (c, b)}. It is
also ok to define this as, say, a model M = (M,RM) where M = {a, b, c}
and RM = {(a, b), (b, c), (c, b)}. It is even ok to define it as a model
M = (M,R) where M is as above and R = {(a, b), (b, c), (c, b)}. So here
we are indeed not differentiating between relations and relation symbols.

We note, however, that it is sometimes convenient to have the fully formal
definition of a model at hand.
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Models

Example 1.19
Consider once more the models (R,+R, ·R, 0, 1,≤R) and
(Q,+Q, ·Q, 0, 1,≤Q). These models have the same vocabulary
{+, ·, 0, 1,≤} with two function symbols, two constant symbols and
one relation symbol. The domains R and Q are different.

The models (R,+R, ·R, 0, 1) and (Q,+Q, ·Q, 0, 1) are similarly related, this
time the vocabulary being {+, ·, 0, 1}.

Each of these four models of the example here have an infinite domain.
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Models

Definition 1.20
A finite model is a model whose domain is finite, and furthermore, also
the vocabulary of the model is finite.

Finite model theory studies finite models with a relational vocabulary, i.e.,
finite relational models. Typically the models studied are actually purely
relational, so constant symbols are out of the picture. Function symbols
are not considered. However, this is not a significant limitation, since (as
we have observed above) n-ary functions are a special case of (n + 1)-ary
relations.
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Models

The cardinality of a model M, denoted card(M), is the number of
elements in the domain M of M. That is, card(M) = |M|.

The elements x ∈ M in the domain of a model M have various names.
They can be called, e.g., elements, points or nodes.
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Definition 1.21
A directed graph is a model (V ,E ) where V is a finite set of vertices
(singular: vertex) and E ⊆ V × V is a binary relation that does not
contain reflexive loops.

Thus, in a directed graph (V ,E ), there are no vertices v ∈ V such that
(v , v) ∈ E .

Definition 1.22
A graph is a directed graph (V ,E ) where E is symmetric, i.e.,
(u, v) ∈ E ⇒ (v , u) ∈ E .
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Morphisms

One of the most important notions in mathematics is that of similarity.
Pairs of structures have different levels of similarity, and this phenomenon
is conveniently studied in terms of different kinds of morphisms.
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Morphisms

The first kind of morphism that we study is homomorphism.

Definition 1.23
Let A andB be τ -models, i.e., models over the vocabulary τ . Let h : A→ B
be a function mapping from the domain A of A to the domain B of B. The
function h is a homomorphism from A to B if h satisfies the following
homomorphism conditions:

1. h(cA) = cB for all constant symbols c ∈ τ .
2. h(f A(a1, . . . , an)) = f B(h(a1), . . . , h(an)) for all n-ary function

symbols f ∈ τ and all a1, . . . , an ∈ A.
3. (a1, . . . , an) ∈ RA ⇒ (h(a1), . . . , h(an)) ∈ RB for all a1, . . . , an ∈ A

and all n-ary relation symbols R ∈ τ .
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Morphisms

Definition 1.24
Let A and B be τ -models. Let h : A→ B be a function mapping from the
domain A of A to the domain B of B. The function h is a strong homo-
morphism from A to B if h satisfies the following strong homomorphism
conditions:

1. h(cA) = cB for all constant symbols c ∈ τ .
2. h(f A(a1, . . . , an)) = f B(h(a1), . . . , h(an)) for all n-ary function

symbols f ∈ τ and all a1, . . . , an ∈ A.
3. (a1, . . . , an) ∈ RA ⇔ (h(a1), . . . , h(an)) ∈ RB for all a1, . . . , an ∈ A

and all n-ary relation symbols R ∈ τ .

The difference to homomorphism is that now the condition 3 has a
bi-implication ⇔ instead of implication ⇒.
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Morphisms

A strong homomorphism h from A to B is
1. an embedding if h is an injection,
2. an isomorphism if h is a bijection.

Two models A and B are said to be isomorphic, denoted A ∼= B, if
there exists an isomorphism h from A to B. Intuitively this means that
A and B are essentially the same; we obtain B from A by replacing the
domain elements a of A with the elements h(a) of B but keeping the
structure otherwise the same. An isomorphism h from A to A itself is
called an automorphism. A homomorphism h from A to A itself is called
an endomorphism.

If there is an embedding h from A to B, we say that A embeds into B.
Intuitively this means there exists a copy of the structure A inside B.
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Morphisms

Definition 1.25
Let A be τ -model, where τ is a relational vocabulary. Then the restriction
of A to B ⊆ A is the model B = A � B (with domain B) defined such that

RB = { (a1, . . . , an) ∈ Bn | (a1, . . . , an) ∈ RA }

for all relation symbols R ∈ τ . It is also required that cB = cA for all
constant symbols c ∈ τ . Note that this requires that all the constants cA
of A belong to the set B.

A τ -model C is a substructure of A if C is some restriction A � C of A to
some set C ⊆ A. It is easy to see that then C embeds into A.
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Definition 1.26
Let A and B be τ -models for a relational vocabulary τ . A partial isomor-
phism p from A to B is an isomorphism p : U → V from A � U to B � V
for some sets U ⊆ A and V ⊆ B.

Thus the partial isomorphism p maps some substructure S of A onto a
substructure T of B such that S ∼= T.
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Definition 1.27
LetM andN be τ -models for a purely relational vocabulary τ . The disjoint
union ofM andN is the τ -modelM]N with domain (M×{0})∪(N×{1})
and with each n-ary R ∈ τ specified such that

RM]N

= {
(
(a1, x), . . . , (an, x)

)
| (a1, . . . , an) ∈ (RM)n ∪ (RN)n and x ∈ {0, 1} }.

Intuitively, the disjoint union is the model obtained by taking a copy of M
and and copy of N, and then putting these two models into the same model
without letting the two domains overlap.
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Definition 1.28
Let R be a binary relation and consider a model M = (M,RM). Let A ⊆ M
be a nonempty set. The generated submodel of M generated by A is the
model M � N where the domain N of M � N is the smallest set defined as
follows.
1. A ⊆ N,
2. If a ∈ N and (a, b) ∈ RM, then b ∈ N.

Intuitively, this generated submodel of M is the submodel defined by re-
stricting to all points that are accessible (possibly with several steps) from
the points of A via RM.
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Notes on some further types of models
Recall from Definition 1.22 that a graph is directed graph (cf. Definition
1.21) (V ,E ) where the binary relation E is symmetric. Due to this sym-
metricity, we ofted draw graphs somewhat differently from standard models
where the vocabulary consists of one binary relation. Consider, for example,
the following figure.

The figure shows a graphG with domain V = {0, 1, 2, 3} and binary relation
E = { (0, 1), (1, 0), (0, 2), (2, 0), (1, 2), (2, 1), (2, 3), (3, 2) }. Typically when
drawing models, the pair of tuples (0, 1), (1, 0) would correspond to two
arrows, one from 0 to 1 and the other one back from 1 to 0. It is always
ok to draw models that way, but when drawing graphs, it may be handy
to simply draw lines connecting points rather than double arrows. This
simplifies the drawings.
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Notes on some further types of models
In standard graph theory, the graph

would typically be specified as the pair

({0, 1, 2, 3}, {{0, 1}, {0, 2}, {1, 2}, {2, 3}}).

Then our pair of tuples (0, 1), (1, 0) would be replaced by the set {0, 1},
and so on. Each pair {0, 1} would be called an ‘edge’.
In this course, we will stick to the definition of G from the previous slide, but
it is good to know that conventions vary in the literature. It is also worth
noting that in general, tuples (a1, . . . , an) of an n-ary relation R can often
be called edges, or n-ary edges. In particular, tuples (u, v) of a directed
graph can be called edges. Typically no confusion with the definitions of
standard graph theory arises, as it is clear from the context what is meant.
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Notes on some further types of models
Let I be a set of indices and R a binary relation symbol. Define the vocab-
ulary τ = {Pi | i ∈ I } ∪ {R} where each Pi is a unary relation symbol. A
Kripke structure over τ is a model (W ,R, (Pi)i∈I). Elements w ∈ W of
the domain W are often called ‘worlds’ when discussing Kripke structures.
This relates to the original uses of Kripke structures in work on modal logic.
Note that W need not be finite.

A labelled transition system is a Kripke structure. Labelled state transi-
tion systems are used in computer science to describe systems evolving in
time. The points in the domain of a labelled transition system are called
‘states’. For a state u of a transition system S, if u ∈ PS

i , then the state u
is interpreted to ‘satisfy the property’ Pi . For states u and v , if (u, v) ∈ RS,
then v is considered to be a state that is ‘accessible’ from u in one time
step.

Note that the index set I above may be empty, and in that case we have a
Kripke structure (or a state transition system) with the vocabulary {R}. Di-
rected graphs are such Kripke structures. (The relation symbol for directed
graphs is typically E instead of R, but that is not a significant issue.)
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Notes on some further types of models

Let (V ,R) be a model, R ⊆ V × V . A directed walk is a sequence
(v1, v2, . . . ) of points v1, v2, ... ∈ V such that for each vi , vi+1, we have
(vi , vi+1) ∈ R. If the sequence is of type (v1, . . . , vn), then we say that the
walk is finite. Otherwise the sequence is said to be an ω-sequence, and
then we can identify the sequence with a function f : Z+ → V such that
f (i) = vi .

A directed walk is a directed path if all the points in the sequence are differ-
ent. A directed cycle is a finite sequence (v1, . . . , vn, v1) where (v1, . . . , vn)
is a directed path and (vn, v1) ∈ R. (Here n ≥ 1, so the shortest directed
cycle is of type (v , v), i.e., a reflexive loop.)
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Notes on some further types of models
In a model (V ,R) with R ⊆ V ×V , an undirected walk is a nonempty se-
quence

(
(v1,1, v1,2), (v2,1, v2,2), . . . , (vi ,1, vi ,2), . . .

)
of tuples in R such that

1. for each (vi ,1, vi ,2), we have (vi ,1, vi ,2) ∈ R ∪ R−1 and
2. for all (vi ,1, vi ,2) and (vi+1,1, vi+1,2), we have vi ,2 = vi+1,1.

If the sequence is of type(
(v1,1, v1,2), (v2,1, v2,2), . . . , (vi ,1, vi ,2), . . . , (vn,1, vn,2)

)
,

then the walk is finite. Otherwise it is an ω-sequence and we can identify
the sequence with a function f : Z+ → R in the natural way.

A directed walk is a directed path if all the tuples (vi ,1, vi ,2) in the sequence
have differing sets {vi ,1, vi ,2} of nodes, no tuple is of type (v , v), and a point
u can occur in two different tuples (vi ,1, vi ,2) and (vj,1, vj,2) only if j = i +1
or i = j + 1.
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Notes on some further types of models

A model (V ,R) with R ⊆ V × V is connected if for all different points
v , u ∈ V , there is an an undirected path(

(v1,1, v1,2), . . . , (vn,1, vn,2)
)

such that u = v1,1 and v = vn,2.

The model (V ,R) is strongly connected if for all different u, v ∈ V , there
is a directed path (u, . . . , v).
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Notes on some further types of models

A directed graph G = (V ,E ) is said to be acyclic if there does not exist
an undirected path ((u, v), . . . , (u′, v ′)) such that (v ′, u) ∈ R ∪ R−1. The
structure G is also called a tree if it is acyclic.
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Notes on some further types of models

Consider a τ -model M = (M,T ) where T is the function giving interpre-
tations to the symbols in the vocabulary τ . Let σ ⊆ τ . Then the σ-model
N = (M,T � σ) is called the σ-reduct of M. Intuitively, the reduct N
is otherwise the same as the orginal model M, but gives interpretations to
only some of the symbols of M.

Conversely M is called the expansion of N to the vocabulary τ . (Obviously
there can be several expansions of a model to the same larger vocabulary,
but reducts are unique once the vocabulary of the reduct is fixed.)

We note that if A is a substructure of B, then B is called an extension
of A rather than an expansion. Extensions preserve the vocabulary while
expansions generally do not.
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Notes on some further types of models

Let σ = τ ∪ {≤} be a vocabulary. A σ-model interpreting ≤ as a weak
linear order is called an ordered model.

Theorem 1.29
Let M and N be finite, ordered σ-models. Then there exists at most one
isomorphism f : M → N between the models.

Proof. Suppose there exists some isomorphism f : M → N from M to N.
Let M = {m1, . . . ,mk} and N = {n1, . . . , n`} such that
I mi ≤M mj ⇔ i ≤ j ,
I ni ≤N nj ⇔ i ≤ j .

Since f is a bijection, we must have ` = k. Therefore N = {n1, . . . , nk}.
We will show that f (mi) = ni for all i . This implies that f is indeed the
only possible isomorphism from M to N.
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Notes on some further types of models

We will show f (mi) = ni by induction on i . First, if f (m1) = np for p 6= 1,
then there is some q > 1 such that f (mq) = n1. Therefore m1 ≤M mq
but n1 = f (mq) ≤N f (m1) = np (with p 6= 1). Thereby m1 ≤M mq and
f (m1) 6≤N f (mq), violating the isomorphism condition. Therefore we have
f (m1) = n1, as desired.

Suppose then that f (mk) = nk up to some index k. Now, as f is a bijection,
we have f (mk+1) = n` for some ` ≥ k + 1. Suppose, for contradiction,
that ` > k + 1. Then f (mp) = nk+1 for some p > k + 1. Therefore
mk+1 ≤M mp and f (mk+1) = n` 6≤N nk+1 = f (mp), directly violating the
isomorphism condition.
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Recall that an isomorphism from a model M to M itself is called an au-
tomorphism. Theorem 1.29 shows that the only automorphism of a finite
ordered model M is the trivial automorphism f : M → M with f (m) = m
for all m ∈ M.

Definition 1.30
A model M is called rigid if the only automorphism of the model is the
trivial automorphism.
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Example 1.31
Consider the graphs in the picture. It is easy to see that the graphs are not
isomorphic. The simplest way to justify this is by noting that there trivially
cannot be a bijection between the domains of different sizes (cardinalities).

It is easy to define homomorphisms from G to G′, for example the maps
{(0, 0), (1, 1), (2, 2)}, {(0, 1), (1, 0), (2, 2)}, {(0, 0), (2, 2), (1, 3)}, and oth-
ers.
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Note, however, that that these three homomorphisms specified above are
actually embeddings of G into G′. A somewhat more nontrivial homomor-
phism is the map {(0, 0), (2, 2), (1, 0)}. This map is not an injection.

There exists no homomorphism from G′ to G. For suppose h is such
a homomorphism. We have (0, 1), (1, 2), (2, 0) ∈ EG′ , so we must have
(h(0), h(1)), (h(1), h(2)), (h(2), h(0)) ∈ EG. However, it is easy to see that
there exist no points x , y , z inG such that (x , y), (y , z), (z , x) ∈ EG. (Note,
however, that there are points x , y in G such that (x , y), (y , x) ∈ EG.)
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Let us calculate the number of automorphisms from G to G. First, there
always exists the trivial automorphism. Secondly, it is easy to see that under
every automorphism f , we have f (2) = 2. Therefore the only remaining
possible automorphism is the map {(0, 1), (1, 0), (2, 2)}. This is indeed an
automorphism, so alltogether we have two automorphisms. Thus G is not
rigid.
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Let us identify all partial isomorphisms p with domain {1, 2} from G to G′.
First note that (1, 2), (2, 1) ∈ EG, so we must have

(p(1), p(2)), (p(2), p(1)) ∈ EG′
.

Thus there four possible sets {p(1), p(2)}, the sets

{0, 1}, {0, 2}, {1, 2}, {2, 3}.

For each of the four sets, there are two possible partial automorphisms, e.g.,
p = {(1, 0), (2, 1)} and p = {(1, 1), (2, 0)} in the case of the set {0, 1}.
Thus there exist eight partial isomorphisms with domain {1, 2}.
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